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Voorwoord

Op het einde van mijn ingenieursopleiding nam ik me voor om deel te nemen aan
ingenieursonderzoek, waarin er een plaats zou zijn voor mijn sluimerende interesse
voor talen en grammatica. Automatische spraakherkenning leek een geschikt werk-
terrein. Het lag immers voor de hand dat luisterende computers, net zoals mensen,
moeten kunnen beslissen welke woorden, als voortzetting van een gedeeltelijk uitge-
sproken zin, waarschijnlijk zijn, en welke niet. En dat hierin grammaticale noties een
belangrijke rol moesten spelen, dat leed ook geen twijfel. ..

Bij mijn eerste ontmoeting met Dirk Van Compernolle, toen hoofd van de spraakgroep,
bleek mijn interesse de ‘statistische taalmodellering’ te betreffen. Dirk toonde zich
enthousiast en gaf me meteen de kans om een doctoraat bij hem te beginnen, waarvoor
ik hem dankbaar ben.

Het werd echter snel duidelijk dat het idee over de bijdrage van grammaticale kennis
aan het taalmodel op dat moment noch origineel, noch succesvol was in spraakher-
kenning met een grote woordenschat. De vooruitgang in statistische taalmodellering
was grotendeels het resultaat van verfijningen van algemeen toepasbare statistische
schattingstechnieken, waarin taalwetenschap geen enkele ernstige rol speelde.

De eerste jaren van mijn doctoraat gingen op aan de studie, de verbetering en de effici-
ente toepassing van reeds gekende taalmodelleringstechnieken. Hierbij kwam heel
wat programmeerwerk en aan te pas; voor computerproblemen of programmeervragen
kon ik op bijna elk willekeurig moment terecht bij mijn collega Kris Demuynck, die
graag zijn technische ervaring met me deelde. Ik dank hem daarvoor van harte.

In deze periode deed zich ook de kans voor om een jaar lang te werken als gaston-
derzoeker bij de Interactive Systems Labs (ISL) te Karlsruhe en Pittsburgh. Daar
onderzocht ik onder andere methoden voor de aanpassing van een taalmodel aan een
andere stijl, onder meer door de statistieken van woordcatégotdescheiden van de
statistieken van de gebruikte woorden zelf. Dit verblijf was mogelijk met de steun
van het IWT, en met de hulp van Alex Waibel, hoofd van de ISL. Wat ik van deze
ervaring heb meegedragen, is vooral de praktische vertrouwdheid met conventionele
taalmodelleringstechnieken, maar ook de inspiratie die ik opdeed uit vele leerzame
gesprekken met Klaus Ries, John Lafferty en Roni Rosenfeld.

Na mijn terugkomst uit Pittsburgh deed de gelegenheid zich voor om in samenwerking
met Filip Van Aelten, Kristin Daneels en Marc Hogenhout van Lernout&Hauspie een
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project te starten dat zou voortbouwen op het ‘gestructureerde taalmodel’ van Cipri-
an Chelba en Fred Jelinek. Het project was riskant: er viel veel programmeer- en
experimenteerwerk te doen, vooraleer duidelijk zou kunnen zijn of we effectief weten-
schappelijke vooruitgang zouden realiseren — wat achteraf gelukkig wel bleek. Deze
aangename en stimulerende samenwerking bracht me weer dichter bij mijn originele
motivatie om aan onderzoek op taalmodellering te doen. Het was Filip die mijn aan-
dacht vestigde op linkerhoekontleding als mogelijke basis voor een nieuw taalmodel,
en daarvoor ben ik hem zeer erkentelijk.

Bij de voltooiing van deze tekst, en ter gelegenheid van de openbare verdediging ervan,
dank ik oprecht de leden van mijn jury: Dirk Van Compernolle, Patrick Wambacq,
Ludo Froyen, Rens Bod, Frank Van Eynde, Hugo Van hamme en Yves Willems, voor
de tijd en moeite die ze hebben besteed aan het nalezen van de tekst en voor de talloze
suggesties die de tekst leesbaarder en correcter hebben gemaakt. Tom Laureys en
Sigrid Maene hebben ook gedeelten van de tekst nagelezen, wat zeer nuttig bleek.
Hartelijk dank.
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Samenvatting

Deze doctoraatsstudie levert een bijdrage tot het onderzoeksdomein van de statistische
taalmodellering. Hierin wordt de menselijke taalproductie als een probabilistische da-
tastroom van zinnen voorgesteld. Het doel is optimale schatters te vinden voor de
waarschijnlijkheid waarmee een willekeurige zin wordt geproduceerd, binnen de con-
text van een natuurlijke-taaltoepassing. Statistische taalmodellen zijn een essentieel
onderdeel van o.a. automatische continue spraakherkenning met een groot vocabulari-
um, naast andere natuurlijke-taaltoepassingen.

Het onderzoek beschreven in deze thesis is toegespitst op de klasse van grammatica-
gebaseerde taalmodellen. In tegenstelling tot andere conventionele taalmodellerings-
technieken baseren deze modellen de schatting van de probabiliteit van een zin, die
observeerbaar is, op een ambigue intermediaire predictie van de grammaticale struc-
tuur van deze zin, die niet observeerbaar is. Deze aanpak werd lange tijd niet geschikt
geacht voor statistische spraakherkenning met een groot vocabularium. Samen met
enkele andere recente bijdragen, toont dit doctoraatswerk aan dat wezenlijke verbete-
ringen van de kwaliteit van het taalmodel toch mogelijk zijn door rekening te houden
met grammaticale structuur.

Het belangrijkste concrete resultaat van dit werk is de ontwikkeling van een taalmodel,
dat een gelexicaliseerde linkerhoekzinsontledingsstrategie aanwendt. Mijn aanpas-
sing van deze welbekende strategie gebruikt een ruimte- en tijdéaeffioioorstelling

en uitbreiding van verscheidene gedeeltelijke zinsontledingen en hun probabilititeiten.
Voor de initialisatie van het taalmodel is een verzameling handmatig of automatisch
ontlede zinnen nodig, maar het model optimaliseert zich nadien verder op ongeana-
lyseerd tekstmateriaal. Het laat tevens toe om de conditionele probabiliteit van een
woord te voorspellen, uitgaande van de daaraan voorafgaande woorden. Dit is belang-
rijk voor de integratie met andere conventionele taalmodelleringstechnieken, en voor
een zo vroegtijdig mogelijke combinatie met de andere kennismodules door het zoek-
mechanisme van een spraakherkenner, zodat de zoektocht gerichter kan gebeuren.

Tenslotte wordt aangetoond dat het voorgestelde taalmodel verbeteringen in spraak-
herkenningsnauwkeurigheid verwezenlijkt op de ‘Wall Street Journal’-taak, dit ten

opzichte van een combinatie van een woordgebaseerd trigrammodel en een klasse-
gebaseerd 4-grammodel. De geobserveerde verbetering ten opzichte van een ander



recent grammatica-gebaseerd taalmodel is kleiner maar bij gelijke prestaties vereist
het taalmodel, dat gebaseerd is op linkerhoekzinsontleding, slechts een fractie van de
leertijd van het andere.

Een uitgebreide samenvatting is opgenomen als Appendix E vanaf bladzijde 123.



Summary

This thesis contributes to the research domain of statistical language modeling. In this
domain, the human generation of natural language is represented as a probabilistic
data stream of sentences. Language modeling research attempts to find optimal esti-
mators of the probability that some sentence is produced, albeit within the context of a
given natural language application. Statistical language models are an essential part of
automatic speech recognition systems, amongst other natural language applications.

The research described in this thesis is limited to the class of grammar-based lan-
guage models. In contrast with other conventional language modeling techniques,
these models predict the probability of the input sentence, which is observable, based
on an ambiguous intermediate prediction of the grammatical structure of that sen-
tence, which is not observable. This approach was believed unsuited for statistical
large-vocabulary speech recognition. Together with a few other recent publications,
this doctorate study shows that taking grammatical structure into account enables sig-
nificant improvements in language model performance.

The most important concrete result is the development of a language model that fol-
lows a lexicalized left corner parsing strategy. My adaptation of this well-known pars-
ing strategy represents several concurrent sentence analyses and their probabilities
efficiently in both time and space. The proposed language model is initialized with a
set of hand- or machine-parsed sentences, but is then optimized on plain text. It allows
to predict the conditional probability of a next word, given the preceding ones. This is
important for integration with other conventional language modeling techniques, and
for the early combination with the other knowledge sources by the search engine of a
speech recognizer.

Finally the proposed language model is shown to improve the recognition accuracy
on the Wall Street Journal task, with respect to a combination of a word-based trigram
model and a class-based 4-gram model. The observed improvement with respect to
another recently published grammar-based model is smaller, but at equal performance
levels, the left corner parsing model only requires a fraction of the learning time of
the other model.
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Introduction

Since the early years of speech recognition, statistical language modeling has been
a great source of frustration to many researchers. When Jelinek and Mercer [1980]
proposed then-gram language model, a naive Markov model of order 1, they

did not anticipate that their ‘first shot’ would remain the state of the art for at least
more than 20 years. Up till now, nobody was able to propose a replacement that
is significantly more generic, more powerful, yet computationally as simple as the
n-gram model.

On the other hand, language modeling research has been fruitful in other ways, realiz-
ing advances in statistical smoothing and model combination techniques.

Apart from these, language modeling research did yield modest improvement in speech
recognition accuracy. Alternative techniques such as trigger words, cache models,
mixing in topic information through LSA (latent semantic analysis) or maximum en-
tropy modeling etc. were proven to complement the bagjcam model successfully.
Recent valuable experiments, combining different language modeling techniques on
a large training data set (NAB, 284 million tokens), were presented by Goodman
[2001a]. He obtained a cross-entropy decrease of 0.74 bits or a perplexity reduction
by 40%, and a word error rate decrease of 8.9% in speech recognition experiments,
relative to the word error rate obtained with a trigram language nmodel.

Unfortunately, Goodman did not evaluagtatistical grammar-based language mod-

els The interest in statistical grammar-based language modeling for large-vocabulary
speech recognition has resurged since the mid-90s. First encouraging results were
published by Chelba and Jelinek [1999]. Grammar-based language models are partic-
ularly attractive because they intend to generalize language patterns in a similar way
human experts do, namely through syntactic grammars; grammars (or large collec-
tions of syntactically analyzed text) are trusted prior knowledge that other traditional
language models do not exploit.

This thesis presents a novel language model basguatrabilistic left corner syntac-
tic parsing? It is related and competitive with Chelba’s and Roark’s grammar-based
language models [Chelba and Jelinek, 2000, Roark, 2001], but uses a different parsing

1. These evaluation measures are explicated in Sec. 1.3.1.
2. (Probabilistic) left corner parsing is reviewed in Sec. 3.3.
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Introduction

algorithm. Cross-entropy reductions of 0.32 bits (20% perplexity reduction) were mea-
sured, and a relative word error rate reduction of 12% when used in combination with
a baseline 3-gram model. With a baseline model consisting of a word-based 3-gram
and a class-based 4-gram, it was also found that interpolating the baseline model with
the left corner parsing model still yields a relative word error rate reduction of 6.2%.
Like other grammar-based language models, the proposed model is still computation-
ally intensive, when compared with other traditional language modeling techniques,
but its performance in terms of accuracy is remarkable.

Limitations

From a scientific point of view, | believe that the left corner parsing model’s test
results and Goodman’s are quite substantial. However, advanced language modeling
techniques cannot serve many practical purposes due to their great marginal price
versus performance ratio — in building the language models, as well as in deploying
them. An early version of [Goodman, 2001a] vents a similar pragmatic concern, but
concludes:

“To summarize, language modeling is a very difficult area, but not one
that is completely hopeless. Basic research is still possible, and there
continue to be new, if not practical, then certainly interesting language
modeling results. There also appear to be a few areas in which useful
language modeling research is promising. But language modeling, like
most research, but perhaps more so, is not an area for the faint of heart or
easily depressed.” [Goodman, 2001b]

This quote again raises the questianygetting results from advanced language mod-
eling is difficult. There are a few boundary conditions in the formulation of the lan-
guage modeling problem that limit the accuracy of the language models that can ever
be obtained. The next paragraphs discuss these limitations.

1. Hidden discourse contextirtually all characteristics of the circumstances in which

a discourse takes place influence the statistics of language patterns seems endless:
medium (dialog, report), topic, register (casual, formal), speaker (age, gender), lis-
tener(s), location, time (Monday morning, Saturday night), ... Language models are
trained on text only (transcriptions or digitized text collections), while text is rather a
result of a far more complex, but hidden, process.

The common work-around is to keep the discourse context rather constant, and es-
timate a language model specific for that discourse context. Therefore one needs
homogeneougiscourse context invariant) training corpora. But then, robustness is
seriously reduced, since the language model is only fit for an ever tighter domain. A
more fundamental solution would start with finding language ‘invariants’, those ele-
ments that remain relatively unchanged over different discourse contexts. Grammar
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may deliver such elements to a certain extent, which motivates the exploration of
grammar-based language models.

2. Inherent heterogeneity of languadeven within a short text fragment, the discourse
context changes unceasingly. Consequently, a training corpus of any significant size
is never homogeneous.

3. No analysis of word structurén the classical problem formulation, language mod-
els see natural language words as atomic units. They are blind for word-internal struc-
ture. A word evidently contains much more information than can be empirically de-
rived from its coocurrence with other words. For instance, the word ‘ontsnaafd’ does
not exist in Dutch, but native speakers will expect it to function as a past participle, and
will recognize that it has a privative meaning. Integrating morphological knowledge
into the language model would already be a significant step forward.

The current standard approach is to collect khenost frequent word tokens into a
vocabulary; a word type is completely equivalent with its index into that vocabulary.
N should be large enough to minimize the rate of unknown words, causing errors, but
not too large to keep the language model’s size manageable, and to allow sufficient
training for all vocabulary words given a fixed amount of training data. For large-
vocabulary speech recognitiad,is typically 65,000. This naive approach is viable for
English in topic-constrained settings where enough training data (ten million running
tokens or more) is available. It is less suited for morphology-rich languages, and
applications where the language model should be robust against unexpected changes
of topic or discourse.

4. Passive learning Language models are trained on digitized text collections. As
such, they only see positive examples. Human language learning, on the other hand,
is an interactive process.

5. Adverse conditionsComputational language models have to operate in ‘adverse’
conditions. For instance, in speech recognition, the acoustic model is inferior to its
(imaginary) human equivalent, and there is no explicit inference of meaning. As a
consequence, the language model has to compare hundreds or thousands of concurrent
partial hypotheses, while humans need surprisingly little intellectual effort for speech
recognition. This discrepancy can be compared with the enormous ambiguity faced
by automatic parsing of natural language, of which most humans are unaware.

The language model presented in this thesis is subject to all of the above limitations.
However, it is a modest attempt to combat the first two of them by integrating hu-
man knowledge on syntax, assuming that syntax rules are relatively invariant under
different circumstances.

It is additionally limited in the following ways:

. Its scope is limited to within-sentence information.

. Syntactic structure is represented with tree graphs without crossing branches
or non-local indexing. Tree nodes are annotated with simple tags, there are no
features.
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. Only syntactic, no semantic category labels are used.

. The model is trained on annotated treebanks; human grammatical competence
is acquired indirectly, which excludes competence that only shows in sentences
that happen to fall outside the training set.

. Words are not analyzed morphologically. This makes the parsing task more
difficult, especially on sentences containing out-of-vocabulary words.

At the end of the thesis, possible extensions to the model are proposed to overcome
some of these shortcomings.

Thesis overview

The next two chapters, 1 and 2, present introductory material. Chapter 1 introduces
the reader to the field of statistical language modeling, tells where and how statistical
language models are applied, and surveys most commonly used language modeling
techniques. Chapter 2 describes previous research on grammar-based language mod-
eling.

My main contribution, a language modeling method based on probabilistic left corner
parsing, is described in chapters 3 and 4. The theoretical aspects of the language
model are discussed in Chapter 3, while Chapter 4 summarizes experimental results
with the language model in a speech recognition task.

The last chapter summarizes the thesis and discusses future possibilities and exten-
sions of the left corner parsing language model.
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CHAPTER

A background of statistical language
modeling

This chapter introduces the reader to the field of statistical language modeling. The
general problem of language modeling is outlined and it is explained where and how
statistical language models can be applied. A survey of common statistical language
modeling techniques is given in order to situate the work on the probabilistic left-
corner parsing language model within the current body of research into language mod-
eling and as a quick reference for the following chapters.

1.1. What is a statistical language model?

In a general sense, language modelis a computational model that generates lan-
guage. This thesis deals with human natural language: the language models discussed
here attempt to mimic the natural language generation behavior of humans.

1.1.1. Representing language

In most current natural language processing (NLP) applications, natural language is
represented as a stream of utterances while each utterance is represented as a finite
sequence of words. Then, depending on the detail of representation, each word can
again be represented as a finite sequence of sub-word units or it can be regarded as
an atomic unit. In this thesis, words are regarded as atomic units, since it is common
practice in large-vocabulary continuous speech recognition (LVCSR), which is the
most important testbench for language models.

The following notations and definitions are introduc8equencesf variables and/or
constants are written separated by a comma and enclosed in parentheggsy, )g.
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or concatenated, likeyz Greek lowercase letters, 3, ..., denote sequenceg, 3)
andY 3 denote the same sequence starting WitfThe empty sequendg is denoted

by €. The expressiowiJ is a short notation for the sequen@®, wi1,...,w;), or for

e if j <i. Aninitial substring of a sequence is calleghi@fix. The set of sequences

of lengthn containing elements from the same ¥eis denoted by". The union

{e} UV UV?2U...is denoted by*.

The atomic units of language aweord types. A vocabulary V is a set of word
types, including the sentence boundary markers and </s>. A word token is

an instantiation of a word type (e.g. appearing in a text).wéd string W is a

finite sequence of word tokens. gentenceS= wg is a word string whergvy = <s>,

Wy = </s>andw; € {<s>, </s>} for 0 <i < N. A phraseis a substring of a sentence.

A sentence prefixs an initial substring of a sentence.

The process of mapping a text to a sequence of word tokens is ¢aKedization.

The natural language phrase ‘I'm here’ could be tokenized as [rere], or as @, am,
here), or as ([, apostrophe, m, here), ..., depending on the selected tokenization
scheme. The mapping function is usually many-to-one: the representation discards the
information that is deemed irrelevant for the application that will deploy the language
model. For instance, if a language model should be case-insensitive (as dictated by the
application specifications), then tokenization involves casting all characters to lower-
or uppercase. Tokens do not necessarily correspond with orthographic words. It all
depends on which information is relevant for the model or for the application.

1.1.2. The probability of a sentence

Thus far | have remained vague about the term ‘language model’ itself. The non-
probabilistic approach to formal language theory defines language as a set of sentences
(see, for instance, [Hopcroft and Ullman, 1979]). That is, a language is determined by
an indicator function that tells whether a certain sentence is in a language or not. If
this indicator function is adequately described lyrammar, which is a finite set of

rules, then that grammar is saidd¢over the given language; a covering grammar is

an adequate language model in this setting. If the grammar defines a strict superset of
the language, then it is said twergenerate Conversely, if it defines a strict subset

of the language, then it is said tmdergenerate

The non-probabilistic treatment of language, advocated by knowledge-based compu-
tational linguistics, leads to a distinction between the concepgsamfimaticalityand
acceptability A non-grammatical sentence can be acceptable, and a grammatical sen-
tence can be non-acceptable.

The goals of language modeling, however, are closeguantifying acceptability
rather than recognizing grammaticality. That does not mean that all knowledge is
replaced by numbers, but that knowledge is formally applied up to the point that it is
feasible, practical and insightful, and that scores, induced from actual text, can bridge
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the remaining gap to a useful and working application. The probabilistic approach is
a most elegant and mathematically sound implementation of this pragmatic view:

Definition 1 A probabilistic stochasticor statistical language mode(LM) for a
given language L is a probability mass function (pmfpjin the space of sentences,
returning the estimated probability that the sentence S occurs in L.

This definition is not a straightforward extension of non-probabilistic grammars, but
can be motivated in the following way. In the non-probabilistic setting, given a lan-
guagel and a sentenc8, only two propositions are possibl&c L or S¢ L. Ina
probabilistic setting, this concept can be generalized by replacing these propositions
with P(L|S), the probability that it wag that generated a givé® The proposition

S¢ L corresponds witlP(L|S) = 0, andSe< L corresponds witfP(L|S) > 0.

It is possible to define a probabilistic language modelLfais the ensemble of proba-
bilities P(L|S), one for eacls. But as it turns out it is often more convenient to think
of L as given, so thaP(L) = 1 and instead the single prR{(SIL) = P(S) is to be
considered the language model, as expressed by Def. 1.

Note that it is implicitly assumed that a static probability distribution over sentences
exists. However, as already mentioned in the introduction, research on large text cor-
pora shows that natural language is inherently heterogeneous, even in very narrowly
defined discourse contexts. Building one generally applicable language model means
making it conditional on virtually all knowledge that a human listener would pos-
sess in the same situation. That is clearly unfeasible, although practical natural lan-
guage systems can be built by sufficiently constraining the task and building specific
application-dependent language models. A number of rather crude adaptation tech-
nigues have been developed to cope with the variability of the discourse within a cer-
tain application, for instance by detecting the topic in a broadcast news transcription
task, or by predicting the type of the next turn in a dialogue system.

The current challenge of language modeling research is to make language models
less brittle, (a) by a more efficient use of sentence-level and discourse-level informa-
tion, and (b) by refining model adaptation techniques. For the latter it is necessary
to separate the invariant properties of language from the variable part. My thesis was
inspired by both (a) and (b): the working hypothesis was that by introducing syntactic
knowledge, more efficient use can be made of all sentence-level information (instead
of only of a short context window, as theegram model does), and that syntax is a
viable candidate for being a language invariant.

Henceforth the adjective ‘statistical’ for language models is implicit in this text, as
well as the application context which is characterized by
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1.1.3. The probability of the next word

In some situations, for instance in statistical speech recognition, the probability of a
whole sentenc&=wj is factored using the chain rule:

N _
P(S) = [P(w wo ). (1.1)

The product starts fromm= 1 since alwayP(wp) = P(<s>) = 1. The next-word
predictorsP(Wi\w"o’l) allow to compute the sentence prefix probabiRgw,) as a
simple update oP(w"Ofl). This is important because it leads to search techniques that
limit the space of sentences by pruning relatively improbable sentence prefixes in an
early stage.

The term ‘language model’ is often used for the set of next-word predictors instead of
the probabilities of the complete sentences. Confusion will be avoided by reserving
the term ‘language model’ for probability estimators of whole sentences, while the
term ‘conditional language model’ refers to sets of next-word predictors.

Definition 2 Given a vocabulary V, aonditional language model (CLMj)s a set of
conditional pmfs pwi;1|wh) where w1 €V, wp = <s>and w € V', returning an
estimate of the probability that a sentence prefi9<iszvimmediately followed by the
word W 1.

In this dissertation it is assumed thathas a finite size denoted By |. The sum of
CLM probabilities ovel should add up to 1:

Property 1 A CLM over V satisfies
p(winp) =1
&

for every member pmf(gwj) of the CLM.

1.2. Application of statistical language models

Several statistical methods in speech and language applications make use of statis-
tical language models. Language modeling techniques are often applicable in non-
language related areas as well, such as the modeling of DNA (deoxyribonucleic acid)
strings. In fact, any field in which a probability distribution is needed over a discrete,
categorical and high-dimensional space may benefit from the research on statistical
language models.

The canonical application of statistical language moded&aiistical automatic speech
recognition(ASR). | will now discuss the role of the language model in an ASR sys-
tem and briefly note its use in other NLP domains.
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ASR aims at transcribing an acoustic wavefolinfa spoken utterance) by computer
to its orthographic fornW (a sentence). In a probabilistic formulation of the speech
recognition problem, a search procedure seMtttheW that is most likely to be the
correct transcription of\:

W = arg maxP(WA). (1.2)

Bayesian risk minimization theory proves that (1.2) minimizes the expected sentence
error rate (SERY.Now (1.2) can be rewritten as

Wi = argrmap(w ) = argmax TR

The optimization target consists of two factors. The probability density function (pdf)
f(AJW) is the acoustic model (commonly, the acoustic space is continuous, hence
the notationf (A|W) instead ofP(A|W)). The second factoP(W) is estimated by

the language model. In an HMM(hidden Markov model)-based Viterbi decoder, cur-
rently the most common architecture in speech recognition, the acoustic model is a
concatenation of phone HMMs, each returning the likelihood of a segmeéngiven

a particular phone. With the help of a pronunciation lexicon the Viterbi procedure
rewritesW as the phone sequence that maximizes/Ww).?

In a typical configuration a simple and fast CLM is applied in a first decoding pass.
The first pass outputs a word lattice, an efficient representation of a limited number
of sufficiently probable sentence hypotheses. In a second pass, a more accurate but
slower CLM can be used to re-score the word lattice. If a simple listodst probable
hypotheses is output instead of a word lattice, then any whole-sentence LM can be
used in the second pass.

=arg rrv1vaxf (AW)P(W). (1.3)

Besides ASR, statistical language models are also needed in other (statistical) natural
language applications. Here are a few examples.

° Document classificationassigns a document clas¢o”an input documend.
The Bayesian approach would select the class that is most probabledgiven

¢=arg rréaP(c\d) =arg mca>P(d|c)P(c). (1.4)

Theclass-dependet@nguage modelB(d|c) can be trained on a labelled set of
documents; the labels can be assigned by hand or obtained through an automatic
clustering procedure.

1. For the SER, there are only correct and incorrect sentences. A sentence with two word errors counts as
much as a sentence with only one word error. The accuracy of a speech recognition system is, however,
mostly measured by word error rate (WER). There are some recent papers on the explicit minimization
of the WER with small gains of word accuracy, but this always implies a considerable increase of system
complexity. Most speech recognizers take (1.2) as the optimization target and rely on a sufficient correlation
between the SER and the WER.

2. Experience shows that summing over all phoneme sequences for A\giesnactually should be done,

does not improve the recognition accuracy with respect to the Viterbi (maximizing) approximation.
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. Spelling correction can be considered as finding the correct orthograply ~
a sentence given the possibly erroneous user wput ~

W =arg rT\1Na>P(W|vT/) =arg nJVaP(W\W)P(W). (1.5)

The language mod&(w) is trained on correct text, while constraints for the ‘hu-
man transcriber’ modé?(W|w) can be obtained from experiments with human
subjects.

. Machine translation [Brown et al., 1993] is concerned with finding the best
translatione’of a foreign language sentente

é=arg rr(lea>P(e|f) =arg rTéaP(f|e)P(e). (1.6)

The target language modBle) causes a preference for translations that are
well-formed and sound right in the target language.

1.3. Estimating CLMs from observed data

The usual way of estimating LMs and CLMs is to assume a certain parameterized
model class and select one member from it by estimating the model parameters from
the training sequence.

The training sequend® is a plain text corpus, just a sequence of sentences. It can
be represented as a sequence of independent even(s, w), wherew is a word and

h the sequence of words precediwgn the same sentence. Letdenote the model
parameters anflgg (w|h) } ¢ the CLM class from which one CLMj,(w|h) is selected.

The estimato® is a deterministic function of the training corp@s ©(0) = 0. 0 is

a random variable due to the randomnes®of

Most CLM estimators are based on estimators for the jointgytii, w) instead of the
conditional pmfsgg (w|h). The conditional pmf follows from the joint pmf through
normalization:

QQ(h,W)

_— 1.7
ZVGV QB(h,V) ( )

de (Wlh) =

1.3.1. Measuring language model performance
Perplexity

Language model performance can only be measured as the perceived performance of
the application in which the language model is applied, e.gattezage word error

ratein speech recognition.

However, it is useful to have an application-independent measure of model goodness
in various circumstances. For instance, when deriving explicit formulas for the esti-
mation of the model parameters; or in the course of an iterative estimation algorithm;
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or when comparing the strengths of one model with those of another. For this purpose,
cross-entropyr perplexityis used.

One could, for instance, try tminimize the mean square error (MMSE) between

the estimated set of parametérand the optimal set of parametds

Ommse = argmink|(|6* —0(0))?. (1.8)

Of course 8* is unknown, but one assumes a certain prior distribud").

The MMSE criterion assigns equal importance to every compone6t dfowever,

it is better to relax the optimization conditions on the parameters that have a small
influence in favor of the parameters that have a large influence.dileegenceor
Kullback-Leibler distance [Kullback and Leibler, 1951, Kullback, 1959] meets this
need and is commonly used for language models. The Kullback-Leibler (KL) distance
of the estimated CLMjy (w|h) from the trueP(w}h) is written and defined as

D(Pllge) = %P(wh)long(mm)
—  E[~logds(wlh)] - E[~ logP(wih)]
~ g, wih] —H{wih,

(1.9)

whereHg, [w|h] is the cross-entropy of given h according toge, andH [wh] is the
true entropy ofw givenh. Hlw|h| is a fixed term, whileHg, [w|h] is bounded from
below byH|w|h]; it only reaches equality ifly equalsP. Hence, the KL estimator
minimizes the cross-entropy:

Ok (O) =arg rgian9 [wih]. (1.10)
Most publications on language modeling, however, reportébeset perplexity, pro-
posed by Jelinek et al. [1983], instead of the cross-entropy:

PPLiest= exp(—Hg[w|h)). (1.11)
In this definitionﬁq[w| h] is an empirical average as an estimatelgfiv|h]:

_ ZW,h Cotest(vv’ h) |Og q(W| h) )

B o ()

(1.12)

whereco,(W, h) denotes the occurrence frequencywfh) in the test corpu®est
Perplexity was introduced as a more intuitive measure than cross-entropy: imagine
a CLM that assigns an equal probabilityrfowords on the (geometric) average and
zero probability to the other words in the vocabulary. This model has an expected test
set perplexity of exactlyn. When this CLM is used in speech decoding, the acoustic
model has to distinguish betweemequally likely branches on the average. So the
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perplexity of the CLM is a direct measure of the difficulty of the disambiguation task
that remains for the acoustic model in a speech decoding task.

Note that minimizing the test set perplexity is equivalent with maximizing the likeli-
hood of the test set, and that minimizing KL distance is equivalent with minimizing
theexpectedest set perplexity of a random and sufficiently large test set.

Maximizing the likelihood of theraining set, on the other hand, is often computation-
ally more feasible. At the downside, unconstrained maximum-likelihood estimation
leads toovertraining as will be shown in Sec. 1.3.2.

Word error rate

In speech recognition, theord error rate (WER) is a customary measure to evaluate
the accuracy of the whole recognition system. The set of recognized sentences (the
automatic transcription) is aligned with the set of reference sentences (the reference
transcription), and then the WER is defined as

WER= 1+D+3 , (1.13)

Nref

whereNs is the total number of tokens in the reference bés,the total number of
insertion errorsD is the total number of deletion errors, afdk the total number of
substitution errors. For each sentence, the alignment that minimizes the total number
of insertion, deletion and substitution errors is selected. For instance, if the reference
sentence ikave a good day, and the recognized sentencerigve a good die,
then only 1 word error (the substitution @&y by dze) is counted, instead of 2 word
errors (the deletion ofay and the insertion ofiie).

1.3.2. Maximum-likelihood estimation and the need for smoothing

The maximum-likelihood (ML) estimator selects the model that maximizes the likeli-
hood of the training corpu®. Itis commonly known that the conditional probabilities,
then, are simply relative frequencies:

Co(®(w,h)
Yvev Co(®(v;h))’

whereco(e) denotes the observation frequency of an eeéntO, and® is a mapping

used to pool observations into equivalence classes. Why pooling observations is nec-
essary, is discussed in Sec. 1.4; itis, of course, clear that no pooling at all would result
in most observation frequencies to equal zero.

The ML estimator is onlyasymptoticallyjunbiased. Unfortunately any practical train-

ing corpus size is far from the point where the ML estimator reaches saturation. For
instance, the 3-gram CLM (cf. Sec. 1.4.1), with a typical vocabulary [$ize- 20Kk,

counts about & 10! free parameters. A huge training corpus of ibrd tokens
contains at most fodifferent trigrams, which means that at least 99.9875% of the

pue (Wh) (1.14)
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trigrams nowhere occur in the training corpus. All the trigrams that did not appear
in the training corpus will be assigned a zero probability, while theory, intuition and
experience tell us that it is very likely that a significant portion of trigrams in a test
corpus was never seen in the training corpus, however large the latter may be. While
the probability of zero frequency events are underestimated, the probability mass of
the events that did occur in the training corpus is overestimated.

Many of the research papers on language modeling actually were devoted to solv-
ing this general problem: assigning reasonable non-zero probabilities to unobserved
events. The result is a number of smoothing techniques, which in most cases are more
generally applicable than for language modeling only. The theoretic foundation is
often rather weak: the question of language modeling is essentially the estimation of
probability distributions ovediscrete and categoricapaces, where concepts such as
distance and neighborhood are difficult to formulate.

Therefore, smoothing techniques are primarily judged on their observed performance
in experiments. In my experience, however, there is no clear winner, although it is
possible to formulate a few general guidelines, as given at the end of this chapter. The
performance of a smoothing technique depends on factors such as the training corpus
size, the vocabulary size, and the discourse style of the task. Even given a specific
task, the great number of smoothing techniques and all of their possible combina-
tions makes an exhaustive search for the best combination of smoothing techniques
impossible. The development of a language model for a new task is an incremental
optimization process with an unknown global optimum.

There are three types of smoothing: clustering, discounting of observed frequencies,
and model combination. The next section discusses the most important simple lan-
guage model classes from the perspective of their characteristic clustering function.
Discounting and model combination are discussed in the sections thereafter.

1.4. Simple language model classes

Statistical models are estimated from observation data. In the current discussion, that
means that LMs are estimated from tokenized text, the training corpus. LMs and
CLMs are defined over an enormous, in fact infinite, discrete space.

It became clear from the previous section that direct estimation of CLM probabilities
P(wi1|wh = h) from observed data is not reliable, due to data sparseness.

The model class and smoothing technique can often be characterizedusyeaing
function® that maps joint events= (h,w) of the immediate occurrence of a word

after the sentence prefixto a far smaller number afquivalence classeg = (h,W).

The idea behind is:

1.  predictingw from X is easier than frorh;
2. hcontains all the essential information frdrmeeded to prediat;;”
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3.  Xis observed more often thanenabling a more reliable estimation of the CLM
probabilities.

In general, if® is a soft clustering, i.e. a stochastic function with possible outcomes ~
thenP(w|h) andP(h,w) can be factored as

P(hyw) = ZP(X\X)P(X) (1.15)

P(wlh) z P(w|X)P(%|h) (1.16)

X

over thehiddenvariablex; where it is assumed thapfovides all essential information

from h to predictw. Hidden variables are generally a difficult matter in statistical
learning, since they are not observed by definition. In some cases, however, there are
efficient estimation algorithms such as the expectation-maximization (EM) algorithm.

Now follows a survey of the most common simple language model classes from the
perspective of the clustering function.

1.4.1. Word-based n-grams

It is reasonable to assume that the occurrence of a word is mostly not very much
influenced by words that are sufficiently distant. This intuition translates to the choice

Oy W) = (W 1 W) 1.17)
The result is am-gram CLM. For example, a trigram CLMh(= 3) approximates

P(Wi1|wh) asP(Wiy1|w ;).

Note: In order to improve the performance over storage ratio, it is possible to reduce
n selectively, resulting into @ariable-length n-gram or varigram. If a certain crite-

rion judges that a context % ; is not sufficiently more informative for any choice of
Wi_n+1, then only the pmP(w; |vv§jr11+2) will be estimated. For example, see [Niesler
and Woodland, 1996, Seymore and Rosenfeld, 1996, Van Uytsel and Van Comper-

nolle, 1998, Stolcke, 1998].

Word-basedh-grams are the main workhorse of most statistical language models; they
are often complemented with other models, but the better part of the language model
performance is to be attributed to them. They are very data-hungry, however. For
instance, the estimation of a trigram typically needs a training corpus of 10 million
tokens; a 4-gram becomes typically only effective if it is estimated on 100 million
tokens. Its limited scope precludes any form of generalization. As a consequence,
word-basedr-gram models are very domain-specific.

10
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1.4.2. Category-based n-grams

The central idea of class-basadyrams is that words belong to one or maverd
categories Each wordw; is assumed to be emitted by a word categnry

The word categories can either be determined with data-driven clustering algorithms,
e.g. [Bahl et al., 1989, Brown et al., 1992, Kneser and Ney, 1993, Ueberla, 1996b,a]
or on a linguistic basis: parts-of-speech (e.g. [Niesler and Woodland, 1996, Geut-
ner, 1997]), function/content words (e.g. [Geutner, 1996]), and semantic groupings
(e.g. [Kneser and Peters, 1997]).

Hered(w, h) is a function that maps words to categories. There are two kib@s:h)

can either be a deterministic or a probabilistic functi®xiw, h) is obviously determin-

istic if it is assumed that each word belongs to exactly one category and each token of
(w, h) is mapped to its category; but it is as well deterministic if words can belong to
more than one category, but the one selected liyunambiguously determined by

andh, for instance with a decision tree (e.g. [Heeman and Allen, 1997]) or where the
mapping is position dependent (e.g. [Pastor et al., 1998]).

If & is deterministic, then let; denote the mapping of; under®. The CLM proba-
bilities can be correspondingly written as

i—1
pcang(Wi|Wo ) = (W|,C|| n+17C| n+1)

1 1
= <WI|W n+1> | n-s-l)P(CI|WI n+17c: n+1)

The number of parameters can be reduced by assuming independencesy.c; of
certain conditioning events. For instance, as in [Brown et al., 1992]:

Peang(Wilwh ) = p1(wi|ci) pa(cild 2. ). (1.18)

There are, of course, many other parameterizations possible, trading off model accu-
racy against model reliability given a fixed training set size.

If ® is stochastic, then; has to be treated as a hidden variable. Thus, for a category-
basedh-gram,

pcahg(Wi|Wlb_l): Z P(Wi|an+l,W: %+1) (u n+1| i— n+1) (1.19)

C:—n+1

where the sum ranges over all category sequences that can possibly uquém/
andw;. This sum can be computed with dynamic programming using forward proba-
bilities (for instance, see [Geutner, 1997]). However, in a common approximation (for
instance, see [Derouault ancEkaldo, 1986]), known as the Viterbi approach [Viterbi,
1967], only one category sequence is tracked, namely the one explaipbmﬁt:

pcahg(Wi|Wi ZPWI‘Q n+17CI W: %+1) (C: %+1’CI| i— n+1) (1.20)
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1.4. Simple language model classes

where

C = argma(wi[C 7. 1. 6. W1 )P(Cl 1 1.GIW 7). (1.21)
In the original Viterbi decoding, the summation in (1.20) is replaced by a maximiza-
tion. This requires less computations, but also reduces the smoothing effect.

Again, depending on the availability of training data, proper parameterizations must be
found forP(wi|CI=2, ;,c,wi=2, 1) andP(CI2, ;. ciwi=2. ;). There are no principled
approaches to this problem for language modeling; so far it has remained a matter of

craftsmanship.

Class-based-grams require less data than word-basseptams for sufficient training.

As a stand-alone model, they perform much worse than word-lrageains. They are
typically used to complement word-basedjrams in order to enlarge the modeling
scope. The number of classes can be scaled in proportion with the training corpus size.
Automatic clustering generally leads to better performance within the application, but
linguistic clustering makes the model less application-specific.

1.4.3. Delayed n-grams

Delayedn-grams, also calledkip or distant n-grams, omit one or more of the most
recent words from the context:

Wy w) = (W15 o w), (1.22)

wheres is the number of positions skipped. The reason for skipping is to capture
dependencies from a larger part of the context than plairams do, while avoiding

too much data fragmentation.

Delayedn-grams are used in combination with anothegram as an approximation

of an(s+n)-gram, where the directly estimatésh-n)-gram would be ineffective due

to data sparseness.

1.4.4. Cache-based models and triggers

In this paragraph, aacheis a moving window over the test text (which extends be-
yond the current sentence). LEt=w) denote the test text, whehe+1=|T|. A
cache-based language model estim&i@sﬁw‘b‘l) from a cache/v‘;;(o’i_s) where

the cache length in general may vary, but is often chosen constant (typically 1000...
3000). That is 'r;;)(o_’iis) is treated as the training corpus by the cache-based model.
Cache-based word-based uni- and bigrams are rather common components in state-of-
the-art language models.

The term ‘cache’ in language modeling is due to [Kuhn and De Mori, 1990], who actu-
ally applied the idea in a more sophisticated way: a POS(parts-of-speech)-based CLM

in the style of (1.20) was proposed of which tRéw;|c;) component was estimated
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A background of statistical language modeling

as a linear interpolation of an ML model and a cache-based model. The cache-based
model maintained separate caches of 200 entries for each of 19 POSs.

Trigger-based language models are a refinement of cache-based models. A trigger
pair is a pair of words that have a high mutual information or significantly contribute
to another optimization criterion [Tillmann and Ney, 1996]. For instance, the pair
(bank, loan) is likely to be a trigger pair. The trigger-based language model may
be soundly implemented as a maximum-entropy model employing trigger pairs as
features (cf. Sec. 1.6.4 and [Lau et al., 1993, Rosenfeld, 1994]). It is observed that
the most efficient triggers are self-triggers, that is, consisting of two identical words; a
trigger-based language model containing only self-triggers is very similar to a unigram
cache-based model. This may explain why trigger-based models are not much better
than cache-based models.

There are two rationales behind cache-based language modeling and triggers. First,
although most information ow; is on average contained within a short window (as
exploited byn-gram CLMs), the rest of the information is still considerable, but spread
over a long history. Cache-based models are able to capture dependencies from a long
history without augmenting data sparsity.

Second, in any text fragment one can easily spot several idiosyncracies specific for the
author, the situation, the topic etc. In particular, it was measured that the probability of
a word rises if it has occurred in the recent past. Humans tend to prefer to understand
a word if they have heard it recently before, a mechanism that is called ‘priming’
in psycholinguistics. The unigram cache simulates that behavior — admittedly in a
primitive way.

Given the simplicity of unigram cache-based models and the substantial performance
gain, they have become an essential component of language models in automatic
speech recognition systems. Trigger-based language models are more difficult to im-
plement, and not commercially viable.

1.4.5. Grammar-based language models

Chapter 2 is devoted to grammar-based language models and therefore the exposition
here is kept concise.

Grammar-based language models predict a grammatical structure as a hidden vari-
able. If the mapping of a sentence prefix to its grammatical structure were unambigu-
ous, then the clustering function could be written

OWy T w) = (Wt (W), w). (1.23)
The grammatical structurE{vv"lfl) can be thought of as a partial parse tree, but in

general its form is determined by the chosen (statistical) grammatical framework.
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1.5. Discounting

However, in most cases the grammatical structure is ambiguous. Therefore, the CLM
probabilities must be computed aswamof probabilities with as many terms as there
are non-improbable grammatical structures:

prmﬁmmﬂwmmeﬂ. (1.24)
wit

P(wi|wy ) =
t(wy ")

(

Statistical grammar-based language models are fairly complex, but in combination
with other language models, they can boost the performance considerably, as this
thesis will show. Further research is needed to relax their space and time complexity,
before they can make it into commercial products. A possible disadvantage is their
need for a syntactically preprocessed text corpus — but my experiments showed that
a good grammar-based language model can still be obtained with an automatically
preprocessed corpus.

1.5. Discounting

ML estimation ofP(w|h) with a clustering function is only the first step in smooth-

ing. The estimates are further improved by a number of techniques that attempt to
compensate the bias of the ML estimate. These techniques can often be described as
discountingthe observation frequencies and then return relative frequencies based on
the discounted frequencies.

1.5.1. Laplace’s law of succession

Laplace’s solution to the problem of data sparsity is to add 1 to every event frequency:

_Co(¥+1
O]+ X[

whereO is an observation sequence of events (the training corpusXaadhe set

of all distinct eventx. (1.25) is also known as Laplacé&w of successiqror add-1
smoothing This simple formula is actually the Bayesian MMSE estimator where the
prior distribution ofx is assumed uniform.

The conditional form of (1.25),

aL(x) (1.25)

co(w,h)+1
Svev Co(V;h) + V|’
is obtained using (1.7). Word types noMrare usually mapped to a single word token
<ynk> denoting ‘the unknown word’.

qL(wlh) = (1.26)

Experience shows that Laplace’s law is suitable for smoothing unigrams, but less for
smoothing(n > 1)-gram CLMs. The reason is that for estimatingagram CLM, the
(n—1)-gram CLM is probably a better prior distribution than the uniform distribution.
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A background of statistical language modeling

1.5.2. Jelinek-Mercer smoothing (deleted or held-out estimation)

The training corpu® is split into two parts: a development corppsand a held-out
corpusH. H is preferrably drawn fron® in a totally random way since it is supposed
to be generated by the same sourcdasThe proportion/H|/|O| is chosen rather
small (typically 5 to 10%), because much less parameters are estimateH ftioam
from D.

A pmf of the form
Ok if cp(x) =kandk=0,1,...,K
X) = 1.27
QJM( ) {aq')éx) if CD(X) > K ( )

was proposed by Jelinek et al. [1983K is a design parameter that separates out
the events with ‘too low’ frequencies. The idea is thatg{x) is high enough, then

the relative frequency estimator is probably not too bad; a constant discount factor
o reserves some probability mass for the low frequency events. The probalojlities
do not directly depend on relative frequencieg and o are chosen such that the
likelihood of H is maximized. The solution is analytically found as [Jelinek, 1997,
pp. 258—-263]

1 rg
= —— 1.28
Ok e THI (1.28)
. ri
o _ Bl 3kt (1.29)
2>k In; H|

whereny is the number of distinct events that occurtetimes inD, andry is the
frequency inH of events that occurrekitimes inD:

N = Zé(cD(x):k) (1.30)
o= 3 8(en(x) =Ko (x), (1.31)

andd(e) equals 1 ifeis true, and O otherwise. Note that an event that was not ob-
served in the training corpus gets a probabiligy(ng|H|) which is greater than zero
in normal circumstances.

This estimator has a class-based interpretation. Each gumbngs to a class that
is solely defined by the frequency of its members in the development corplet
®y be the class of the events that ockuimes inD (hence|®y| = ny) for k < K and
let dk 1 be the class of the events that occur more taimes inD. ThenP(x) is
written asP(x|®(x))P(P(x)). The class probabiliti?(d(x)) is the relative frequency
of @(x) in the held-out corpus:

P(®k) =

{rk/H| fork <K (1.32)

zj>Krj/\H| fork=K+1
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1.5. Discounting

while the member probabilitieB(x|d) are relative frequencies :

1/n fork <K,

_ (1.33)
(X)/¥jskj-n fork=K+1.

PP = By) = {

In the high-frequency classes, the member probabilities are relative frequencies ex-
tracted fromD. In the low-frequency classes the probability mass is divided uniformly
over its members in absence of any prior knowledge. If another, simpler distribution
is known, then it is better to replace the uniform distribution with a scaled version of
that other distribution.

Deleted estimation tends to underestimate the probabilities of the more frequent events,
probably due to the constant discount factoiGiven a large training corpus, it is infe-

rior to Good-Turing discounting (discussed next). On smaller corpora, however, it is
more reliable than Good-Turing. Another strong point is that it can be generalized to
handle fractional counts, which occur, for instance, when weighting observation fre-
quencies, or as frequency expectations in reestimation procedures. Deleted estimation
is still heavily used in computational linguistics, presumably because training corpora
tend to be smaller in this research domain.

1.5.3. Good-Turing and Katz discounting

Jelinek-Mercer smoothing requires an appropriate splitting of the training corpus into
a development and a held-out corpus. Good-Turing (GT) smoothing is a more auto-
matic and computationally efficient procedure. The GT smoothing of an event count
kis

ket = (k+ 1)”2—11- (1.34)
This result can be obtained by significantly different methodsdas, 1985],[Jelinek,
1997, pp. 263-265]. A a derivation from the class-based (Bayesian) view is given
next.
As in the previous case; = (h,w) is classified according to its sample count in a
development corpuB. In its original form, there is no bounld above which (a
scaled version of) the relative frequency estimate is used. Hence anxdweloings
to classdy if cp(X) = k. Here is Turing’s estimator for the probability that an event
for which ®(x) = @y is emitted (first published by Good [1953], where A.M. Turing
is acknowledged):

(K4 1) y1

o (1.35)

Pet(Pk) =

whereny 1 = |Px;1|. This estimator was proven to have small bias for IgBe
by McAllester and Schapire [2000] and is meant for low frequency event classes, in
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particular for the cask = 0: the estimated probability massfseerevents is equal
to the relative frequency aingletonevents in the development corpus.

If no prior knowledge exists, the member probability may be estimatedras result-
ing into the well-known formula

_ k"’ 1 nk+_‘]_

PGT(X)_ |D| Ni :

(1.36)
In other words, forcp(x) > 0, Pst(X) is obtained as a relative frequency estimate
k/|D| times adiscountfactor

(K+1)neia

dk = kne

(1.37)
which is easy to recall as the frequencydnf, ; events divided by the frequency &
events.

Example 1 In the first LM words of the WSJ corpus (non-verbalized punctuation with
a closed 20k vocabulary), there are 8634 distinct unigrams. They where categorized
according to their observed frequencies and the quantifyvkas computed to see
what a certain observed frequency is worth according to Good-Turing smoothing:

k 0 1 2 3 4 5
ng 11350 3353 1424 787 548 363
kdk 0.295 0.849 1.658 2.785 3.312 4.612

Unseen unigrams get an effective count of .295, while the other counts are discounted
with a certain amount between 0 and 1.

After extending the development corpus to the first 4M words, 19,460 distinct uni-
grams were seen, which is already close to the vocabulary size of 19,984. The situa-
tion is now completely different:

k 0 1 2 3 4 5
ng 294 270 330 368 586 650
kdk 0.918 2444 3.345 6.369 5.546 6.055

Note that it is not required that 40y be a decreasing sequence in order for Good'’s
method to be consistent. There is no data sparsity in this case, given the size of the
training corpus. For low k, the discounted counts are larger than the original counts,
as expected.

In the second case of the previous example, a unigram that occurred 3 times is assigned
a higher probability than a unigram that occurred 4 times. This ‘anomaly’ is rather
common in the tails of they versusk histogram (in the above case, it is the left tail)

and is due to the large variance f. In this region, Good’s method is not to be
applied without smoothing the, themselves.
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1.5. Discounting

In the higher range df (the right tail), Good-Turing discounting becomes too unreli-
able as well. This problem can be solved as in Jelinek-Mercer smoothing: by pooling
the classe®k 1, Pk 2,... in one classb.k and distributing the member probabili-
ties proportionally with the relative frequencies. Typically one chodses5...10.

In addition, relative frequencies of eventsdn i are considered sufficiently reliable.
The result is equivalent with replacing the discount factixss, dk.2,... with one
discount factor

(K+1)nk41

gk =1- ————
ID[—3%.4in;

(1.38)

applicable tacp (x) = k > K.

A common and widely used alternative approach was authored by Katz [1987], who
leaves out discounting @b.k events altogethed( , = 1), and adjusts the discount
factorsdy, ..., dk such that:

1. the total discounted probability mass that is reserved for unseen events remains
ny/|D|: TK_; knk(1—dy) = ng, and

2. the discounts are the original discounts times a constant factod; = u(1—
dy) fork=1...K,

which results in the discount factors

(ktDmeg  Kng
_ kny n
ny

Good-Turing and Katz discounting are particularly suited for smoothing small sample
counts from large corpora, and they are probably most sound from the theoretical
perspective. However, on smaller corpora deleted estimation or absolute discounting
may be preferrable. On the other extreme, for smoothing probabilities of relatively
frequent events, add-1 smoothing or absolute discounting is more reliable.

1.5.4. Nadas smoothing

GT smoothing is a non-parametric empirical Bayesian estimation meth@tlas\
[1984] proposed another empirical Bayesian estimation method where the event prob-
abilities are assumed to be beta distributed.

Let f(6k) denote the prior density of the probabilify of an event that occurrekl

times in the development corpus. Assuming (i) is binomially distributed, the
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Bayesian estimator that is optimal for the MMSE criterion is

6 = E[9k|CD(X):k}
1

| it (Buleo () = ks

Jo 8cP(co(X) = K|Bi) f (6)d6i
Jo P(co(x) = k|6K) T () déx

Jo 6511 - 6,)PIKf (64 ) d6y
Jo 65(1— 6)PIKf (B)dey

(1.40)

Good essentially uses a non-parametric estimatdr(6f), while Nadas assumes a
beta distribution:

(6) = B(;ﬁ)

Theo andf parameters are estimated from an artificial sample comprising maximum-
likelihood (ML) estimates oby using the method of moments.

62 11— 6P L. (1.41)

This smoothing method yields model performance that is comparable with JM and
GT smoothing, but is more complicated, which is probably the reason why it is hardly
ever used. However, it may be interesting to enhance the method by recognizing that
the distribution of the vector consisting of alj(x) for all x is not a combination of
binomial distributions, but actually a multinomial distributi®n.

1.5.5. Absolute discounting

Experiments show that the true probability mgram events is often well approxi-
mated by subtracting a small quantitybetween 0 and 1 from the originatgram
event count, and redistributing the gained probability mass over all, seen and unseen,
events in proportion with a background distributigg[Ney et al., 1994]:

_ max(cp(x) —d,0)

IX| —no
PAgs(X) = +d
D D

OB(X). (1.42)

The resulting method is calleabsolute discounting d can be estimated by optimiz-

ing the likelihood of a small held-out corpus, or analytically [Ney et al., 1994]. As a
further refinement, one may define a number of bins over the event frequencies and
estimate a separatefor each bin empirically.

It is hard to find a theoretical ground for absolute discounting, but in practice it is
frequently used, since it is an easy, robust and reliable smoothing technique. It is pre-
ferred in situations where the GT estimator is not to be trusted, e.g. whep,they
statistics have a large variance, or on small corpora.

3. Nadas suggests a conjugatelimensional Dirichlet prior in this case, but does not elaborate on the
matter any further.
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1.6. Model combination

1.6.1. Katz back-off

Given two CLMspp andpg, wherepa is induced from a training corpus. The CLM
that arises byacking off from pa to pg, denoted here by KBQi, pg), is defined by

pa(w|h) if cp(w,h) > K

_ (1.43)
A(h)ps(wlh) if cp(wh) <K

KBO(pa, ps)(w|h) = {

whereK is acut-off parameter and (h) is a normalization factor that can be precom-
puted for eaclh:

1— S wev 8(co(w,h) > K)pa(wlh)

Y wev 6(cp(w; h) <K)pg(wlh)
_ 1- D wev 6(CD (\N7 h) > K) pA<W‘ h) (1 44)

1— Y wev 8(cp(W,h) > K)pg(w|h) .

The rationale of the back-off technique is thm{w|h) estimates are considered suffi-
ciently reliable if the evenfw, h) was seen more thdt times, while in the other case
the pa(w|h) are replaced by scaleps(w|h) estimates.pg is supposed to be a less
sophisticated, but more robust model.
As an example, the Katz back-affgram [Katz, 1987] is a cascade of smoothed
n-1,..., 1-gram CLMs combined with back-off:

Ah) =

KBO , e ifn>1
PKatzng = { (png Pkatz4n l)g) (1.45)

1/|V| if n=0.

In his frequently cited paper [Katz, 1987], Katz proposes to smooth-tiram CLMs

with a modified version of Good-Turing smoothing (Katz smoothing), discounting
counts up to about 6 and a cut-¢ff= 0. However, Katz back-off can be applied
with other smoothing methods as well, and so can Katz smoothing with other model
combination techniques.

1.6.2. Back-off using linear and non-linear interpolation

The Katz back-off technique requires a choice between the original npadeih)

and the back-off modgbg(w|h), i.e.w s either predicted by, or by pg. Interpola-

tion differs in the sense that both models influence the next word probability over the
complete vocabulary.

There are two variantdinear [Jelinek, 1990] andhon-linear [Ney et al., 1994] inter-
polation. Linear interpolation is the simplest:

LI(pa; pg)(Wlh) = (1= 4 (h)) pa(w|h) + A (h) ps(w|h), (1.46)
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whereA (h) is an interpolation weight between 0 and 1. In general, there is one interpo-
lation weight for each context(context-dependentinear interpolation). In practice

it will always be necessary to define bins of contexts that have equal weights in order
to limit the number of parameters (this is also known as parantgteg). Binning
according to context courty (h) is quite common practice. If there is only one bin,
then the linear interpolation is calledntext-independent*

The estimation of the interpolation weights is done on data that was not used for the
estimation ofpy andpg. One can reserve a small portion of the training data for that
purpose. This approach is an application of the deleted estimation method [Duda and
Hart, 1973] and is commonly known aeleted interpolation [Jelinek and Mercer,
1980]. Alternatively one can simulafB|-fold cross-validation|D| being the number

of events in the training corpus) by creating held-out corpora consisting of one event
each and maximizing the joint log-likelihood of the held-out corpora; this method is
calledleaving-one-out Closed-form formulas for the estimation of the interpolation
weights can be obtained in some cases [Ney et al., 1994].

In non-linear interpolation, the weight @y does not remain constant over the com-
plete vocabulary/, but depends oop(w, h) (actually, onw andh in general). On the
other hand, the non-linear interpolation is still lineargg, which is different from
back-off.

NLI(pa, pg)(W|h) = de, wn) Pa(W[h) + 4 (h) ps(wih). (1.47)

In [Ney et al., 1994] a detailed exposition is given for the case of absolute discounting,
but non-linear interpolation is applicable with other discounting methods as well.

The weight ofpg must be chosen so that the interpolated model is still normalized for
eachh:

A(h)=1- Z/ch(w,h) pa(wlh). (1.48)

Itis, in other words, the discounted probability mass, as is the case with linear inter-
polation (see above).

1.6.3. A special case: Kneser-Ney modified back-off distribution

Both Katz back-off and interpolation back-off are frequently usedsfooothing In
that setting,pa(w/h) is the model to be smoothed, whifgs(w|h) is a background
model that is trained from the same sourcepgsbut is supposed to be more robust
and less detailed; hence the term ‘back-off’.

4. Rational interpolation [Schukat-Talamazzini et al., 1997] is actually a context-dependent linear interpo-
lation method (although the authors call it non-linear). The idea is to scale’shie proportion with the
confidence that one has in each of the models, as given by a heuristic confidence function. One could in-
terpret rational interpolation as a parametric alternative to context-depehdeigd according to context

count.
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If pa(wlh) is a word-based-grampa(w; wi™ n+1) then a common choice fa(w|h)

is a smoothedn — 1)-gram pg(w; |w‘*n+2) The fundamental problem here, observed
by Kneser and Ney [1995], is the following: one might estmﬁ(wlwv‘ n+2) as a
marginal

(WI| i— n+2 Z PWHWI n+l| n+2)
Wi—nt1

S KBO(pa, Ps) (Wil =%, ) )PWi nia w7}, ),
Wi—n+1
but this estimate will generally be inconsistent with the training data. For example,
assumen = 2 and that in the training corpu®-ancisco followed San 10 times, but
did not occur after any other token. ThB(Francisco) should not be greater than
P(San), but based on KBO, one would estimate
P(Francisco) ~ P(San) 4+ pg(Francisco) ; A(W)P(w),
W#San
whereA (w) is the normalization factor. In this case, KB@, pg) clearly overesti-
matesP(Francisco|w) if w# San. The reason is thgig(Francisco) is too large.
A modified background distributiopg is found by explicitly requiring that

pB(Wi| n+2 Z KBO pAa pB)(WI| n+1) ’ P(Wi*n+1|wtﬁ+2)a

Wi—n+1
which leads to the solution

l’]>0( W: n+2) 7 (1.49)

N-o(: W: n+2)

wheren.o(-W_,, ,) is the number of distinct observeegrams ending inv{_, ., and
N-o(-W_%. ) is the number of distinct observesgrams ending im{~% ,w, where

w is arbitrary.

The analysis was repeated for linear interpolation by Chen and Goodman [1999] and
the same result fopxy was obtained. In a practical implementatiquky has to

be smoothed as well by discounting the quantities(...) and back-off to or linear

interpolation with a lower order Kneser-Ney background distribution.

pB(Wi|W%:%+2) PN (Wi W i— n+2)

In the literature, the term ‘Kneser-Ney back-off’ actually means ‘Katz back-off to a
Kneser-Ney modified lower-order distribution’, and ‘Kneser-Ney interpolation’ means
‘linear interpolation back-off to a Kneser-Ney modified lower-order distribution’. As
Kneser and Ney [1995] advocate absolute discounting, the use of absolute discount-
ing with Kneser-Ney back-off and interpolation is usually also implied; however, it is
possible to combine for instance Good-Turing discounting with Kneser-Ney back-off.

Excellent results from broad-coverage experiments were reported by Chen and Good-
man [1999] and Ney et al. [1997] with Kneser-Ney back-off and even better with
Kneser-Ney interpolation. Kneser-Ney interpolation is now commonly considered a
fair baseline for evaluation of novel smoothing techniques.
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1.6.4. Maximum-entropy modeling

Unlike the other combination techniques discussed sonfaimum-entropy lan-
guage models are not constrained to combining information from other language mod-
els only, but can combine knowledge of virtually any kind. The knowledge is repre-
sented by real functions (including pmfglh,w) of the event space, callédatures
Features are mostlyinary, i.e. they return either 0 or 1. For instance, a trigram fea-
ture returns 1 if the last two words bfandw equal a certain trigram (which defines
that feature). Or one could define a feature that equals 1 onlysifa noun, etcetera.

Let p(h,w) be the LM to be estimated, subject to a set of linear constraints

Ephw) [fi(h,w)] = hz p(h,w) fi(h,w) = Ki, (1.50)

W

whereE, ) denotes the expectation operator according to the distribyibyw).

It is assumed that the set of constraintcdmsistent i.e. there exists at least one
solution. A common choice fdf; is the empirical average df(h,w) over a training
corpus — the resulting linear constraint is then catiatural. Further consider a prior
model po(h,w) to which p(h,w) should be as close as possible in Kullback-Leibler
sense under the constraints (1.80)then Jaynes [1957] proved thpth,w) is an
exponential model:

p(h,w) = Zpy(h,w) exp(Z)Li fi(h, )), (1.51)

with Z a normalization factor. The featumeights A; have to be determined such
that p(h,w) meets the linear constraints. There is no closed form solution in general;
usuallygeneralized iterative scalinfparroch and Ratcliff, 1972] oimproved itera-

tive scaling[Della Pietra et al., 1997] are used. ME training is computationally very
expensive, and the more so on large training corpora.

The natural choice df; is the expectation of; with regard to theeal P(h,w):

Ki = E[fi(h.w)] = 5 P(h,w)fi(h,w), (1.52)

hw

butP(h,w) is unknown. Instead one could repla@evith pyy :

Kime = > pu (h,w) fi(h,w). (1.53)
h,w

However, the only exponential model that satisfies these constigimdact py !
Therefore, constrairgmoothings crucial [Rosenfeld, 1996, Martin et al., 1999, Chen
and Rosenfeld, 2000]. An interesting alternativluszyME smoothing: this method,

5. If po is uniform (no prior knowledge), then the minimum divergence solution has maximum entropy.
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1.7. Empirical comparison of language modeling techniques

developed in [Della Pietra and Della Pietra, 1993], replaces the constraints with a sum
of squared errors in the target function, which now becomes

D(pl|Po) + Y (Eplfi(h,w)] — Epy [fi(h,w)])%.

Very favorable results with a fuzzy ME smoothedram CLM were reported by Chen
and Rosenfeld [2000].

1.6.5. Log-linear interpolation

Log-linear interpolation [Klakow, 1998] is closely related to maximum-entropy mod-
els, but training is much easier when there are already a number of other CLMs avail-
able. Let the CLMs beyi(w|h), i =1...N. Suppose that one knows the Kullback-
Leibler distance of the result of the interpolation, denoted here byl to each

of the given modelsD(LLI (p})||pi) = di. Furthermore, LL{p}) is required to be as
close as possible (in KL sense) to the uniform distribution. Using Lagrange multipli-
ers, it is then easy to prove that its format must be

N
LLI(pY)(wih) = Z(h,A}") [l pi(wlh)™, (1.54)

whereZ(h, A{\‘) is a normalization factor that depends Imandk{\‘. In terms of log-
probabilities, the interpolation is linear, hence the name ‘log-linear’ interpolation. The

Ai are estimated by an iterative maximization of the likelihood of a held-out corpus
that can be small because of the small number of parameters to be estimated. The
estimation of tha; is implicitly done by the estimation of thi.

In [Klakow, 1998] it is further claimed and experimentally shown that the LLI tech-
nigue is superior to context-independent linear interpolation with an identical number
of free parameters, identical training data and identh‘l‘él Ignoring the fact that

the training process consumes more computing time due to the computation of the
normalization factor, LLI seems preferrable to LI in some cases.

1.7. Empirical comparison of language modeling techniques

Most publications that introduce a novel language modeling technique typically re-

port experiments showing a small but significant gain with the technique over a tri-

gram baseline. However, the practical value of a technique depends on the size of
the training corpus and the language style of the target application. The influence of
these factors is typically not measured in such experiments. Also, a novel technique
should be complementary to other techniques: its benefit should remain visible in

combination with other techniques.
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Figure 1.1.Relative cross-entropies of trigrams using different smoothing techniques at varying
training data size. Reproduced from [Goodman, 2001a, Fig. 1].

Publications that systematically compare several smoothing techniques and combina-
tions thereof, with different training corpus sizes and different applications, are rare. |
will now discuss a relatively comprehensive set of experiments by Goodman [2001a].

Goodman’s paper does not compare smoothing technigues across domains. The train-
ing and test data are all in the North American Business News domain [Stern, 1996].
Importantly however, it contains results with a very large training corpus of 284M
tokens. The experiments indicate that interpolated Kneser-Ney back-off with absolute
discounting consistently outperforms Katz-style back-off with Good-Turing discount-
ing, especially in estimating 4-grams from a large training corpus @M—100M to-

kens). Cache models yield worthwile entropy gains at training corpus sizes less than
100M tokens, but remained ineffective in the speech recognition experiments (the
recognition test set consisted of sentences randomly drawn from different articles).

Fig. 1.1 compares trigram models smoothed with different combinations of discount
and back-off techniques, for varying training corpus sizes. The difference of each
model’s empirical cross-entropy with the one of the baseline model is taken as the
guality measure. The baseline trigram is smoothed with linear interpolation back-off
without discounting. The ‘-m’ model is smoothed with Jelinek-Mercer discounting

and linear interpolation back-off. The ‘katz’ model is smoothed with Katz discount-

ing and Katz back-off. The ‘abs-disc-interp’ uses absolute discounting with linear
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Figure 1.2.Relative cross-entropies of different language model classes using Kneser-Ney lin-
ear interpolation back-off smoothing. Reproduced from [Goodman, 2001a, Fig. 9].

interpolation back-off. The ‘kneser-ney’ model is smoothed with absolute discount-
ing and Kneser-Ney linear interpolation back-off. The plot shows the superiority of
the ‘kneser-ney’ model over the ‘katz’ model and the ‘j-m’ model at training corpus

sizes from 100k sentences (about 2M tokens).

Fig. 1.2 is adapted from [Goodman, 2001a, Fig. 9]. It compares the difference of
empirical cross entropies of a number of language models with a baseline ‘Kneser
Trigram’ model. With the exception of the ‘Katz Trigram’ model, all of these mod-
els are smoothed with interpolated Kneser-Ney back-off distributions and absolute
discounting. The ‘Katz trigram’ is smoothed with Katz back-off and Katz discount-
ing. The ‘Kneser Cache’ model is a linear interpolation of a smoothed unigram cache
model, a trigram cache model and the baseline model. The ‘Kneser Skip’ model is a
linear interpolation of number of smoothed skipping 4-grams (in the style of delayed
n-grams) with the baseline model. The ‘Kneser Cluster’ is a smoothed category-based
5-gram with automatically obtained word categories. The ‘Kneser Sentence’ model is
a sentence mixture model with automatically obtained sentence types.

Fig. 1.2 shows that the ‘Kneser 5-gram’ is not really worthwile at a training corpus
size of 10M tokens, but becomes powerful at the full training corpus size of 284M
tokens. The remarkable power of cache models decreases with larger training corpus
sizes.

Finally, Fig. 1.3 shows results from speech recognition experiments with different
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Figure 1.3.Word error rate versus cross-entropy. Reproduced from [Goodman, 20014, Fig. 12].
The point corresponding with the PLCG-based model is added by us and only indicative, since
training and test conditions differ.

model classes and smoothing techniques. The ‘Katz’ model is a Katz trigram; the
‘KN’ model is a trigram smoothed with Kneser-Ney linear interpolation back-off. The
‘Katz ...” models use Katz back-off and discounting and interpolation with the ‘Katz’
model. The ‘KN ...” models use Kneser-Ney linear interpolation back-off and in-
terpolation with the ‘KN’ model. The ‘all-cache’ model combines all the techniques
dealt with in the paper, except cache-based modeling — the latter turned out to harm
the speech recognition. The other ‘all-cache-...” models are equivalent with the ‘all-
cache’ model, but with one more technique left out: for instance, the ‘all-cache-cluster’
model does not have the ‘cluster’ component (a category-based 5-gram).

| have also superposed a ‘PLCG+Katz’ point—&at2% in word error rate ane-.46
bits/token from the ‘Katz’ point; these were the best obtained results with the PLCG-
based language model relative to a trigram baseline. The point is indicative, because
the training and test conditions of this thesis differ from Goodman’s.

1.8. Conclusion

This chapter defined the research field of statistical language modeling, discussed
the role of language models in natural language applications and gave a literature
overview of common language model estimation techniques.

The estimation of a statistical language model is difficult: in the categorical space
of words and sentence prefixes there is no obvious definition of a distance measure,
which hampers generalizing from training data. Therefore statistical language mod-
els typically contain a very large number of parameters, and consequently face data
sparseness throughout.
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1.8. Conclusion

Language modeling research has come up with a number of observation clustering
techniques to mitigate data sparseness, discounting techniques to compensate for the
bias of relative frequencies of small samples, and model combination techniques to
improve the robustness against rare events or to relax the specificity of the model. A
systematic overview of the most common of these techniques was given, and their spe-
cific strengths and weaknesses were mentioned. Appropriate smoothing is important,
but there is no single best combination of smoothing techniques; at most there are a
few heuristic rules of thumb that may speed up the finding of a satisfying smoothing
strategy.

The results from an experiment by Goodman were included, comparing combinations
of several language model techniques trained and tested on the North American Busi-
ness news corpus. Kneser-Ney back-off turned out consistently better than Katz back-
off.

Jelinek-Mercer smoothing seems less powerful than Katz and Kneser-Ney back-off,
but can be used with non-integer observation frequencies (they will show up in the
reestimation procedure of the PLCG-based language model).
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CHAPTER 2 -

Grammar-based language models

This chapter motivates grammar-based language modeling and contains an overview
of the relevant literature in order to situate the PLCG-based language model, to show
in which ways it contributes to the research domain, and to serve as a collection of
references for those who want to become familiar with grammar-based language mod-
eling.

2.1. Motivation

Human language is obviousktructured It is only logical that language modeling
researchers have always attempted to exploit that fact. Language models that predict
language structure explicitly will be callefammar-basedh this chapter, since it is
preciselygrammarthat describes sentence structure. The language model compo-
nents discussed in Chapter 1 can be used in combination to form powerful and robust
LMs/CLMs. All of these, however, fail to recognizyntactically structurediepen-
dencies within a sentence.

N-grams always assume the same simple structure, while cache and trigger models do
not assume any structure at all. Consider, for instance, the following sentences:

(@) The news agent has been running this story.
(b) The news agent has been running this boring story.

A human reader would assume that the probability of ‘story’ in sentence (b) should
be comparable with the one in sentence (a). However, a trigram CLM would only
see ‘running this’ when predicting ‘story’ in (a), and ‘this boring’ in (b); it fails to
generalize the trigram ‘running this story’ to any slightest variant of it. Cache- and
trigger-based models may account for ‘news agent’ and ‘running’ boosting the proba-
bility of ‘story’, but almost equally they would estimate the probability of ‘all’ in the
next sentence:
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2.2. Grammatical theories and generalization

(c) The news agent has been running this story all week.

which they should not.

While it cannot be denied that there are many non-structural and local patterns in a lan-
guage, | believe that grammar is a substantial factor in the sentence generation process.
Grammar-based CLMs are therefore expected to become a powenfiglemento

the other conventional language modeling techniques.

In the long term, my study is also motivated by the intuition that preference patterns
of syntactic structure are relatively invariant over different discourse contexts. Proper
identification of the invariant parts of language will permit language models to be
more adaptive, since it would allow to reduce the number of parameters to be adapted.
Adaptation is certainly still a weak point of the conventional, mostly word-based, LM
techniques currently available.

2.2. Grammatical theories and generalization

Grammar-based language models have gone through an evolution in various aspects:
the underlying grammatical theory, parsing techniques, application domain, model de-
velopment and system integration. These characteristics are quite related; this section
is structured according to the formal characteristics of the grammar and discuss their
repercussion on the other aspects in the go.

The evolution of the grammatical theoriesderlying language models for speech
decodingcan be described as climbing up tBaomsky hierarchy [Chomsky, 1959]

(see also [Jurafsky and Martin, 2000, pp. 478-481] and [Hopcroft and Ullman, 1979,
Ch. 9]). The latter is a well-known classification of formal grammars according to
their generativepower due to Chomsky: in decreasing order of generative power, the
following classes are discerned:

° Recursively enumerable grammars (REG) or Turing machines: rules are of the
formato — B. This is the most general format.

° Context-sensitive grammars (CSG): the format of the rulesAf — adf3; a
CSG rule must rewrite a non-termin&las a sequencé of terminals and non-
terminals, where a context, given byandf, may be specified.

. Context-free grammars (CFG): a CFG rule rewrites a non-terminal to a se-
guenced of terminals and non-terminals, but no context can be specified (this
is the context-freeness assumption). So the format of the rufes-is.

. Finite-state grammmars (FSG) or regular grammars: the rule formatisad
(for a right-branching FSG): every FSG rule must generate a terminal symbol.

The Chomsky hierarchy is a classification of grammars according tovbedfkand
stronggenerative power. Thereakgenerative power of a grammar is the set of sen-
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Grammar-based language models

tences that can be generated, wkll®nggenerative power is the set of sentenaed

their corresonding structures.

From the perspective of computational learning, it isstrenggenerative power that
matters, since it is strongly related with the capability of a computational model to
induce correct, elegant generalizations. For instance, the weak generative power of
a CFG can be arbitrarily closely approximated with a FSG, but it takes a lot more
rules and the grammatical structure would be implausible in most cases (namely, ex-
clusively right-branching for a right-branching FSG).

While the earliest speech recognition systems were based on FSGs, the attention
shifted to CFGs. Since a few years, researchers propose models that violate the
context-freeness assumption, e.g. various unification-based grammars; these are spe-
cific types of CSGs. Agenerictreatment for CSGs — let alone REGs — is not yet
within reach, but probably not immediately useful for human natural language.

The evolution from FSG- to CFG-based language modeling and beyond is motivated
by:

1. Advances in hardware technolagVhe lesser the constraints on the language that
can be handled, the more complex algorithms grow. However, the computing re-
sources typically available to researchers, in terms of processing speed and memory,
have tremendously grown and keep growing.

2. Striving to (more) correct modeling in wider application domaiRser instance, re-
search on automatic speech recognition evolves to less constrained domains implying
gradually more ‘natural’ language.

3. The limited usability of grammar transformalgorithms have been developed to
convert or approximate a grammar with another one of a lower strong generative
power. It is often easier and more intuitive to specify or hand-tune a grammar of a
higher strong generative power (perhaps because it is closer to human cognition). A
CFG can be approximated with a FSG with an algorithm by Pereira and Wright [1991].
Stolcke and Segal [1994] describe a method to compute pregisam probabilities

from a PCFG. At a higher level, one can mention the Gemini system by Moore et al.
[1997], which compiles a subset of unification-based grammars (cf. below, Sec. 2.5.1)
into CFGs. However, typically the compiled grammar is very large, and it loses the
long-distance modeling capacity of the higher-level grammar; hence there is a need for
algorithms and language models that make it easier to integrate higher-level grammars
in their native forms into the speech decoding process.

4. Advances in statistical large-scale parsinghe more recent work in grammar-
based language modeling profits from significant advances in automatic parsing of
general text [Manning and Sitze, 1999, Ch. 12], both on the algorithmic and the
training data side. The large-scale parsing trend started with IBM’s statistical parsing
effort [Black et al., 1993, Magerman, 1994]. The Penn Treebank corpus [Marcus et al.,
1993], primarily consisting of 49,000 human-annotated sentences from Wall Street
Journal articles, made it possible to induce large-coverage probabilistic grammars and
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estimate probabilities for each of their parameters [Magerman, 1994, Collins, 1997,
Ratnaparkhi, 1997, Charniak, 2000]. Furthermore phiresevAL metric [Black et al.,

1991] provided a cheap and automatic way to compare the performance of possibly
entirely different parsing systems. The best current parsing systems boast an accuracy
of about 90% in terms of labeled precision and recall. Although there is discussion
about the relevance of titraRSEVAL metric and the lack of detail in the Penn Tree-
bank [Caroll et al., 1998, Manning and Carpenter, 1997], the basic message for the
language modeling community is that statistical parsing with even a very simplistic
grammar is still able to provide useful cues on the expected structural dependencies
between words within one sentence.

Language models based on FSG and CFG are discussed in the next two sections, re-
spectively. Then developments beyond CFG are described.

2.3. Finite-state grammars

Finite-state grammars are equivalent with finite-state automata, which are very well
understood. In the Chomsky hierarchy they have the least generative power. The
probabilistic extension of FSG (PFSG) can be implementedvasightedfinite-state
automaton.

FSG-based language models can be compiled into the search network of a speech
decoder and generally lead to a highly efficient single-step speech decoder. However,
for robustness it may sometimes be preferred to postpone the grammar constraints to a
second pass. Loose coupling of the acoustic match and the language module allows a
greater flexibility. For instance, in [Ward et al., 1988], a class-based trigram is applied
on the lattice output using an island-driven search strategy. On the Resource Man-
agement task, a small-vocabulary speech recognition test suite [Price et al., 1988],
robustness against missing words was improved with respect to left-to-right search.
Jackson [1992] proposed a hybrid approach: an FSG, essentially a template matcher,
spots phrase islands in a recognized sentence, and a CFG then checks whether they
form a meaningful sentence. The approach was only tested for language understand-
ing in ATIS, a travel information domain serving as a test for small-vocabulary auto-
matic speech recognition and understanding. Interestingly, Ward and Young [1993]
proposed the opposite, i.e. recognizing phrases with a CFG and scoring those with
a phrase-level trigram. Word error rate on the ATIS task was reduced from a 23.5%
bigram baseline to 18.2%.

While FSG-based language models are typically associated with the early automatic
speech recognition systems [Bahl et al., 1978, Lowerre and Reddy, 1980, Chow et al.,
1987], they continue to be used because of their computational efficiency or just be-
cause the target language is, in fact, a regular language. For some restricted domains
(e.g. database query systems), finite-state grammars are a good choice. This is the
case, for instance, if user input is adequately modeled with a limited numlemef
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platesentences such as ‘(want-ticket) from (airport) to (airport) on (day-of-week)’.

In LVCSR applications, such as general dictation, FSGs need many rules, do not gen-
eralize well and have difficulty in integrating prior linguistic knowledge; they need

a very large training corpus and are very specific to that corpus. These are precisely
the disadvantages of tlregram model, which is a PFSG: each histw‘ﬁz%le corre-
sponds with a state and at the transition (taken with a certain probability conditional on
W} ;) from a state corresponding with] %, ; to a state corresponding wittj_,., ,,

a symbolw; is emitted. The word-pair model, on the other hand, is an example of an
FSG (non-stochastic bigram).

FSGs are also used as a ‘compiled’ format derived from (mostly handwritten) CFGs.
Automatic procedures have been described to approximate PCF@&grayns [Stol-

cke and Segal, 1994] or more general PFSGs [Pereira and Wright, 1991]. This ap-
proach is quite common in current speech recognition APIs. It is typically used for
small-vocabulary applications where the language is rather controlled, such as natural
language interfaces with central services.

2.4. Context-free grammars

It was stated earlier that, for modeling natural language, CFGs are preferrable to FSGs
with regard to their strong generative power, but are more difficult to integrate in a
speech decoder and considerably more complex to parse. CFGs can describe language
structure in a way that can be interpreted by humans, except for a few phenomena
such as cross-serial dependencies in DditcFor limited domains, CFGs may be
sufficiently powerful.

A CFG is defined by a set of terminals (word vocabulary), non-terminals one of which

is the start symbol or the axiom, and a set of production rules. A sentence is generated,
starting from the axiom, by rewriting a non-terminal (the lefthand side of the rule) as

a string of terminals and non-terminals (the righthand side of the rule). This process
is repeated until no non-terminals remain. Tdwntext-freenesassumption entails

that the rewriting of a non-terminal is independent of what comes before or after that
non-terminal.

For example, the following rules constitute a simple CFG (see Appendix D for the
meaning of the symbols):

S — NP VP VP — VBZ NP
NP — the NN NN — market
NN — industry VBZ — supports

VBZ — creates
Specific CFGs that are written by hand for limited tasks are often expressed in terms of
task-oriented semantic category labels, SUCHMB/NT or DESTINATION. Attempts

1. As, for example, in: ‘Ik heb hem zijn vader het dak zien helpen herstellen’, where 3 object-subject
dependencies cross.
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to write CFGs for general language have met with problems of sufficient coverage.

Large CFGs can alternatively be derived from treebanks (i.e. parsed text corpora) such
as the Penn Treebank [Marcus et al., 1993] with better coverage; however, treebank
grammars tend to overgenerate extremely [Charniak, 1996, p.7]. Therefore they only
make sense in a stochastic framework.

A probabilistic or stochastic CFG (PCFG, SCFG) is a CFG equipped with production
rule probabilities, indicating the conditional probability that a given non-terminal is
rewritten by a certain rule, and not by other rules for which the lefthand side matches.
While the CFG can only impodeard constraintgallow or disallow word sequences),

the PCFG is more versatile since it produsesres These scores can be combined
with scores from other knowledge sources and afterwards compared with a pruning
threshold.

According to a PCFG, the probability of generating a sentence by a specific sequence
of productions is simply the product of the probabilities of the rules that were ap-
plied in generating that sentence. This probability can be written as a joint probability
P(W,T), whereW is the sentence antl is the analysis tree. The probability of a
sentencéV, then, is the sum dP(W,T) over all T for the saman; algorithms that
compute this sum efficiently are known [Jelinek and Lafferty, 1991]. The rule prob-
abilities are bootstrapped from a small treebank and maximum-likelihood trained in
an unsupervised mode on plain text using the inside-outside technique [Baker, 1979],
actually a generalization of forward-backward training of HMMs and PFSGs, and
an instance of the expectation-maximization (EM) algorithm [Dempster et al., 1977].
Unfortunately, the likelihood function usually contains many local maxima.

Both CFG and PCFG have been proposed as language models in speech decoding
since the mid 1980’s. In 1985, Derouault and Merialdo [1985] use a phoneme-based
hand-written PCFG to rescore n-best lists of phoneme strings. A paper by Matsunaga
et al. [1990] is complementary in that it presents parsing of a phoneme lattice (result-
ing into a word/phrase lattice, that is ultimately rescored with a dependency grammar),
but does not use probabilities.

In 1986, Tomita adapted his ‘left-right’ (LR) parsing technique to select the grammat-
ical sentences from word lattices resulting from a first speech decoding pass. The
LR parser is basically a shift/'reduce parser and is very efficient due to a look-up
table that is computed beforehand. LR parsing has frequently been used in simi-
lar settings [Ward et al., 1988, Su et al., 1991] and extended in various ways: Kita
and Ward [1991] propose a tight integration within the acoustic match by associat-
ing an LR stack with each search path. As already mentioned earlier, combined use
of a CFG and a FSG is also possible. For instance, Ward and Young [1993] use a
CFG on a phrase level only and the sequence of phrases is scored with a phrase tri-
gram afterwards for reasons of robustness. GLR and GLR* lattice parsing [Lavie and
Tomita, 1993] are extensions of LR, able to skip ungrammaticalities in the input. An
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adaptation of Tomita's parser to handle PCFGs is due to Wright [1990simpler
alternative is provided by Goddeau and Zue [1992], who use state and shift probabil-
ities instead of the usual PCFG production rule probabilities. Actually this practice
of closely linking parser actions with probabilities is central to the general idea of
history-based stochastic grammars (see further), and inspired the more recent line of
context-sensitive grammar-based stochastic language models, which will be surveyed
below.

Other CFG parsing algorithms than GLR have been used as well in CFG based lan-
guage models. In [Nakagawa, 1987, Kai and Nakagawa, 199Badey parseris

used in a single pass recognizer to predict the set of possible next words, which are
examined by a word spotter. An Earley chart parser was equally used in Broca, a
speech recognizer that integrates the language model and the pronunciation lexicon
in one CFG [Howells et al., 1992]. Stolcke [1995] proposed a language model based
on an Earley parser with a CFG that can compute sentence prefix probabilities as
well. It applies the principles of generative stochastic grammar right away: a prefix
probability is computed as an (implicit) sum of probabilities of partial derivations. A
derivation is a sequence of stochastic Earley parser moves (shift, complete, produce).
The computation of the sum is made efficient with dynamic programming (DP). The
language model is successfully combined with a word bigram in the forward search
pass of the speech recognizer of the BeRP dialog system (a restaurant guide) [Jurafsky
etal., 1995].

The CKY (Cocke-Kasami-Younger) algorithm is another well-known (P)CFG parsing
algorithm that applies DP. It was used in various early speech recognition systems, for
instance to extract the grammatical sentences from a lattice [Young et al., 1988, Chow
and Roukos, 1989] or in a single pass recognizer [Ney, 1987, 1991].

As a final comment regarding the integration of CFG constradiuoise has to choose
between a multi-pass or single-pass search. A multi-pass search involves rescoring
a lattice or an n-best list. A single-pass search may be more efficient due to early
pruning of ungrammatical partial hypotheses, but also less efficient because parsing
effort is expended on hypotheses that would have been excluded from the lattice in a
multi-pass search scheme.

In a single-pass search strategy, unlike FSGs, CFGs cannot be compiled into a fi-
nite static search network. Alternative strategies are dynamic network expansion
(e.g. [Murveit and Moore, 1990, Brown and Glinski, 1994]) or interleaved grammar
checking, such as [Ney, 1987, Nakagawa, 1987]. The grammaticality is only checked
after the acoustic match in [Ney, 1987]. In contrast, a language model based on an
Earley parser such as [Nakagawa, 1987] only hypothesizes a next word if it can lead
to a grammatical partial hypothesis.

2. In further work, Wright describes a procedure to construct PCFG parse trees in an optimal order such that
a chain of first-order conditional transition probabilities approximates the true joint probability as closely
as possible [Wright, 1991, Wright et al., 1992].

3. A literature overview on this subtopic was presented by Chappelier et al. [1999].
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2.5. Beyond context-free

There are no parsing algorithms (yet) that can handle all CSGs, but some specific

classes can be handled reasonably efficiently with dedicated algorithms. Specifically

stochastic phrase-structure grammars that incorporate non-local probabilistic depen-
dencies have led to powerful stochastic language models — among which the PLCG-
based language model.

2.5.1. Unification-based grammars

Unification-based grammars (UBGs)ssigntyped feature structure® constituents

instead of simple category labels. Features provide an elegant way to specify detailed
syntactic and semantic constraints, such as agreement (person, number, tense) and sub-
categorization (the list of expected complement categories), while keeping the gram-
mar concise and intuitive. Unification of feature structures is a key element in almost

all modern grammatical frameworks, including lexical-functional grammar [Bresnan,
1982, 2001], head-driven phrase structure grammar [Pollard and Sag, 1994], construc-
tion grammar [Kay and Fillmore, 1999] and unification categorial grammar [Uszkoreit,
1986].

Consider, for example, the following CFG rulg:— NP VP. This rule generates combi-
nations of anvP and alP that one would wish to exclude, for example combinations

of a singularvp with a plural VP. It is possible to replace the rule with two rules:

S— NPsg VPsgandS— NPpl VPpl. However, this process has to be repeated for the
person agreement. One realizes that this approach cannot be maintained, because a
combinatorial explosion of category labels and CFG rules will result. A more elegant
solution is obtained by assigning feature structures to constituents, for example:

PERSON 3rd

VP . ,
NUMBER singular

andaugmentinghe CFG rule with a number agreement constraint:
S — NP VP, NP:NUMBER = VP:NUMBER.

The operator by which two feature structures are combined or marked incompatible
is calledunification Long-distance dependencies can be modeled because unification
can propagate features values from daughter nodes to mother nodes or vice versa.
The unification principle has been applied to various grammar-based language models.
An early example is a finite-state speech recognizer by Hemphill and Picone [1989],
which parses with augmented stochastic regular grammars on both the sentence and
word level. The word-level grammar emulates a pronunciation lexicon, where pho-
netic feature constraints ensure that assimilation rules are followed within and across

4. A detailed account of unification and a literature overview can be found in [Jurafsky and Martin, 2000,
Ch. 11], [Shieber, 1986] and [Knight, 1989].

36



Grammar-based language models

word boundaries. The parsing algorithm is an augmented chart-based Earley parser,
extended to handle feature structures and probabilities.

Several other publications deal with language models based on augmented CFGs.
There are basically two approaches:

1. The UBG is transformed (exactly or approximately) into a large CFG, and the
original software can be used. See, for instance, [Black et al., 1993, Rayner
et al., 2000]. The scalability of this approach is quite limited.

2. A CFG parser is extended to deal with features. Then, again there are two
options: either the features are used as (categorical) filters on the otherwise un-
changed operatiSrof the probabilistic or non-probabilistic CFG parser, or the
features are considered part of the probabilistic sentence generation. Language
models following the former option include [Derouault and Merialdo, 1985,
Chow and Roukos, 1989, Seneff, 1989, Okada, 1991]; the latter option is fol-
lowed by Goodman [1997], among other more recent publications on stochastic
grammar-based language models.

UBG-based language models as cited above allow handcrafting a fairly accurate gram-
mar for small natural language applications in a reasonable time. However, application
in large-vocabulary applications, such as LVCSR, is impeded by the lack of training
data: hand-parsing a sufficiently large text corpus with a UBG is too costly. With the
help of a morphological lexicon and/or analyzer, it seems possible to fill the feature
value structures automatically, once a coarse annotation in the style of the Penn Tree-
bank is available; but this track is not yet explored for language modeling purposes.

A special feature, that actualbanbe annotated automatically fairly simply — at least

in English — is the ‘lexical head’ feature, giving rise to lexicalized grammars, which
are discussed now.

Lexicalized grammars

The first step in analyzing a word in a sentence often entails a generalization to a
morpho-syntactic category, such as a part-of-speech. However, the words themselves
contain much more information abosyntacticpreferences and cooccurrences than
only their parts-of-speech. Capturing this kind of information is important for reduc-
ing syntactic ambiguity. Consider, for example, the following sentences:

(&) |donated books to him.
(b) *I donated him books.
(c) Igave books to him.

5. The combination of non-probabilistic unification of features with probabilistic CFG rules leads, if one
is not careful, to an incorrect estimate of derivation probabilities. Briscoe and Carroll have discussed
probabilistic GLR UBG parsing extensively [Briscoe and Carroll, 1993], but their model is incorrect. A
probabilistically sound model is described by Inui et al. [1997].
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(d) I gave him books.

Sentence (a) is more likely than (b), because ‘donate’ does not allow the indirect object
to appear before the direct object. However, ‘give’, although a synonym, allows both
forms (c) and (d).

The syntactic preference in the above example is commonly described wislulihe
categorizatiormechanism: the idea of subcategorization is that each lemma requires
(‘subcategorizes for’) a certain set of complements, and these are listed in the Rxicon.
Explicit use of a subcategorization feature in a grammar is hard for large-vocabulary
purposes, by lack of an extensive detailed subcategorization lexicon. My attempt is
to model thephenomenowof subcategorization — admittedly in a suboptimal way —
with the less knowledge-based lexicalization method of headword percolation (cf. be-
low).

Besides syntactic disambiguation, lexicalization is also importargdorantiddisam-
biguation. For example:

(@) She beat him with her oboe.
(@) She beat him with her piano.

Although both sentences are syntactically equivalent and correct, and both an oboe
and a piano are musical instruments, (a) is expectedly more likely than (b) for obvious
reasons. A grammar that reduces ‘beat’ to a tag ‘verb’, or ‘piano’ to ‘noun’ or even
‘musical-instrument’, has no means to assign (a) a higher probability than (b).

Most often the lexical feature identifies with a lexical property oftiead of the con-
stituent. The head imposes constraints on the structure of the constituent. The notion
of a head that combines with complements and adjuncts is common to most modern
formal grammar theories. The best statistical large-scale natural language parsers cur-
rently available [Collins, 1997, Charniak, 2000] choose likadword (the form of

the head as it appears in the sentence) as the lexical category of a constituent. In
this (most frequent) case, the unification of the lexical feature is often cadad-

word percolation. For English, a set of deterministic headword percolation rules by
Magerman [Magerman, 1994] are in popular use.

Example 2 The parse tree in Fig. 2.1 was taken from the Penn Treebank corpus [Mar-
cus et al., 1993]. It was lexicalized with Magerman’s headword percolation rules.

2.5.2. Dependency and link grammars

Phrase structure grammars represent the structure of a sentence with a tree graph.
In contrast,dependency grammarsuse adependency graphthat has just as many

6. The concept of subcategorization is strongly related, but the term ‘syntactic preference’ is more appro-
priate in the statistical setting, in that it suggests the use of soft constraints as opposed with hard selection
(allow or disallow). It is also more general; for instance, the fact stvavery probably rewrites t¢'riday
in the context ofTkank God <t’s ..., cannotbe described as a subcategorization phenomenon.
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Slfor
PP/for

Slcreating

NP/focus
PP[for
NP/focus NP/life
IN/for  VBGlcreating DTla  NN/focus INI/for NN/neighborhood NN/life

for creating a focus for neighborhood life

Figure 2.1.Example of a headword annotated sentence.

NPldog wp
NP
DT JJ m NN
DT/the JJllazy NNldog the lazy dog

Figure 2.2.A local tree and its corresponding dependency representation.

nodes as there are words in the sentence. A dependency corresponds with an arc
connecting two words; depending on the specific type of dependency grammar, arcs
can be directed and/or labeled in order to specify a functional relationship (e.g. object-
verb).

Collins’ 1996 parser uses a dependency grammar that is extracted from the Penn
Treebank. This parser expects a POS-tagged sentence. Before the actual parsing,
a baseNPchunking is performed and each baseNP is replaced with its headword. For
the extraction of the grammar, the original tree representation is converted into a de-
pendency representation in two steps. First, the tree is headword percolated. Second,
eachn-ary local tree is converted into— 1 dependencies as in Fig. 2.2.

The probability of a pars& given a POS-tagged senter8és computed a®(B|S) -
P(T|B,S), whereB is the baseNP segmentation ané the dependency graph, which

is the sequence of outgoing dependency arcs (as many as there are words in the sen-
tence). The parsing algorithm itself is a bottom-up chart parser.

7. A baseNP is a noun phrase that does not contain other noun phrases.
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For the statistical parsing community, Collins’ parser showed that Magerman’s re-
sults with a complex history-based grammar [Magerman, 1994] could be obtained
with a much simpler grammar. For the language modeling community, it was an im-
portant source of inspiration and a development tool for the dependency language
modeling project at the Johns Hopkins CSLU 1996 workshop [Stolcke et al., 1997,
Chelba et al., 1997]. The goal of this project was to develop a dependency lan-
guage model that would approximd®éS) asy k- P(S K*), whereK* is the linkage
(dependency graph) obtained from Collins’ 1996 pardé€t.is represented as a se-
quence of disjunctsl...d,. A disjunctd; is the set of all incoming and outgoing
dependency arcs (links). The dependency language model would coR(SIk")

as[]i P(wi, di|wo, do, ..., Wi_1,di_1) where the history is reduced to a trigram context
(wi_1, Wi_2) plus the open links. Allin all, various other shortcuts and approximations
had to be introduced and the results obtained were not quite encouraging. A part of
the problem was that the Switchboard corpus was chosen as a testbench for ‘political’
reasons (sic), which is notoriously difficult.

Strongly related with dependency grammaling grammar [Sleator and Temperley,
1991, 1993]. It can be considered as a dependency grammar with undirected and
labeled arcs, but differs from the classical dependency framework in three aspects:
the link graph must be planar, there can be cycles in a link graph and the order for
each link pair is specified (i.e., whether one word can precede or follow the other, or
do both).

A probabilistic language model based on link grammar, called ‘grammatical trigram’,
is described by Lafferty et al. [1992]. Moderate results with a simplified version of
the model only using automatically obtained word pairs were reported in [Della Pietra
etal., 1994]. The dependency language model [Stolcke et al., 1997] was linguistically
more sound, but experimental results were not convincing either. From a methodolog-
ical perspective, however, | believe that dependency language modeling has greatly
contributed to later grammar-based language models in two ways:

1.  Stress on lexicalizationMost often, the best predictors for words are other
words, as proven by the good performance of the word-based trigram language
model. Lexicalization is important for both statistical parsing and statistical
language modeling.

2. Probabilistic context-sensitivityLink grammars are only context-free as far as
their categorical base is concerned; that is, the rule probabilities are not. The
probability of a dependency is not only conditioned on features that are local to
the dependency itself (such as source and target node), but on more distant (1
or 2 dependency arcs further) features too. The practice of heavy probabilistic
conditioning is later found essential for both statistical parsing and statistical
language modeling.
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2.5.3. History-based grammars

History-based grammars (HBGs) arose as an attempt of IBM researchers [Black

et al., 1993, Magerman, 1994] to apply statistical n-gram language model techniques
to statistical parsing of natural language. HBG starts with decomposing the generation
of a sentence in a sequence of elementary parser actions, calétvation. There

must be a one-to-one correspondence between derivations and$aiyswhereS

is the sentence ant a particular analysis of that sentence (according to some gram-
matical theory). Therefore the generation probability®fT ) is the probability of the
derivation, which can be estimated using conventional language modeling techniques:
the probability of the next parser action is conditioned on the previous ones.

A HBG-based language model follows naturally since the generation probability of
the sentence is the sum of the probabilities of the derivations that yield that sentence.
The grammar used in [Black et al., 1993] is a PCFG obtained from a hand-built UBG
by clustering certain features and feature-value pairs; other features apart from the
syntactic category are added, such as a semantic category, a primary lexical head, a
secondary lexical head and a daughter index; the features are predicted one by one
using the chain rule. Since there is far too much conditioning information, decision
trees are used to reduce (i.e. cluster) the context. Although the resulting parser was
particularly heavy and complex, it showed that statistical parsing had the potential to
outperform any hand-built parser. The modeling method promoted by the experimen-
tal results was starting with a simple, large coverage grammar and letting a statistical
parameter estimation procedure (on a treebank or plain text if possible) do the rest.

2.5.4. Current state of the art: grammar-based LMs for LVCSR

In restricted application domains syntax-based (C)LMs are commonly used, since it
is possible to write a grammar by hand in these cases. However, for LVCSR, syntax-
based (C)LMs were for a long time outperformed by simple word-based trigram mod-
els. There are at least three causes of failure:

1. The grammars used were context-free.
2. There was no use of fine-grained, particularly lexical, features.
3.  Grammars were hand-built and had insufficient coverage.

The former two points cause bad probability estimates; the latter causes zero probabil-
ity estimates for perfectly acceptable sentences.

A first encouraging advance was realized when Chelba and Jelinek (henceforth abbre-
viated C&J) proposed a CLM based on a stochastic shift-reduce parser [Chelba and Je-
linek, 1999]. This work was particularly encouraging because it was the first to report

a significant enhancement of speech recognition accuracy in a read newspaper task
by introducing syntactic constraints into a large-scale language model. The statistical
syntactic constraints were assembled from a hand-parsed (e.g. the Penn Treebank) or
machine-parsed text corpus and could be reestimated on plain text afterwards.
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The C&J model’s design and its strong emphasis on lexical dependencies are remi-
niscent of the dependency LM [Stolcke et al., 1997, Chelba et al., 1997]; it can be
considered as a generalization of the word-based trigram CLM. Problems 1 and 2
mentioned above are avoided by non-local stochastic conditioning on lexical features:
the parser uses probabilistic shift and reduce actions that are conditioned on the two
most recent ‘exposed heads’ (an exposed head is the lexical head of a phrase covered
by a subtree that is not yet a subtree in another tree). Problem 3 is tackled by initial-
izing conditional shift and reduce probabilities directly from a treebank (a hand- or
machine-parsed text collection) and applying conventional statistical smoothing tech-
nigues.

Other syntax-based LVCSR language models have been proposed since. While Chelba
and Jelinek [1999] deploy a shift-reduce parser, Roark [2001] and Charniak [2001] do
similar things with a top-down parser. Bod [2000] proposed a language model based
on data-oriented parsing and proposes a maximume-likelihood estimation procedure
for it.

Before discussing some of these models in detail, here are some common characteris-
tics:

1.  All of the above cited grammar-based language models are based on a genera-
tive probabilistic grammar — a tradition that started with history-based gram-
8
mars:

2. In contrast with HBGs, the probability of a next parse move is not conditioned
on the preceding parse moves, but on tinegult i.e. a partial parse. Actually
for probabilistic conditioning only certain features of the partial parse are se-
lected (context clustering by feature selection). For instance, these features are
the lexical and syntactic heads of the two most recent unattached constituents
(exposed heads) in [Chelba and Jelinek, 1999]. In [Roark, 2001] a decision
tree (a ‘tree-walking’ function) is used for more sophisticated feature selection.
Generally there is a tendency to include lots of features, thereby increasing data
fragmentation and necessitating statistical smoothing techniques.

3. The grammars are highly lexicalized.
4.  The language models are computationally very expensive to train and to apply.

Furthermore, they cannot be tightly coupled with the speech decoder, they can
only be used for rescoring a severely pruned lattice or an n-best list.

8. A generative probabilistic grammBdeads to a joint probability distributioR- (W, T) over sentenced/

and linguistic analyse$. The associated language mo&e(W) is simply the marginal oR-(W,T). An
important question is how to compute this marginal both efficiently and accurately, since th@/\joint

space is infinite when dealing with natural language. Also, it is often desirable that prefix probabilities can
be computed.
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PREDICT

NULL

TAG(X)

constructor

ADJOINRIGHT(Y)

Figure 2.3.C&J shift-reduce parser. (Reproduced from [Chelba and Jelinek, 2000, Fig. 7].)

Chelba (C&J)

C&J’'s model (called ‘structured language model’ by its authors, a name that is prob-
ably too generic in this text) is conceived as a generalization of a trigram. Consider
predicting the wordzfter in the following sentence:

the contract ended with a loss of 7 cents after
trading as low as 9 cents .

The trigram would predictfter from 7 andcents. These are probably not the two
words that contain most information; in this casentract andended seem to be

more predictive. C&J observed that, at least in English, the two words from a sentence
prefix that are most predictive can often be found as the two most recent ‘exposed
headwords’ in the partial parse generated by a probabilistic shift-reduce parser. In
order to explain the concept of exposed headwords, it is necessary to see how partial
parses look like. Therefore a more detailed description of the probabilistic shift-reduce
parser is inserted here.

The shift-reduce parser is described as a probabilistic automaton that has three states
(predictor, tagger, constructor), as shown in Fig. 2.3. It starts in the predictor state,
predicts a next word (throughrREDICT, essentially a&HIFT) and arrives in the tagger
state. Then it must executerac(X) operation, which predicts a part-of-speech label

X for the word just predicted. In the constructor state, the parser can repeatedly choose
from either ADJOINLEFT Oor ADJOINRIGHT, or return to the predictor state with a
NULL operation. TheaDJOINLEFT(Y) operation combines (i.eREDUCES) the two

most recent unconnected trees to one tree with syntactic Yaleahd percolates the
headword of the left daughter tree to the new tree. For instance, in Fig. 2.4, if the
parser had done amDJOINLEFT(S) instead of avuLL and aPREDICT (of after),

the result would have been oSécontract tree. TheADJOINRIGHT(S) would have
produced a similar tree, but with headwarelied . The new combined tree that results
from an ADJOINRIGHT or ADJOINLEFT then becomes the most recent unconnected
tree; the reduction process is repeated, unless the parser decides that the most recent
unconnected tree should becoméett daughter of another tree instead ofight
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VPlended

PPlwith
NPlloss
PPlof

NP/contract NP/cents

DT/the NN/contract VBD/ended IN/with DT/a NN/loss IN/of CDI7 NNS/cents after

Figure 2.4.A partial parse in C&J. (Reproduced from [Chelba and Jelinek, 2000, Fig. 1].)

daughter. In the latter case it will return to the predictor state by takimngla
transition.

Let us now return to the example given above. At the moment that the parser predicts
after, one can now see that the most probable — or at least, most straightforward
to a human reader — partial parse tree consists of two trees, the first cotaeng
contract with headwordcontract and the second coveringhded with a loss

of 7 cents with headwordended (Fig. 2.4). These trees are not yet subtrees of
another tree, which explains the teaxposedeadwords.

Generating the partial parse trees is ambiguous. In the example, another partial parse
of the same sentence prefix is obtained bpBnOINLEFT(NP) before theNuLL transi-

tion that precedeBREDICT(after), leaving onlyNP/contract as an exposed head-
word.

The language model tracks and grows all probable partial parse trees up to the point
that the next word is to be predicted; at that moment, the probability of the next word
output by the language model, is computed as a weighted averageEoicT proba-
bilities, where the weights are the probabilities of the corresponding partial parses.
Due to the considerable ambiguity in parsing, the language model needs to discard less
probable sequences early in order to keep computing time within reasonable limits. In
order to get an idea of this ambiguity, it may be instructive to look at the number of
distinct partial parse tree contexts considered by the language model at predicting the
next word. Fig. 4.6 displays this quantity for the PLCG-based language model on
page 91; 100 different partial tree contexts at predicting the 10th word in a sentence
is typical. Chelba did not report similar figures, but | expect his model to behave
similarly.

Roark

Roark’s language model [Roark, 2001] is based on a stochastic version of a left-to-
right top-down PCFG parser described by Aho et al. [1986].

The model buildsandidate analyses € (d,P(d),F(d), 8,w") consisting of a left-
most partial derivation (explained in Sec. 3.2.1), its figure-of-mefitd) (explained
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next) and its probability?(d), a sequenc$ of non-terminal symbols remaining to be
rewritten, and the sentence sufiif remaining to be generated.

The figure-of-merif (d) is defined as the product B{d) and a so-calletbok-ahead
probability LAP(,w;), which is the likelihood thafl rewrites as some word string
starting withw;. ThroughF (d), the look-ahead word functions as a soft bottom-up
filter on the extension of partial parses; a candidate analysis is discarded if its figure-
of-merit falls below a certain offset from the best figure-of-merit in the same priority
gueue. The offset is dynamically adapted in order to control the number of candidate
analyses in the same priority queue.

F(d) is used as the score fuction in a synchronous beam search: candidate analyses are
organized in priority queueg?, . .., #+1, wheres# contains all surviving candidate
analyses that use; as the look-ahead word. Candidate analysdd;iare extended

by the parser in parallel by repeated PCFG rule productions, until ultimately the look-
ahead wordy; itself is produced. IfC’ is a candidate analysis created fr@he %

by producingw;, thenC’ is placed inHi, 1, as well as in another queuﬁﬂ“f. The
sentence prefix probability(w}) is available as

PWwp)= 5 P(d) (2.1)

a7y
and consequently conditional language model probabilities are obtained as

2deint P(d)
P 2.2)

An interesting aspect of the parser is the fact that rewrite probabilities can be condi-
tioned using a completely connected partial parse tree; exabilyhfeatures from a

partial parse tree are used, is determined with a hand-tuned decision tree [Roark, 2001,
Fig. 4].

P(wi|wp )

Charniak

Charniak’s language model, described in [Charniak, 2001], is a modified version of his
‘maximum-entropy inspired parser’ [Charniak, 2000], which is regarded as one of the
best large-scale statistical parsers published so far. This parser needs two passes: in a
first pass, candidate parse trees are generated with a bottom-up best-first probabilistic
chart parser [Charniak et al., 1998]; in the second pass, these candidate parse trees
are rescored from the top down using extensive probabilistic top-down conditioning.
Daughter nodes are rescored only after their mother node has been rescored, and in
the following order:

1. head daughter node;
2. daughter nodes left to the head daughter, from right to left — this is a 2nd order
Markov process;
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Table 2.1. Test set perplexities (PPL) (Penn Treebank section 23—-24 test set) of a baseline
trigram and various grammar-based language models. See also Table 4.6 on page 94.

Model PPL stand-alone PPL interpolated with trigram
trigram 167 167
C&J 141 130
Roark 152 137
Charniak 130 126
PLCG 133 126

3.  daughter nodes right to the head daughter, from left to right — this is a 2nd
order Markov process as well.

The detail of the probabilistic conditioning makes some clever smoothing necessary.
Charniak proposed a smoothing method inspired on maximum-entropy models. How-
ever, the resulting smoothed predictors are probabilistically improper. For parsing,
where probability is only used for ranking candidate parse trees, this is not really a
problem. Charniak [2001] shortly noted that some modifications to the smoothing
scheme had to be made for statistical language modeling, but he gave no precise de-
scription of these modifications nor a probabilistic analysis.

Assuming that Charniak’s language model is probabilistically sound, its excellent per-
formance in terms of test set perplexity is remarkable, as compared with C&J’s and
Roark’s models (Table 2.1).  On the other hand, Charniak’s model cannot be used
as a left-to-right conditional language model, which excludes interpolation with other
language models on the word level.

The probabilistic left-corner parsing LM

The main achievement and the subject of my thesis is the development of the PLCG-
based language model, a grammar-based language model that is more efficient than
the other cited models while offering at least the same flexibility and modeling per-
formance in terms of word perplexity and word recognition accuracy. Efficiency is
primarily needed to make training on large corpora feasible (comparable to sizes of
corpora to train 3- and 4-grams, for example).

This was obtained with a statistical left-corner parsing scheme in combination with
dynamic programming (DP). DP could be used in combination with non-local proba-
bilistic conditioning by selecting features at fixed relative positions in the partial parse
tree — like [Chelba and Jelinek, 1999] but unlike [Roark, 2001] — and incorporating
the non-local features in a state network representation.

The grammatical framework is identical to C&J's, Roark’s and Charniak’s: a simple
lexicalized phrase structure grammar. This has two reasons:
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1. Comparability: evaluation of language models is necessarily empirical, and
small differences in experimental conditions may significantly influence the out-
comes.

2. Availability of training data: the framework of the Penn Treebank is a simple
phrase structure grammar. There are no other treebanks available of a compara-
ble size and parsed with a more detailed grammar, such as a UBG.

Refining the grammar, while maintaining the large-scale scope of the language model,
is a topic for future research.

2.6. Conclusion

The strength of grammar-based language models relies on their generalization power
derived from recognizing hidden syntactic structural patterns. The area of grammar-
based language models has seen an extension in various (related) ways. The PLCG-
based model is a logical continuation of this evolution.

From the formal aspect, the early language models were nothing more than network-
compiled finite-state grammars and context-free grammar parsers. Several provisions
in the grammar or the parser have been introduced since: on the one hand, concepts
and extensions, such as unification of syntactic and lexical features, were adopted
from more modern computational linguistics; on the other hand, dependency and link
grammars, as well as history-based grammars stressed the importance of non-local
probabilistic conditioning, particularly on lexical information.

As to parsing techniques, not so much has changed: variants of the popular CKY,
Earley (with or without lookahead), LR and Left Corner parsing algorithms are being
used in the latest grammar-based language models, although the introduction of prob-
ability has slightly shifted the attention to other issues. For instance, cycles in a CFG
cause a naive parser to enter an infinite loop; this problem is mitigated by a PCFG,
because each additional run through a cycle will render a parse more improbable (as
it should) — although some factorization techniques may remain useful for efficiency.
However, probabilistic grammars are typically large — ‘nothing is impossible’. A
probabilistic parsing algorithm for a language model should scale well with sentence
length and grammar size. This necessitates intelligent pruning and an effective search
technique, such as beam search with or without dynamic programming. Dynamic pro-
gramming (DP) restructures the search space of a parser (a tree) in a more compact
network, thus allows a faster evaluation of equally many derivations. DP is commonly
associated with context-free chart parsing, but this thesis shows how it can be applied
to left-corner parsing in the PLCG-based language model.

While the first grammar-based language models were integrated in applications with a
small vocabulary and restricted language use, recent grammar-based language models
can improve on word-based trigrams and 4-grams in large-vocabulary speech recogni-
tion applications such as dictation and transcription of read newspaper articles. This
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coincides with a shift from small hand-written intelligent grammars to a more corpus-
based learning of the grammar, in both supervised and unsupervised modes. The
resulting grammars tend to be large and unsophisticated, but are sufficiently accurate
to do automatic parsing, due to probabilistic conditioning.

The PLCG-based language model uses a simple phrase-structure grammar extracted
from the Penn Treebank corpus, which allows a fair empirical evaluation against other
competing grammar-based language models. More detailed (for instance, unification-
based) grammars are not yet within the reach of large-vocabulary language modeling,
because of the lack of large copora parsed with more detailed grammars.

As grammar-based language models grow more complex, they become more difficult
to tightly integrate in the search engine of traditional speech decoders. The solution of
this issue is beyond the scope of this thesis; it may involve a rethinking of the complete
search engine.
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CHAPTER

A language model based on
probabilistic left corner parsing

Traditional language modeling techniques, described in Chapter 1, do not use prior
knowledge of grammatical structure. In this chapter, my aim is to improve language
modeling for statistical large-vocabulary continuous speech recognition LVCSR) by
grammatically structuringhe language model probabilities. In Sec. 2.5.4, a num-
ber of recent grammar-based language models, applicable in LVCSR, were presented.
This chapter describes a novel grammar-based language model using left-corner pars-
ing, that was found to be a competitive alternative to the other grammar-based lan-
guage models. The description of experiments is deferred to the next chapter.

3.1. Problem formulation and methods

This chapter proposes a novel language model, which is based on probabilistic left
corner parsing. It is an answer to the principal question of this thesis: in which way
can simple prior knowledge about grammatical structure contribute to better statistical
language models?

Statistical language models actually model the probabilistic generation of a sentence;
therefore it is straightforward to start from a generative view on grammatical parsing:
parsing a sentence is, in fact, understood as generating the grammatical structure that
yields the sentence to be analysed.

The first step of the solution consists of the direct estimation of the probabilities of the
elementary parsing moves (i.e. generation moves) from a treebank, which is a large
set of pre-analysed sentences. This way, one avoids the manual specification of gram-
matical prior knowledge in the form of a limited set of non-probabilistic rules. This
data-driven approach appeared successful in recent, comparable research, especially
for large-vocabulary speech recognition.
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The next question is, how the elementary parsing moves should be defined, which
parsing strategy is optimal. | chose left corner parsing, which tightly couples expec-
tations about the global structure of the sentence with partial analyses of the sentence
itself (Sec. 3.3). This parsing strategy avoids the inefficiency that stems from building
partial analyses of the sentence which afterwards turn out to be incompatible with the
global structure, or building global structures that afterwards turn out incompatible
with the actual sentence. A PLCG (probabilistic left corner grammar) is defined as the
ensemble of the treebank-derived probabilities of the elementary left corner parsing
moves.

The strength of the data-driven approach lies in the possibility to condition the move
probabilities on very detailed features of partial analyses. However, this inflates the
number of possible (partial) analyses of the sentence considerably; hence, the effi-
ciency of the parsing algorithm, which accumulates the probabilities of all these anal-
yses, is crucial. To this purpose | developed a recursive computation strategy that
is based on the principle of dynamic programming (Sec. 3.4). The resulting parsing
algorithm can be adapted to a conditional language model — the PLCG-based lan-
guage model — virtually without extra cost (Sec. 3.5). It also facilitates reestimating
PLCG-probabilities from plain, unparsed training text.

Inefficiency of other approaches

My aim is to combine the strengths of C&J’s and Roark’s models using stochastic left
corner parsing.

The C&J model is inefficient in both memory and time, which restricts its use to
rescoring n-best lists or very thin word lattices. Perhaps more importantly, available
computational resources severely limit the amount of training text used to reestimate
the model. There are two sources of inefficiency:

1. Following paths leading to improbable derivation€&J’s parser grows isolated
subtrees from the bottom up without (stochastic) top-down filtering. In the equivalent
derivation tree representation, too many paths are extended that lead to improbable
paths in the end; they should have been pruned in an earlier stage.

2. Searching a tree-shaped derivation spa@ée derivation space is tree-structured.
Hence identical paths occurring at different places in the tree are treated separately. Ef-
ficiency could be gained by a representation that avoids repetition of identical paths. A
dynamic programming approach for C&J was presented by Jelinek and Chelba [1999],
but this text did not contain empirical results. It was later improved and implemented
by Van Aelten and Hogenhout [2000].

Roark’s top-down parsing LM [Roark, 2001] does not suffer from inefficiency 1.:
parse trees are grown from the top down with look-ahead to the next word. So it
can decide in an earlier stage which rules should not be expanded. However, the
rule probabilities themselvesannot be conditioned on the lookahead-word, since that
would violate the chosen chain-rule decomposition of the derivation probability; there-
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fore aggressive pruning of partial paths by comparison of their probabilities is likely
to introduce too many search errors. A disadvantage of Roark’s model w.r.t. C&J'’s
model is that next-word probabilities are systematically underestimated, while C&J
are able to renormalize them.

Roark’s derivation space representation is similar to C&J’s, sharing the same ineffi-
ciency. Besides, this representation makes it difficult — if not impossible — to find
an accurate EM reestimation algoritidm.

On the other hand the tree representation of derivations gives Roark’s model flexibil-
ity in extracting conditioning information from the path prefix using ‘tree-walking’
functions.

3.2. Definitions and notation

3.2.1. Stochastic grammars and parsing

A context-free grammar (CFG)T is a 4-tuple(N,V,P,S), whereN is a finite set of
non-terminal category label¥, is a finite set of terminal category labels (the vocab-
ulary),P={(A— a)|Ae N,a € (NUV)*} is a finite set of context-free production
rules andS € N is the axiom or start symbol. Latin capital&, B,C,...) represent
non-terminals, Latin lowercase lettesslf, c,...) represent terminals, while lowercase
Greek lettersd, 3,7, .. .) represensequencesf terminals and/or non-terminals.

The following discussion also needs thedt corner relation. Given a CFGIT =
(N,V,P,S), X is a left corner ofy if and only if there is somex for which there is a
ruleY — Xa in P. It is written asX /Y. The reflexive and transitive closure dfis
written as/*.

The derives relation, written= or = if T is clear from the context, is defined as
follows: X = X{~*aX", if and only if there is a rulgX; — a) € P. A top-down
derivation sequence can now be written as

S == ...=>W.

The reflexive and transitive closure & is written as:r>*. The propositiorS:r>* wy
states that the word string] parses as a sentence with the grammar

Let a CFG be given. Aocal treet = (t[")x is either an empty sequence or a sequence
of pointers to other local treds, ... ,tm, labeled with a categorX € (NUV). The
functionR(t) = X returns the label df, and by extensiorR(t]") = R(t1) ... R(tm). Let

tAjtj denote that; is thei-th daughter node df If m> 1, the local tree¢ = (t")x is

only valid if there is a grammar rul(t) — R(t{"). Otherwise is a terminal node and

R(t) must be a terminal category.

A parse treeis a set of local trees in which there is exactly one local tree, called
thetop of T, that is not pointed to by the other local trees, and each other local tree

1. Chelba however found and used a workaproximativeEM reestimation algorithm [Chelba, 2000].
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i+1 j

Figure 3.1.A graphical representation of a constituent [j AB  CDJx.

is pointed to by exactly one other local tree. Theld of T, denoted by (T), is the
sequence of the labels of the terminal nodeE,iread in depth-first, left-to-right order.

T is afull parse tree ilY (T) contains terminals only; otherwise it ispartial parse
tree.

A parse tre€Tl is a representation of a top-down derivation sequence: consider the
top-down derivation sequen@= g = 01 = o = ... = op = W, then eachy,
corresponds with a parse tréeand each step; = o1 corresponds with expanding
one leaf node of; resulting intoT; 1 such that (Ti) = «;.

Note that there are multiple top-down derivations corresponding with one parse tree,
since the order in which non-terminals are rewritten is arbitrary. [@fmost deriva-

tion is the top-down derivation that always rewrites tbéimostnon-terminal (the
corresponding relation is writteg-| ). There is a unique correspondence between a
parse tree and its leftmost derivation.

The concept of @onstituentlinks a local tree with its yield. It can be understood as
a local tree of which the yield is partially or completely verified to correspond with
a part of the input sentence. In this textc@nstituent q = [; ot j B]x of a parse tree

T for which Y(T) = wj, is equivalent with the proposition that there is a local tree
(tMx € T for whichR(t¥) = o, Rt ;) = B andY (tz) - Y (t) =W/, ;. Fig. 3.1 gives

a graphical representation of a constitugrt [ ABjCD|x.

A constituenig is said to be a constituent of if there is at least 1 parse tr@ewhere
Y(T)=wj andq s a constituent of . If B = ¢, qis calledresolved Otherwiseq is
unresolved

For notational convenience, | define two functions(o@snd catq), returning the po-
sition and the category of respectively. For instance gf= [i « ; B]x, then po§q) = |

and cafq) = X.

3.2.2. Parsing and language models

In natural language grammars, the generation of a sentence is initiated by a start sym-
bol, usually calleds. The sentence is complete as soon as a parse tree is found with
S as the top category and the input sentence as its yield. Language modeling how-
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TOP
A
<s>  Wq o Wpo1 </s>
(@)
TOP TOP
TOoP’ TOP?
p 5\
<s> Wy o Wpor </s> <s> Wi o Wpo1 </s>

(b) (c)

Figure 3.2.Marking sentence boundaries in parsing-based language modeling.

ever, traditionally initiates a sentence with a start-of-sentence symboks:gand
completes it with the emission of an end-of-sentence symbolg&s:..

These two different views can be made compatible by making the original local parse
treets = (...)s a daughter of a local tre@,ts,tm) e (cf. Fig. 3.2(a)). The yield of

the resulting tree isvj, wherewp = <s>wn = </s> and the original input sentence

is V\/’l‘*l. If the grammar or parser only handles binary trees, this can be accounted
for with a TOP’ tree as in Fig. 3.2(b). If the framework requires pre-terminals (e.qg.
parts-of-speech) between the input words and the actual parse tree, two pre-terminals
SB (sentence begin) amgE (sentence end) can also be added, as in Fig. 3.2(c).

3.2.3. Push-down automata

I will use left corner push-down automata (PDA) to develop the concept of PLCG-
based language modeling. The notation of PDA transitions follows Hopcroft et al.
[2001, Ch. 6], except that the state from the instantaneous description is left out
(cf. below) since the left corner PDAs are statelessstételess PDAIis a 4-tuple
(V,#,m,qp) whereV is a finite alphabet of input symbols? is a finite alphabet of
stack symbolsmis a transition function andp is the initial stack symbol. The transi-
tion functionmis defined by a set of rules that describe possible transitions from one
instantaneous description to another one, formalized as a refatidn instantaneous

description of the PDA is written i‘,n , wherewij denotes the input sequence
left to be consumed, and denotes the contents of the stack. The stack is written as
a sequence with the stack top at its left end and the stack bottom at its right end. The
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operation

(Wij7a7r) - (Wij+1,[3ﬂ>

consumes the next input symbual;{ and replaces: on the stack with. Note thatw;
can be empty, in which case the operation does not consume inputo/dsd/orf3
can be empty.

3.3. Probabilistic left corner parsing

This section gradually develops the concept of a probabilistic left corner grammar
(PLCG). After a brief review of left corner derivation and introduction of the left cor-
ner automaton, its stochastic generalization is described, followed by its extension
with lexicalized categories and extensive probabilistic conditioning of the move prob-
abilities. Finally the concept of PLCG submodels is introduced and the PLCG is
defined.

3.3.1. Non-probabilistic left corner parsing

Non-probabilistic left corner parsing is known as an efficient CFG parsing technique.
It is often attributed to Rosenkrantz and Lewis 1l [1970], although a similar idea was
already used by the SBT parser [Griffiths and Petrick, 1965]. Several enhancements
and extensions of the original method were proposed later [Matsumoto et al., 1983,
Wirén, 1987, Nederhof, 1993, Moore, 2000].

In Sec. 3.2.1 we saw that a parse tree uniquely corresponds with its leftmost derivation.
However, there are many other canonical derivation schelefs;orner derivation

being one of them. In left corner derivation, the generation of a full parse tree of a
given category is initiated by predictingH(ifting) the next word token (the leaf node

at its bottom left), which is considered a (trivial) full parse tree. A full parse tree can
be used foprojectionor beattachedto another partial parse tree. Projecting from a
full parse tree means constructing a local tree on top of the full parse tree, such that
the full parse tree is the leftmost daughter node of the local tree; the other daughter
nodes have a label but no daughters. The resulting partial tree is completed by ‘plug-
ging in’ (attaching other full parse trees of the appropriate categories at the daughter
nodes. These full parse trees have each been generated by recursive application of this
strategy.

Left corner derivation is a very plausible hypothesis of how humans predict next words.
Projection models the expectation of the type of following constituents, based on the
type of constituents already observed, and on hypothesized global structure; attach-
ment reflects the confirmation that a certain projection is correct; and shifting corre-
sponds with listening to the next word, and ruling out certain expectations about the
sentence structure that conflict with it. For instance, consider the sentence prefix
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4 4 B 4 B
0 % 1Y 2 0 % 1Y 2 0 ® 1% 2 ¢ 3
4) (%) (6)
s s s
4 % 4 B 4 B
0 ® 1% 2 ¢ 3 0 ® 1% 2 ¢ 3 0 ® 1% 2 ¢ 3

(7 (8) )]

Figure 3.3.Left corner derivation of a small parse tree.

<s> analysts expect sharp ...

A human reader would believe it reasonably probable that a noun follows. Why?
Probably because the adjectivkarp signals the start of afiP; the construction of
the NP seems likely because it would complete the vethbect to form avpP, which
would complete & together with thevP analysts. Each of these expectations are
actually modeled as projections: & that completes & is projected from thevp
analysts, an NP that completes &P is projected fromezpect, a noun or noun
phrase that completes aw is projected fromsharp. Each projection is influenced

by previous projections. If, instead, the sentence prefix had been

<s> analysts say sharp ...

then one can imagine that the verly projects a sentence rather than a noun phrase.
The projection of a noun (phrase) that would complet&from sharp , is provoked

by the expectation of a sentence, and not by an expectationi®fas in the previous
example.
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3.3. Probabilistic left corner parsing

To get a more formal feel for left corner derivation, | detail the left corner derivation
steps of a small parse tree displayed in Fig. 3.3 (this time in terms of constituents
instead of parse trees):

© NN R

©

Start from[p € .S] and shifta: obtain[pa1],.

Project[p a1 b],-

Shift b : obtain[1 b2],.

Attach[1b2], 10 [0 a1 b, obtain[pabz],.

Projecto 42 Bs.

Shift ¢, and obtain; c3]..

Project|z c3]5.

Attach [2 cg]B to [oAzB]SZ obtain[o ABg}S.

Attach[pA4B3]sto [p€0.S): obtain[pS3], which completes the derivation.

A left corner parser can be elegantly and concisely described as a non-deterministic
stateless PDAV,.,m,q ), where

el N =
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V is the set of terminals (a vocabulary consisting of word types);
< is the set of constituents;

a = [o€09 is the initial stack element;

mis defined by the following operations:

a) ThesHIFT operation:

(Won (G0 YBIm) - (Wi ([ Wit g Do [0 VB, )
(3.1)

foranyi, j,a,8,X,Y andx (which denotes the rest of the stack). In words,
the shift operation takes the next wawgl, 1, builds a new constituent with

it and pushes it on the stack. It is applicable whenever the stack top is an
unresolved constituent.

b) A number ofPROJECTU, &) operations:

(WE+17([jak}X7[iﬁjYﬂZ;7C)> t (WE+1’([jxk6]U’[iﬁJYY]Z’”))
(3.2)

for anyi, j,k, o, B,7,X,Y,Z andz. In words, aPROJECTU, &) operation
consumes no input and replaces the stack top with a new constituent. The
stack top must be a resolved constituent and figures as the leftmost daugh-
ter of the new constituent.

c) TheATTACH operation:

(WE+17([J'O‘k}xa[iﬁjxﬂza”)) H (WEJrlv([iﬁXk}/]Zan)) (3-3)
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foranyi, j,k, a,B,y,X,Z, andz. In words, theaATTACH operation is appli-
cable if the category of the stack t¥pequals the first unresolved daughter
of the constituent below it. The stack top is popped, and the constituent
below it is modified by marking the daught€ras resolved.

d) The PDA terminates successfully by empty stack if all input is consumed
and the stack only contains the final constitugnt= [oSp|:

(& ([oSn])) F (&€ (3.4)

A deterministic left corner parser can be constructed from the PDA described above
with a general method described by Lang [1974].

Note that dead paths can be abandoned early by checking wheth€mwhen shifting

w (cf. (3.1)), and whethed /*Y when projectingJ in order to ultimately obtain a
constituent of category (cf. (3.2)). These checks constitutg-down filtering, and

can be implemented as a simple look-up in a pre-compiled table.

3.3.2. Probabilistic left corner parsing: previous art

In a probabilistic CFG (PCFG), each production rélles o is annotated with the con-
ditional probabilityP(ct|A) that the given lefthand sid& produces the righthand side

a. Although this probability is successfully handled in various PCFG parsers, its defi-
nition is most logical from the viewpoint of top-down derivation. Starting from a more
general view on derivation, conceptually simpler probabilistic parsers are obtained as
follows.

Consider a derivatiomnf, which is a sequence g movesmy,mp,...,mp. Then

P(mY) = P, P(m|m ). P(mP) is aderivation probability or path probability
andP(m \nf{l) amove probability or transition probability . The space of deriva-
tions can be organized as a prefix tree in which a path from the root to one of the
leaves represents one derivation. Simple probabilistic parsing is realized by searching
the most probable path (or all ‘sufficiently’ probable paths) in the derivation prefix
tree.

If a derivation uniquely corresponds with a parse tree, then the probability of the parse
tree can be computed as the probability of its derivationl%(mmnfl’l) is equivalent

with P(m [t(ml; 1)) wheret (m 1) is the partial parse tree generated with*.

A probabilistic left corner automaton (PLCA) is now obtained straightforwardly by
annotating the original stack rules with conditional move probabilities

P(m = SHIFT(w)|m, 1),
P(m = PROJECTU, §)|m 1), and
P(m = ATTACH|m, 1),

wherem"{1 denote the preceding moves. If one is only interested in the best parse
tree of a given sentence, there is no need to treas#heT(w) move probabilistically
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3.3. Probabilistic left corner parsing

wherew is the next word to be shifted, since it is possible when and only when the top
of the stack is unresolved. However, in order to obtain an estimate of the probability
of the input sentence (instead of a parse treestieT(w) move has to be predicted
probabilistically. Of course, the probabilities of all next moves, given the preceding
ones, should add up to 1:

ZVP(SH|FT(W)|m"1*1)+ UZ\‘ P(PROJECTU, §)|m 1)+ P(ATTACH|M 1) = 1.
we Se(NV)*

(3.5)

Previously described PLCASs can be recognized as simplifications of the above general
description. For example, the PLCA described by Ma_nning and Carpenter [1997] can
be regarded as the result of three simplification stepdp’f:

1.  The derivation prefixn'fl is replaced by the stack it produces.

2. The prediction of aHIFT(w) is conditioned only on the top of the stack, while a
PROJECTU, 8) and anATTACH are conditioned only on the top and the subtop.

3. Referring to the Egs. 3.1-3.3, tleIFT(w) move is conditioned only oi.
ThePROJECTU, §) move is conditioned only oX andY. The ATTACH move
is conditioned only orX.

These simplifications implement a context clustering function. They imply assump-
tion of probabilistic independence from all information that is contained in the stack
but not captured by the context clustering function. This assumption is, of course, at
least partly invalid, but it allows estimation of the conditional move probabilities from

a limited number of training examples.

3.3.3. Probabilistic left corner parsing: extension

The standard PLCA described in the previous section is now extended in two ways.

Constituent context

Model accuracy is improved by weakening the independence assumptions on the move
probabilities, since they are false. At the same time however, it is my intention to
simplify the PLCA rules Eqgs. 3.1-3.3 to rules that only specify the top constituent on
the stack, which will allow easy model reestimation in the spirit of the Baum-Welch
algorithm. Both goals are realized by integrating all conditioning features in the top
stack element:

. A local tree contextg is defined as a set of features of a parse tree with respect
to a local tree in that parse tree.
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. The definition of a constituent is extended with a local tree context. From now
on, a constituent = [; a j B|d]x is defined as the set of parse trees that contain
alocal treet = (t[")x for whichR(t[") = o8 anda =* W/, ; and this local tree
has a local tree contexg.

For a local tree context to be useful in parsing, it should be recognizable from the
part of the parse tree that is already constructed at the time the local tree which it
conditions is being constructed.

The local tree context used in the C&J model consists of the categories of the two
rightmost isolated trees (i.e., they are not yet a subtree of another tree). An alternative
definition is given here, based on the full parse tree (see Fig. 3.4(a)), because it will
show the equivalence of C&J with the local tree context in the PLCA-based model.
The local tree context of the PLCA-based model consists of 3 featgres, g93) = 0.
Going up the tree from a given local treey; is found as the category of the first node,
sayr, that is not a leftmost daughter. The category of the leftmost sisterg#ys,

is g2. Again going up the tree fromuntil the first node, say/, that is not a leftmost
daughters is found as the leftmost sister of andgs is found as the category sf

More formally, the local tree context featuygis found by calling = ro and consider-

ing the sequenc@o =t,r1,...,rp) forwhichriAiri_y fori=1...p—1 butryAgrp—1

with g > 1. If rpAs, thengy = R(s). gz is defined as th@, context feature os:

g3 = R(S), wheres' is found in the same way fromasswas found fronrg. Finallly

g1 is defined ag(rp_1). As shown in Fig. 3.4(c);,p—1 is not yet available when con-
structingro; however, its labeR(rp_1) has already been predicted by the projection
of rp froms.

Fig. 3.4(b) shows the equivalence with the probabilistic conditioning of the shift-
reduce parsing mechanism used by the C&J model. This parser creates binary parse
trees only. The part of the parse tree that has not yet been predicted, at thrg time
is being constructed, is drawn with dashed lines. Gnénds are available, there

is no such node as,_; yet. This leads to an essential difference with the PLCA-
based model: there is no context featgge (In the original C&J modelgs = R(s)

andgy = R(s) condition the construction af only if rg is a leaf node (shift move).
C&J's reduce steps are independent fréppresumably for practical reasons, but it is
theoretically possible to includ#too.)

Now follows a redefinition of the PLCA with context-conditioned constituents as stack
elements. Given an input senterwig

° The stack is initialized with (cf. Fig. 3.2(c))
Q1 = [0.SB1 TOP’| TOP, SB, SB| 1pp
. The second and third element of the context do not correspond with the local

tree context definition; they are just used to avoid additional symbols.
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Figure 3.4.(g1,02,03) context of a local treé = rg. (a) Definition ofgs, g2 andgs on a full

parse tree. (b) In the C&J model: at the timves shifted, onlys ands’ are known. (c) In the
PLCA model: at the timeg is constructeds ands’ are availablerp_1 is not yet known, but
R(rp-1) is. (Dashed lines indicate parts of the parse tree that await completion. The dashed
boxes indicate pending attach moves.)

60



A language model based on probabilistic left corner parsing

93 K
.
1
1
’
92 01 92 1
’ .
’ ’
I I
. .
1 1
1 1
’ ’
I
X
A o Y B A o B

Wit1...Wj Wit1... Wj @

Figure 3.5.Context inheritance after sHIFT.

O

. The stack is emptied and the PLCA terminates successfully if it only contains
(cf. Fig. 3.2(c))

OF = [0SB TOP’|TOP,SB, SB]gp.

. The originalsHIFT operation (3.1) is modified as:
(W?+1v([iAanﬁ|g]Xvn)) F (V\f?+2a([jwj+lj+]_‘F|}Wj+1a[iAanﬁ|g]X77r)> ,

where@ = (01,02,03) andh = (Y,A,02). The construction oh can be under-
stood by looking at Fig. 3.4(c): a new constituenuijj+1|ﬁ]wj+l, corre-
sponding withrg, is created and pushed on the stack when an unresolved con-
stituent,[j Ao j Y B|d]x, corresponding with,, was encountered on top of the
stack. The first unresolved daughter constituemt,aé h; and equaly. hy is

found as the category of the leftmost daughtergpfvhich isA. Theg, context
feature is inherited alss: it corresponds with the category gifon the same fig-

ure. Fig. 3.5is a more literal graphical interpretation of the above formulation
of SHIFT.
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Figure 3.6.Context inheritance aftereROJECT

. The original form of @R0OJECTU, §) move (3.2) becomes:

(Weyas ([jokl@lx, ) (Wep, ([ Xk1GJu, 7))

whered = (Y,B,hz). Again referring to Fig. 3.4(c), ifi o |g]x would corre-
spond withrg, then(i X; §|G]u would correspond with; andp > 1. Henceg

is simply inherited. Fig. 3.6 shows a more literal graphical interpretation of the
above formulation o0PROJECT

Note that in cas& =Y, theATTACH operation is applicable too (see next).

° Finally, the originalaTTACH operation (3.3) becomes:
(Wea. (v, A YBIGhGm) )+ (Wi, (A0 kBIGh. )

whereh = (Y,A,g). Fig. 3.7 shows a graphical interpretation of the above
formulation of ATTACH.

For convenience, attachment is considered as a special projestioncH =
PROJECTATT) and require®(PROJECTATT)|[; vk lhly) =0if hy £ Y.
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Figure 3.7.Context inheritance after axTTACH.

Lexicalized categories

Itis empirically found that syntactic categories, however fine-grained they are, lose im-
portant information that statistically influences certain structural pattern preferences.
A common and simple approach is to keep record of a lexical feature besides a syn-
tactic category feature, leading kexicalized grammars. For instance, in a typical
lexicalized grammar, the lexical feature of the noun phrase ‘an evil monster’ would be
‘monster’.

The same principle is applied to the PLCA, and some more notation is needed for this
purpose: underlined Latin capitals denote a composite category label consisting of a
syntactic category and a lexical category separated with a slash (/); underlined Greek
letters denote sequences of composite category labels. A tenwisakplaced with

a compositev/w using a dummyy syntactic feature.

Itis also necessary to specify how the lexical feature is determined: it is assumed that
the lexical feature of the mother constituent can be determined as a function of its
syntactic category and the composite categories of its daughters, and call this function
head().? In the experiments described in the next chapter, it is even assumed that

2. This assumption seems sufficient for English, but it may be too restrictive for other languages. For
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the lexical category of a constituent is equal to the lexical category of its daughter at
head position, and that this head position can be precomputed for each grammar rule
using a set of ‘headword percolation’ rules by [Magerman, 1994]. There is a headword
percolation rule for each mother category. For instance, there is a rule that says: “if the
mother category is aliP, then the first daughter, starting from the rightmost daughter,
that has one of the following categories, is the he#d?, NNPS, NP, NN, NNS, NX,

CD, QP, PRP, or VBG."

Given the input sentenasy, the format of the stack rules of the extended PLCA is
then again adapted to the following final form.

. The stack is initialized with

Q1 = [oSB/ <s>, TOP’|TOP, SB/ <s>,SB/ <s>|rgp (3.6)

. The stack is emptied and the PLCA terminates successfully if it only contains

OF = [gSB/<s> TOP’,|TOP,SB/<s>, SB/<s>]rgp (3.7)

° A SHIFT(wj41) move applies

(Wl 1, ([Aa; YBIAIx, ) F+ (“’?+2a([jvlj+1|ﬁ]w7[iA\anﬁ\@]xyﬂ))

(3.8)
with a probabilityP(sHIFT(wj1)|[; Aa ; YB|G]x) where
h= (Y’A’Qz)
W = W/wj1
ZVP(SHIFT(W)I[iA\a,-YﬁIQ]x) =1
. A move PROJECTU, §) applies
(Wi, ([akl@lx, @)+ (Wi, ([[ X Sl8Nu, 7)) (3.9)

with a probabilityP(PROJECTU, 8)|[ &  |G]x ) where

X = X/headX, o)
%P(PROJEC'(U75)HJ'Q|<|Q]X) = 1—P(ATTACH|[j &, |d]x)
U

example, in Dutch, the head of ‘een paar schoenen’ is ‘paar’, while the head of ‘een paar hemden’ is
‘hemden’, but their local trees are identical.
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. The ATTACH move applies

(Wo (1,7 v, [ A YBIGI ) ) F (W, (5AQY (Blg]x, @)
(3.10)

-

with a probabilityP(ATTACH | [J. 7 Ih]v) where

P(ATTACHI[ 7, lhly)=0 ifY#h
Again, one may opt to regari TACH equivalent withPROJECTATT).

Note: It will be henceforth assumed that conditional moves are statistically indepen-
dent from thex feature (the categories of the resolved daughters except the first one).
Its role in the evaluation of head(a) can be accounted for in other ways if one can
assume that the heaglfunction selects a head position and returns the lexical feature
of the head daughter: for instance, the head position is looked up when the syntactic
features of the mother and the sisters are projected, and the lexical head of the sister
at head position is propagated as soon as it is being attached. So a wildozad *
replacea, which enhances the time and space efficiency of the parser.

3.3.4. Inducing a probabilistic left corner grammar from a treebank
Submodels

The move probabilities are conditioned on the topmost constituent of the PLCA stack.
In this thesis, these probabilities are estimated from training data. Given that there
is always a limit to available matching training data, the PLCA moves are assumed
independent from most of the features of the topmost constituent. Only a few of
them can effectively serve for probabilistic conditioning. A typical parameterization
is (cf. Egs. 4.1-4.2):

P(SHIFT(W)|[; Ax ; YBIR]x) = ps(W]Y, A hy), (3.11)
P(PRO‘]EC-(U75)H]A* k‘g}X) = pp(Uvs‘glvxﬂA792)7 (312)
P(ATTACH|[j A« [G]x) = Pa(ATTIg1,X,A.Q,). (3.13)

Ps, Pp and p, are ensembles of conditionainfs and will be callegubmodelsin this

text.

After fixing the parameterization, the submodels are initialized using methods similar
with C&J, as explained next. The training corpus is a human-annotated or machine-
generated treebank. Each tree is decomposed into its PLCA derivation steps. That is,
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3.3. Probabilistic left corner parsing

given the above parameterization, the treebank is transformed in a stream of indepen-
dent joint events of the types

(SHIFT(W),Y,A hy),
(PROJECTU, 8),01,X,A,0,),
(ATTACH,01,X,A.9,).

The shift events observed by the C&J model would rather loofsasFT(w), A h,),

that is, withouty.

Then, submodels are estimated from relative frequencies, using the standard language
modeling techniques such as smoothing, interpolation and back-off. An overview
of these techniques was given in Chapter 1. For instangg,smoothed by linear
interpolation with a lower order version of it, say, may look like:

C(sHIFT(w),Y,A h,)

pS(WlY’A7b2) - d . ZVEV C(SHIFT(V)7Y7 A7h2)

+ (1—d) x ps(W]Y, A),

whereC(x) is the observed frequency of the evar the training corpus, andlis an
interpolation factor.

Note: Linguistically speaking it does not make sense to assign an attach probability
greater than 0 iX # g;; in the experiments, attachment was always disallowed if

X # g1. In afterthought however, for the language model it may be useful to still allow
attachment in this case; one would rely on the reestimation procedure (cf. Sec. 3.5.3)
to find the optimal estimate, which may be greater than 0.

Note: It may be useful to have different parameterizations for projections at different
levels in the parse tree.

Probabilistic Left Corner Grammar

Now a probabilistic left corner grammar (PLCG) can be defined as a 5-fuple

(N,V, ps, Pp, Pa) WhereN is a finite set of non-terminal category labels including

V is a finite set of terminal category labels (the vocabulapy)s a shift submodelp;

is a project submodel ang} is an attach submodel.

Note that there is no need to specify a finite set of rules in a PLCG: all necessary infor-
mation is given by the submodels. Given a PLCG, the construction of a corresponding
PLCA is trivial.

The submodels are naturally induced from a treebank using statistical estimation meth-
ods. Statistical estimation avoids problems that arise with other methods:

° The submodels could be computed from a PCFG with a method similar to Stol-
cke’s method to compute a probabilistic transitive left corner relation from a
PCFG Stolcke [1995]. It is however impractical for large PCFGs; in my experi-
ments, lexicalization and encoding of context in the category labels would lead
to huge PCFGs.
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Table 3.1.A PLCA trace generating the sentence> ann likes john </s>.

constituent at stack top move prob
[oSB/<s> TOP’|TOP, SB/ <s>,SB/ <s>] gp SHIFT(ann) 0.1
[ W/ ann,|TOP?,SB/<s>, SB/<s>|y PROJECTNNP, €) 1.0
[y W/ ann,|TOP’,SB/<s>,SB/ <s>]ynp PROJECTS, VP) 0.7
[ NNP/ ann o VP|TOP’, SB/<s>,SB/<s>]g SHIFT(likes) 0.2
[, W/ likes 5| VP, NNP/ ann, SB/ <s>]y PROJECTVB, €) 1.0
[, W/ Likes 3| VP, NNP/ ann, SB/ <s>]yp PROJECTVP, NNP) 0.5
[, VB/ likes 3 NNP| VP, NNP/ ann, SB/ <s>]yp SHIFT(john) 0.1
[3 W/ john 4 |NNP, VB/ Likes, NNP/ ann]y PROJECTUNNP, €) 1.0
[3 W/ john 4|NNP, VB/ Likes, NNP/ ann]yyp ATTACH 1.0
[, VB/ Likes NNP/ john 4 |VP,NNP/ann, SB/<s>]yp ~ ATTACH 1.0
[ NNP/ ann VP/likes 4|TOP’,SB/<s>,SB/<s>]s PROJECTTOP’, SE) 0.8
[ S/ likes 4, SE|TOP’,SB/<s>,SB/ <s>]rgp> SHIFT(</s>) 1.0
[4W/</s>5|SE, S/ likes, SB/<s>]y PROJECTSE, €) 1.0
[4W/</s>5|SE, S/ likes, SB/<s>|sk ATTACH 1.0
[1 S/ likes SE/</s>g|TOP’,SB/<s> SB/<s>|rgp»  ATTACH 1.0
[oSB/<s> TOP’/</s>5|TOP, SB/ <s>,SB/<s>|rgp

Total derivation probability 0.00056

° Left corner parsing can be simulated by a top-down, left-to-right parser con-
structed from thdeft corner transformof a CFG [Rosenkrantz and Lewis I,
1970]. Unfortunately, the left corner transform blows up the original CFG al-
though Johnson and Roark [2000] provide a way to slightly alleviate that prob-
lem.

. One can also transform thteeebankinstead of the treebank-induced PCFG;
the PCFG induced from the transformed treebank, then, is equivalent with the
PLCG induced from the original treebank (see for instance [Johnson, 1998,
Roark and Johnson, 1999, Roark, 2001]). This approach does not seem tenable
with detailed contexts and lexicalized categories, however.

An additional advantage of estimating the submodels directly from a treebank is the
flexibility in the statistical estimation process; for instance, various smoothing meth-
ods can be applied straightforwardly without complicating the estimation algorithm.

3.3.5. A toy example

Table 3.1 shows one possible execution trace of an artificial PLCA generating the
sentencess> ann likes john </s>. The 3rd column is the conditional probability

of the move (in the 2nd column), given the constituent at the stack top (in the 1st
column).
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3.3.6. Summary

The stochastic left corner parser constructs subtrees from left to right and from bot-
tom to top like C&J’s shift-reduce parser, but the bottom-up process is conditioned on
top-down information (soft top-down filtering), namely the goal category; one could
interpret top-down filtering in bottom-up parsing as the equivalent of 1-word looka-
head in top-down parsing, as in Roark’s model.

Probabilities of left corner parser moves can be estimated directly from a treebank;
they are conditioned on non-local and partly lexicalized features from the partial anal-
yses. The probabilistic left-corner grammar is defined as the ensemble of all the left
corner parsing move probabilities. The non-deterministic PLCG parsing is simulated
by a probabilistic push-down automaton, of which all the rules and their probabilities
are unambiguously specified by the PLCG.

The constituent was defined as the container of all the information of a partial analysis
that is relevant for the next parser move. It is the basis of the knowledge presentation
used by the deterministic PLCG parsing algorithm, developed in the next section.

3.4. PLCG parsing in a compact network

This section develops an efficient synchronous PLCG parsing algorithm. Being ulti-
mately interested in language modeling, special attention is paid to how the sum of the
probabilities of distinct parsing paths can be obtained efficiently. Not only probability
sums of full paths, but also those of partial paths are needed to compute conditional
language model probabilities.

3.4.1. Efficient representation of PLCG derivations

It may be expected that there are many different PLCG derivations with a non-zero
probability that produce the same input sentence (prefix). An efficient representa-
tion of these (partial) derivations lessens memory requirements and facilitates a time-
efficient traversal of the derivations. Stated otherwise, given fixed memory and time
resources, a more efficient representation will allow to evaluate more derivations —
since in practice pruning is always needed.

The least efficient representation one can think of, lists each (partial) derivation next
to each other; at each point of indeterminism, the derivation prefix is copied for as
many choices there are.

In a first step, it can be realized that the derivation prefix does not have to be copied at
a point of indeterminism, but that forking from the same node suffices. In effect one
obtains a tree representation of the derivation space (the ‘derivation prefix tree’), as is
used in [Chelba and Jelinek, 1999] and [Roark, 2001].

However, many inefficiencies remain. For instance, whenever an unresolved con-
stituent calls for the construction of a daughter constituent of a certain category, and
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A language model based on probabilistic left corner parsing

that daughter constituent was realizediulifferent ways, then it should not be neces-
sary to proceed withN derivations, since the details of the generation of the daughter
constituent does not influence the rest of the derivation.

As another example, when two separate derivations arrive at unresolved constituents
both shifting the next word, then identical constituents consisting of that word and
identical contexts may result. What follows after the shifts is identical in both deriva-
tions — until the attachments that respectively correspond with the shifts.

These inefficiencies can be generally described as follows: there are still identical
parts in the derivation prefix tree that occur in memory multiple times, and are sepa-
rately traversed. Each time when two or more separate partial derivations happen to
arrive at identical constituents at their stack tops, an identical choice of moves is to be
made.

A network-based representation that eliminates this inefficiency is developed in the
following section. The network results from ‘joining’ identical nodes in the deriva-
tion prefix tree. Consequently, a network node represents multiple partial derivations;
Sec. 3.4.3 discusses how to compute the sum of their probabilities, leading to a syn-
chronous parsing algorithm described in Sec. 3.4.4.

3.4.2. The PLCG network

The discussion now moves from a PLCA view on the PLCG to a network view. First, it

is important to realize that the contents of the PLCA stack can be reconstructed at any
time if the preceding moves are known and that in the previous section the PLCA was
designed such that the next moves are conditioned on the current top of the stack only.
This leads to a linear directed graph representation of the generation of a parse tree
by a PLCA where nodes are labeled with the top of the stack (instead of the complete
stack) and arcs are labeled with a move. Henceforth, this linear graph is calie¢d a

The probability of the path is the product of the conditional probabilities of its moves,
so it equals the probability of the corresponding parse tree.

Given a PLCG, the associated network is the union graph of all paths with a probability
greater than 0. This network could be a path prefix tree, and as such it would be
equivalent with a derivation tree. However, it is my aim to make this network as
compact as possible. This is obtained by the requirement that there are no two nodes
with the same label:

A PLCG network ¢ = (¢",4?) is a directed acyclic graph containing nodes and
directed arcs between these nodes. Each mpde/ is labeled with a constituent

and there are no two nodes with the same label. Each arc is labeled with a move and
the conditional probability of that move given the label of the source node.wfhe
constrained network%wg is the subgraph o¥ that includes all paths that generate
parse trees that yieldj with a probability greater than 0, but no other paths. There is

at most one arc between two nodes.
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3.4. PLCG parsing in a compact network

For convenience of notation, nodes and arcs are treated as completely equivalent with
their labels. For instance = [ Yx B|h]x denotes that the label of the nodeis

Y B|h]x. And (Gi,Qj) = ATTACH(gk) denotes that the arc from to g; is labeled
ATTACH (k). The conditional move probability is written &%q;|c} ).

Using a parse tree representation adapted for language modeling (cf. Fig. 3.2(c)), the
initial node is q; (cf. (3.6)), and thdinal nodeis ge (cf. (3.7)), wheran is the number

of input words, excluding:s> but including</s>.

A path is a linear subgraph of, represented as a sequence of moves or a sequence
of constituents. Theath setdenoted by<qi,qj> is the set of all paths starting from

g and arriving inqg;. ¢ is acomplete pathif ¢ € (qi,0r). Theprecedesrelation is
denoted by<. g; < q; if and only if (q;,q;) # O.

A path concatenationoperator is defined now for convenience. The concatenation of
two paths/y and/,, written asf14», is the union graph of; and/s. It is only defined

if £1 arrives in the node wher® departs. For path sets,

(01, 92) (02, Gs) = {((d1,92))¢|€ € (02,03 }» (3.14)
(01, 02) (02,03) = {£((02,03)) ¢ € (q1,02) }, (3.15)
(01, 02) (02, 03) = {{1£2]¢1 € (O1, ) , 42 € (02,03) }- (3.16)

Note that if¢1/5 is defined,/; and /> have only one node in common; if there were
another common nod€/ would contain a cycle, which is in contradiction with the
definition.

As an illustration, Fig. 3.8 shows a fragment of a severely pruned PLCG network. It
contains 4 partial paths.

3.4.3. Computing sums of path probabilities

One node in the PLCG network corresponds with multiple partial derivations. This
section explains how the sum of their probabilities — which will be calleddh&ard
probability of the node — can be computed efficiently.

Efficiency is in principle obtained by thdynamic programmin¢DP) principle of stor-

ing (tabulating) and maximally re-using intermediate results. In PCFG chart parsing,
a well-known DP parsing algorithm, the ‘intermediate result’ is stored as a chart item
annotated with its probability. The item is constructed from previously constructed
daughter items, and its probability is computed from the probabilities of its daughter
items. In the PLCG network, the ‘intermediate result’ is constructed as a network
node annotated with its forward probability. The node and its forward probability is
constructed from previously constructed nodes and their probabilities; there must be
a valid PLCG move between the node and each of its predecessors. Duplication of
work is avoided by requiring that each node be unique.

Actually, the computation of yet another probability, tiha@er probability, is neces-

sary in the PLCG network, because of the ‘attach constraint’, which is explained first.
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‘ [y W/ time,|TOP’ SB/<s> SB/<s>]y

PROJECT \PROJECT

‘[1 W/timez|T0P’,SB/<s>,SB/<s>]NN‘ ‘ [, W/ time,|TOP?,SB/<s>,SB/<s>|mp ‘

PRO.JECTl/ \L PROJECT

‘ [L NN/ time ,| TOP,SB/<s>,8B/<s>|yp || [, NNP/ time,|TOP?, SB/<s>, SB/<s>]up

PROJECT ﬁROJECT

. 4 [{ NP/ time , VP|TOP?, SB/ <s>,SB/<s>]g #

/x’// J/SHIFT \\\\
‘ [, W/ flies | VP, NP/ time, SB/<s>]y S
v PROJECT \’ROJECT \\\
‘ [, W/ flies | VP, NP/ time, SB/<s>] VBZ‘ ‘ [, W/ flies 3| VP, NP/ time, SB/<s>] WS‘
?\ PROJECT¢ \LPROJECT \\
|

‘ [, NNS/ flies 5| VP, NP/ time, SB/<s>|yp

[, VBZ/ flies 3| VP, NP/ time, SB/<s>]yp

T _____--=\ATTACH ATTACH .

‘ [{ VP/flies4|TOP’,SB/<s>, SB/<s>]S‘

Figure 3.8. Fragment of a (severely pruned) PLCG network constrained to the sentence
time flies </s>. A dashed arrow connects amTACH with its argument.

Figure 3.9. The PLCG network is not Markov due to the constraint that a path containing
ATTACH(q) must visitq. The sequencéA,C,...,F) does not constitute a valid path. Neither
does(B,C,...,E). On the other han@B,C, ..., F)and(B,C,...,G,E) are valid paths.

The attach constraint

A move probability is conditioned only on its source nafeHowever, there is one
subtlety to this. Within one single path, amTACH move refers implicitly, but un-
ambiguously, to arattachmenthode: the node labeled with the constituent that is
being completed by the constituent at the source node oktmecH move. How-
ever, in a graph, theTTACH move cannot extend a path prefix that does not contain
a corresponding attachment node. | refer to this non-Markov property astteh
constraint In order to be able to decide whether the attach constraint is satisfied, the
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ATTACH move is henceforth augmented with the corresponding attachment node as its
argument. Fig. 3.9 should make this more clear.

Fortunately, within the same path attach constraintsastedwhich means that any
other legal subpath betweenand ATTACH(q) found in the PLCG network can be
substituted to form another legal full path. This property is formally expressed as
follows. The proof is given in Appendix A.

Lemma 1 Lett be a partial path in a PLCG netwofk and(qg,q') = ATTACH(q") be
amove int. fATTACH(s) is a move in a path & (¢’,q) then d < s.

The following lemma identifies a subgrafdf, q) that will play a role in the definition
of the inner probability. The proof is also given in Appendix A.

Lemma 2 If g = [ X« B|h]z, then on every yrconstrained path gy, q) there is a
node § = [jWit11[h]y.

The superscript ‘0’ will henceforth be used in this meaning.

Forward and inner probability

A language model returns an estimate of the probability of an input sentégneih

Wp = <s>,W, = </s>. A patht € (q;,qg) uniquely corresponds with a derivation
(Wg, T); thereforeP(Wg) = 51 P(WG, T) = Sie(q qe) P(t). Itis impractical, if not in-
feasible, to enumerate dll However, by defining forward and inner probabilities, the
sum can be obtained implicitly. The following treatment based on forward and inner
probabilities is inspired by work on PCFG parsing by Stolcke [1995].

Definition 3 (forward probability) Given a constrained PLCG netwofk,\,g. The
forward probabilityof a node q is

pa= % P
te(qr,a)

Definition 4 (inner probability) Given a constrained PLCG netwo#ky. Consider
anode o= [j Xx | B|h]z, Z # W. The inner probability of q is defined as

v = S P,
te{a®,a)
fZ=w,®=qandv(q) =1
Using forward probabilities, the problem of findilgwg) is reformulated as the prob-

lem of findingu(gr). If %y were Markov, the edge(, q) for a givenq only depend
onqitself and are independent of the path that led.tdhus

(@.9)= U (@.9(@d),

G:(a.d)€%n
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and, since the path sets under the union operator are disjunct,

)= 5  w@P(a.d)).

& (a0) %

Sou(gr) could be obtained as follows: firstinitializg(q ) = 1, then visitallg’ € Gt

in topological order, computing (¢) from all 1(g) andP((a,q)) for (q,q) € Y.

The PLCG network, however, is not Markov due to the attach constraint, which com-
plicates the computation of forward probabilities. The recursion formula involves
inner probabilities:

u(a) =3 w(d)P@ld")v(a)P(ala) + n(@)P(d]a), (3.17)
a.q’ q

v(d) =Y v(a")P(la")v(a)P(d]a) + Y v(a)P(d|a), (3.18)
q’ql/ q

where — in both equations — the first sum is overcpfbr which (q,q') € %,3 and
(9,9') = ATTACH(q"), the second sum is over ajifor which (q,q') € %y and(q,q')
is aPROJECTMoOve. A derivation of (3.17) and (3.18) is given in Appendix B.

3.4.4. Synchronous parsing algorithm

The essential task of a PLCG parser is computing the inner and forward probabilities
of the nodes in the constrained network. Conceptually, the PLCG network is static for
a given PLCG, and only the forward and inner probabilities have to be recomputed
for each new input sentence. However in practice it is only feasible to allocate nodes
dynamically the first time they get visited. A node that does not exist in main memory
is assumed to have a zero or ‘negligible’ forward probability for the current input
sentence.

The recursion formulas (3.17) and (3.18) for the computation of the inner and for-
ward probabilities are now translated into three parsing subrouthiFE3JECTNODE,
ATTACH-NODE andsSHIFT-NODE. These routines take a source node and a move as in-
put. If the target node does not exist yet in main memory, they allocate it and initialize
the inner and forward probabilities to 0, otherwise they just update the probabilities
according to (3.17) and (3.18). They return the target node. Assume a source node
g=[iYx i a|ﬁ]x. Then

1. If ais not empty, sayx = Zf3, SHIFT-NODE(Q,w) retrieves or initializes(
and an ardq,q), with of = [; W/Wj;1;,,/9]w whereg = (Z,Y,hy). v(d) is
initialized to 1,u(q') is incremented withu (q) ps(w|q).

2. If o is empty, PROJECTNODE(Q,U,§) retrieves or initializesy and an arc
(0,9), with o = [ X S\Fl}u. w(q) is incremented withf u(q) and v(d) is
incremented withf v(q), with f = pp(U, §|q)(1— pa(4ATT|q)).
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initialize q
foreachj=1,2,...,n:
foreachi=j—-1j—2,...,0:

for each g for which startq) = i,pogq) = j:
for eachU, 6 for which p,(U, 6|q) > O:
g < PROJEC¥NODE(q,U, §)
if ¢ is resolved:
scheduley for furtherPROJEC¥NODE/ATTACH-NODE
if qis attachable:
for each matching noden:
g < ATTACH-NODE(g,m)
if  is resolved:
scheduley for furtherPROJECTNODE/ATTACH-NODE
if j=n, return
foreachi=0,1,...,j—1:
for each g for which starfq) = i,pogq) = j:
q — SHIFT-NODE(Q, Wj)

Figure 3.10.Word-synchronous PLCG parsing algorithm.

3. Supposex is empty and a matching’ = [, h,+; h13|d]z, g, = hs is found for
someZ,k,3,01,9,. ThenATTACH-NODE(d, q’) retrieves or initializesy and
an arc(q, ') with o' = [(Ux ; B|g]z. Furthermore, according to (3.19)(d) is
incremented withu (q”) ps(9°|d”) v(q) pa(4TT]g). According to (3.18)y(d) is
incremented withv(d”) ps(a°|q”)v(q) pa(ATTiq).

In order to allow the PLCG-based language model to operate in a conditional mode
(i.e. to return the probability of a next word given the words preceding it) | developed
a word-synchronous parsing algorithm: partial analyses, constrained by a left context
V\/"0, are extended in parallel observing the constraints imposed; by Fig. 3.10
outlines the parsing algorithm used by the PLCG-based language model.

3.4.5. Pruning

Dynamic programming allows to account for more parsing paths than beam search
with the same amount of computer time and memory. Still it usually remains necessary
to prune the constrained network quite severely. The following fairly simple pruning

scheme proved to provide a satisfying time/performance trade-off in my experiments:
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1. Consider node%;j; = {g|star{q) =i,pogq) = j} and letM;j = maxyc 2, 1(0).
Theng € 2jj is pruned ifu(q) - p < Mj.

2. p is anadapted beamwidthlf N;; is the number of nodes i;j, thenp =
pON;;©. p°is themaximum beam widilo is thebeam narrowing factor

3. p°ando are specified by the user. Typical values afe= 10*, ¢ = 0.3.

The beam narrowing factor guards the parser against a combinatorial explosion of
execution time in situations where too many nodes have forward probabilities close to
each othef.

3.5. The PLCG-based language model

In this section, a LM and a CLM is derived from the word-synchronous PLCG parsing
algorithm. The CLM offers a few advantages over the LM. First of all, it can be
combined with other CLMs, thereby providing a rough but usually effective tool for
smoothing and mixing in other knowledge sources.

Another advantage is that a CLM can be applied earlier in the search process than a
LM, reducing the input/output delay and potentially increasing search efficiency —
although in practice a multi-pass approach is still preferred where a simple CLM (for
instance, a trigram) is applied in a first pass and the advanced CLM or LM rescores
the remaining hypotheses in the second pass. This is because the limited reduction
of the search effort by advanced CLMs in the first pass would not compensate for the
added computational complexity.

3.5.1. The PLCG-based language model

The PLCG-based LM straightforwardly returns the forward probability of the final
node after parsing: for an input senteiige

B = Y P)= % PIWT)=PW) (3.19)
) A

te(a,ar

since each path through tk¢-constrained network corresponds with 1 PLCG deriva-
tion (W, T).

In practice, pruning will caus@(gg) to systematically underestimate the sentence
probability. Alternatively, one can compose the sentence probability with conditional
probabilities using the chain ruRW) = 51 ; P(w; |Wio_1) whereW = wj. The condi-
tional probabilities are emitted by the CLM, explained in the following section.

3. The beam narrowing factor can be considered a generalization of Roark’s pruning method in [Roark,
2001], which would correspond withr = 3, or in [Roark and Johnson, 1999], which would correspond
with o = 1. One important difference, though, is that | have one beam per group of dgdewhile
Roark’s approach would rather correspond with pruning globally pje®;; .
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3.5.2. The PLCG-based conditional language model

In this section, expressions for the prefix probabilities are derived, which will lead to
an efficient calculation of conditional probabilities as the ratio of prefix probabilities.
Due to pruning, the prefix probabilities lose probability mass, which would lead to
an underestimate of the conditional probabilities. However, it will be shown how a
particular partitioning of the constrained PLCG graph allows the ratio of prefix proba-
bilities to be rewritten as a weighted, normalized average of shift probabilites, which
is guaranteed to be normalized in the face of pruning.

As a first step, the prefix probabilitly(wé,) is expressed as the sum of probabilities

of all partial paths that generaw% and end just before shifting;, 1. This sum is
efficiently computed as a sum of partial sums, where each partial sum is available as
the forward probability of a node where a subset of the considered partial paths arrive.
The set of these nodes is callgg below.

One can then see that, in the absence of pruning, the total probability of all partial
paths that end just after shifting; equals the total probability of all partial paths
that end just before shifting;,1: the probability mass is preserved, since it is only
re-distributed. In other word®(w}) is alternatively expressed as a sum of forward
probabilities of nodes where these partial paths arrive. The set of these nodes is called
#; below.

The following lemma allows a more formal treatment of the above intuitive reasoning.
(The proof is trivial and therefore omitted.)

Lemma 3 Assume the following two subsets of nodes of the constrained PLCG graph
gwgi

H={q¢e {4\,(‘,8|pos(q) = j,q is unresolved

#i ={a € Yplpoga) = j,cat(q) = w}.

Thesets k= {t € (qi,0r) : g€ t},qe 7], form a partition of(q,gr ) since each path
in (a1, 0F) traverses exactly oneq . In the same way the setg & {t € (q,qF) :
get},qe #;, form a partition of(q;,gr).

The forward probability of a nodg € 7] can be interpreted as a real probability.
Each path inq,g) uniquely corresponds with one way of generaungind arriving

in g. In other wordsu(q), being the sum of probabilities of these paths, is the joint
probability ofwy andq:

w(a) = P(wh,q) (3.20)

With a similar reasoning o/} and due to Lemma 3 one now obtains two simple
formulas to computerefix probabilities

PWh =Y w@= Y u), (3.21)
qeH] qev]

76



A language model based on probabilistic left corner parsing

and conditional probabilities:

P(wgfl) _ 20t H@) _ Taer H(@)P(wW;|0)
PW)  Yqexr (d) Yqer; 1(Q)

P(wj.1/wh) = (3.22)

Thus follows the intuitively appealing conclusion tlmwj+1|wé) is a normalized and
weighted average of the shift probabilitipgw;j+1|q) with weightsu(q).

Contrary to the computed whole-sentence probability (3.19) and the prefix probabili-
ties (3.21), (3.22) remains a proper probability under path pruning. Another important
advantage is that the conditional probabilities can be emitted on-line during parsing,
namely at the end of the main loop (Fig. 3.10).

3.5.3. Maximum-likelihood training

The PLCG-based language model belongs to the class of ‘parsing’ syntax-based lan-
guage models. All parsing language models (PLMs) have in common that they build
a grammatical parse structufeas ahidden evenin order to predict a senten¢, the
observed eventn most training scenarios, the PLM is initialized on a parse-annotated
corpusQ* using the maximume-likelihood criterion. In other words, the initial PLM
maximizes likelihood of the joint everfV, T). So in that scenario the initial PLM is
optimal as a parser, because argmR®V, T) = arg max P(T|W) sinceW is consid-

ered given. A language model however should maximize the expected probability of
a test corpus, regardless of the accuracy of the intermediate hidden structure. Hence it
makes sense to maximize the likelihood of the unannotated training cOrmstead

of Q*.

An EM-training procedure was proposed in [Bod, 2000] for the case of a language
model based on a data-oriented lexical-functional grammar parser (LFG-DOP). How-
ever, in the latter case the EM updates are less complicated because the LFG-DOP
graph satisfies the Markov property (like HMMs), while the PLCG graph does not,
due to the attach constraint.

Another example is found in [Chelba, 2000] where an approximation of an EM train-
ing procedure is proposed for the structured language model; later Van Aelten and
Hogenhout [2000] developed, implemented and experimented with a full EM train-
ing procedure based on the dynamic programming version of the structured language
model [Jelinek and Chelba, 1999].

In this section, | derive an Expectation-Maximization training procedure as an instance
of the general treatment in [Dempster et al., 1977].

EM updates

Let Q be the unannotated training corpus. K&t denoteQ annotated with hidden
structure generated by a modgland suppose one wants to update an old mé8el
The E-step of the EM algorithm involves the construction of an auxiliary function
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3.5. The PLCG-based language model

Q(6,0°), the 8°-expectation of the logarithm of the:likelihood of Q* givenQ. In
the context of this thesis it can be written as

Q(6,6°) = WzQ Z Pgo(T|W)logPy (W, T)

=3 T PeltW)Ps()

WeQte(ar,ar)
=3 Y PeltW) Y Py(m)
WeQte(q,ar) met

- Fe (M) Pyo (t|W) Py (M),
;V\gflte((%qp) (M) Poo (t|W)Pp (M)

wherem now ranges over all possible (mduentext) events and;fm) is the fre-
quency of thanevent in path. Using the definition of thexpected frequen@f min
the generation ofV by 6° as

ERwv(me°) =% <Z )Peo<t\W)Ft(m), (3.23)
m te(qr,ar

and the total expected frequencyrnin the generation of2 as6° as

EFo(m6°) = 3 ERw(m|6°). (3.24)
WeQ

Q(6,0°) can be rewritten as
Q(6,6°) = EFq(m|6°)logPs(m). (3.25)
m
If one chooses (M-step)
6 = arg maxQ(6, 6°), (3.26)

then Dempster et al. [1977] proved tHgI(Q) > Pyo(Q), so that the EM algorithm is
guaranteed to converge.

The conditional probabilitieBy (M) are subject tQ i m)—n Pe (M) = 1 for each tran-
sition contexth, whereH(m) denotes the conditioning context of Under these
constraints the maximum is found in

EFo(m[6°)

> ERg(n|6°)
n:H(n)=H(m)

Ps(m) = (3.27)

Expected frequency of a move

The key of the EM-update is the expected frequency of a move given a context. In the
constrained PLCG graph of a senteli¢égeach moveq;, g;) corresponds with such a
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conditional event, written here &(qj;,q;). The expected frequency of an evemtan
be rewritten as a sum efsit probabilities of the movéx;, q;) for whichM(g;,g;) =m
in theW-constrained graph:

ERv(m) = 5 P((a.q)W) (3.28)
M@ L
1
- i.qi),W). 3.29
M(gi,dj)=m

P((ai,qj),W) can be further decomposed as a sum of probabilities of pailis) , gr )
containing the(q;,q;) move. This sum can be efficiently computed from the con-
strained graph after the computationaeiter probabilities.

Definition 5 (outer probability) Let q= |; x*j[ﬂﬁ]z be a node in a constrained
PLCG network and consider all full paths that traverse q (and therefore also traverse
q° (cf. Lemma 2). Theuter probabilityof g is now defined as

_ P(t)
40)) Lo P 0)

where Rq°,...,q) is the probability of the path segment of t betweBiad q.

Let T(qi,q;) be the set of full paths that visit both the adjacent naglesdq;. Then

P((ai,q;),W) = ; P(t). (3.30)
teT(q;,05)

This sum can now be factorized as

v(ai)é (a) if (qj,q;) is aSHIFT
P((ai,aj),W) = q v(ai)P(a;lai)&(a;) if (qj,q;) is aPROJECT
E(apv(d")P(ar|a”)v(ai)P(ajlai) if (gi,aj) = ATTACH(q").
(3.31)

A derivation of (3.31) is given in Appendix C.

Backward computation of &

The question, how to obtain the outer probabilities efficiently, still needs to be solved.
It turns out that one can find a recursive formula in the style of (3.17) and (3.18).
Assumet (d) of all successorg' are given. Then

Sqeam S(@)P(Aa) + -
E(O) =4 -3 (q.qeei & (@)V(A)P(@la")P(q'|a)  if qis resolved  (3.32)
Y (ar.a)ec(q) & (02) v(d)P(d2|a1) else
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where

A(9) ={q[(g,q') is aPROJECT
B(a) = {(d,d")|(a,q) = ATTACH(q") }
C(aq) = {(a1,92)| (01, 02) = ATTACH(0) }.

A derivation of (3.32) is given in Appendix B.

Summary

In this section a maximum-likelihood training method for a PLCG-based language
model based on the EM-algorithm was derived. It is summarized as follows:

1. Choose submodel parameterizations (cf. Sec. 3.3.4).

2. Initialize the submodels on the annotated corfXiswrite each parse tree as a
PLCG derivation and initialize the parameters using (3.27) where thedfé
replaced with real frequencieg,F Usually a statistical smoothing method is
applied to alleviate the problem of data sparsity.

3. For each sentence :

a) Forward pass: build the constrained PLCG graph uéihgnd update for-
ward and inner probabilities synchronously with word-synchronous PLCG
parsing algorithm (Fig. 3.10).

b) Backward pass: find a reverse topological ordering so that aaisdanly
visited after all other nodes for whichq < ¢. Initialize £(qr) = 1 and
apply an update strategy based on (3.32).

c) For each move in the constrained PLCG graph, compute the visit proba-
bility using (3.31); compute the sums (3.29) and update the corresponding
counters (3.24).

4.  Calculate the parameters of the reestimated médeith (3.27). In practice a
smoothing method is hereby applied to counteract overfitting.

5. Check convergence of the training corpus probability and monitor the proba-
bility of a held-out part of the training corpus accordinggtaf convergence is
reached or overtraining is detected, stop here. Otherwi#€ let6 and reiterate
from step 3.

3.6. Summary

This chapter developed the PLCG-based LM from an efficient synchronous dynamic-
programming PLCG parser using rich context nodes. The model emits next word

80



A language model based on probabilistic left corner parsing

probabilities in one single left-to-right pass, so it can be used as a CLM. Itis initialized
on a treebank using common LM techniques. | also presented an algorithm to optimize
the PLCG-based LM further on plain text.
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CHAPTER

Experiments with the PLCG-based

|cmguoge mode|

Experiments were conducted in two stages. In the first stage, small models were
trained on the Penn Treebank corpus. These models were used to test the software,
find appropriate submodel parameterizations and compare test set perplexities with
other competing models. In the second stage | worked towards a more realistic large-
vocabulary speech recognition setting: large models were trained and reestimated on
the BLLIP-WSJ corpus, and their performance in n-best list rescoring was tested.

4.1. Parameterization and optimization of the submodels

4.1.1. Modeling
Data

The Penn Treebank [Marcus et al., 1993] (PTB) is a collection of text available from
the LDC including material from the ATIS domain, the Wall Street Journal (WSJ),
the Brown and Switchboard corpus. The text is annotated with hand-corrected la-
beled parse trees, part-of-speech tags, function labels (such as subject, location, etc.),
anaphora and disfluency markers (the latter for Switchboard only). An example of
an annotated sentence is shown in Fig. 4.1. A list of the labels and their meanings is
reproduced from [Marcus et al., 1993] as Appendix D.

In my experiments, | only used the WSJ portion of the Penn Treebank (version 3). All
information in the parse trees, other than the syntactic constituent labels was discarded
(e.g. function markers, anaphora references). Sections 00-20 were used for training,
while sections 21-22 were reserved for testing during development and sections 23—
24 were used for final testing. The training set contains 42,073 sentences worth of
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S

/JI\
NP-SBJ /\ ‘

MD VP

ADJP wi l l
NP-TMP
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wr jozn ap PP-CLR NNP CD
/\ A A /\ |

NNP NNP CD IV'NS
N P Nov. 29

Pierre V'Lnken 6‘1 years old the board as DT/’\NN

‘ JJ ‘
e ‘ director

non—executive

Figure 4.1.Example sentence from the PTB (first sentence of the WSJ portion, section 00). A
list of the labels and their meanings is included as Appendix D.

1,046,082 word tokens (after tokenization, preserving punctuation). The development
set contains 3,371 sentences (83,524 tokens) and the test set contains 3,759 sentences
(93,185 tokens).

The labeled parse trees went through a number of preprocessing stages. | hereby
attempted to match the preprocessing used in Chelba’s experiments [Chelba, 2000] as
closely as possible, in order to allow a reasonable comparison of performance results
with Chelba and Jelinek’s structured language model (C&J).

1.  Allterminals are converted to lowercase. Two different batches of experiments
were run: 1. using non-verbalized punctuation (nvp), where punctuation charac-
ters are removed altogether; 2. using verbalized punctuation (vp), where punc-
tuation characters are treated as regular terminals.

2. Numbers in Arabic digits are replaced by a token

3. Alist of the 10,000 most frequent terminals (in sections 00—-20) is collected.
The terminals that are not in the word list are replaced withk> .

4.  The original parse tree is encapsulated iroa constituent, cf. Fig. 3.2(a).

5.  All constituents are annotated with a lexical head using deterministic rules by
[Magerman, 1994].

6.  Non-terminal unary productions are eliminated by collapsing two nodes con-
nected by a unary branch to one node annotated with a combined label. For
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/\ /\
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Figure 4.2.Eliminating unary productions.

A A
PN PN
A’ F B A’
PN PN
A’ E c A’
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Figure 4.3.Binarization.D is assumed head df.

instance, the tree fragment in Fig. 4.2(a) would be transformed to Fig. 4.2(b).

7. Parse trees are binarized as detailed in [Chelba, 2000, pp. 12-17]. There are
two binarization schemes: the sister constituents to the left can be attached to
the head constituent before or after the ones to the right. For instance, the
5-ary local tree with head daught®rin Fig. 4.3(a) would be transformed to
Fig. 4.3(b) in the first scheme, and to Fig. 4.3(c) in the second scheme. The cat-
egory of the mother node determines which of the two is applied. Intermediate
nodes are marked with a prime in order to distinguish them from the original
category.

The effect of the preprocessing (with the punctuation retained) is shown in Fig. 4.4.

Parameterization

For any move from any nodg= [ Y ; B|R]x in the network, conditional move prob-
abilities P(sHIFT(w)|q), P(PROJECTU, 0)|q) andP(ATTACH|q) have to be given by

the language model. The conditigrhas 10 categorical attributes (given that the con-
sidered parse trees are binary). Obviously, this is more than can possibly be used in
estimating the conditional probabilities from data in practical situations. Therefore
a good model parameterization needs to be found, i.e. one needs to determine which
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Figure 4.4.Preprocessed example sentence from Fig. 4.1.

attributes ofj are informative enough, and in which order of significance. The latter is
necessary because back-off smoothing is applied in order to account for data sparsity.

Assuming thaty = [;Xx ; B[R]z, X = X/X,Z = Z/z, andh = (G,L1/{1,L2/¢2), the
following parameterizations were chosen:

14 if
P(SHIFT(W)|q) ~ Ps(WIB,x 1) B?ég_ (4.1)
0 otherwise
pPp(U,01G,Z,X,z) if B=eandZ# W
P(PROJECTU, §)|0) ~ { pt(U, 8]z, G,L1) if f=candZ=w (4.2)
0 otherwise
G,Z X if B=
P(ATTACH|q) ~ Pa(ATTACH|G,Z,X,2) if f 8 (4.3)
0 otherwise

The conditioning attributes are ordered from most to least significant. This means that
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the back-off sequences are:

for ps(w|...): B,x.¢1— B,x— B — (empty)
for pp(U,d8|...): G,Z,X,z— G,Z,X — G,Z — G — (empty)
for p;(U,48]...): zG,L1 —zG— z— (empty)
S

for pa(ATTACH]. G,Z,X,z— G,Z,X — G,Z— G — (empty)

Note that projections fromv constituents (essentially, part-of-speech tagging) em-
ploy a parameterization different from the other projectiopsis called thetagger
submodel.

If pp and p, have the same parameterization, as in this cas@nd p, can be com-
bined conveniently in one modppa:

Ppa(ATT|G,Z,X,2) = pa(ATTACH|G, Z, X, 2) (4.4)
ppa(U,5|G,Z,X,Z) = pp(Uaa‘szvxaz)(l_ ppa(ATTIG,Z,X,Z)), (45)

which considersiTTjust as a specidl, d).

Parameterizations (4.1), (4.2) and (4.3) were determined manually by optimizing the
conditional perplexitieCPPL) on the development set (sections 21-22) obtained
with an initial model trained on sections 00-20 with a certain parameterization. The
concept of CPPL was introduced by [Chelba, 2000]. For the shift madel 5, x, ¢1),

for instance, it can be defined as

Y wx¢1 CO(SHIFT(W), B, X, £1) I ps(W|B, X, £1)
ZW,ﬁ,X.[l CD(SHIFT(W)? Baxv gl)

whereD is a measurement corpus of parse trees, decomposed into LC parser moves,
andcp (SHIFT(wW), 3,X,¢1) is the frequency iD of the SHIFT(w) move from any node

i X/xx BIG,L1/¢1, L2/ 2]z for someZ,i, j, X, G, Ly, Lo, L.

The CPPLs of the selected parameterizations on the development set are listed in Ta-
ble 4.1. Both smoothing methods lead to the same parameterizations, since apart from
a small scaling factor CPPLs appeared to evolve similarly. There are two versions of
each submodel: the first using GT smoothing, the second using KN smoothing (cf. Ta-
ble 4.2). One way of interpreting the CPPLmfis as a lower bound for the perplexity

that can be achieved by the PLCG-based language model. It would be the perplexity
of a language model that always builds correct parse trees with probability 1.

CPPL=exp

, (4.6)

In an attempt to automate the parameterization process, also the following greedy
optimization procedure was considered:

1.  Start with an empty context.

2. For each parameter that is not yet in the context, evaluate the decrement of
the CPPL on the development set when that parameter is added as the least
significant item to the context.

87



4.1. Parameterization and optimization of the submodels

Table 4.1.Conditional perplexities of selected submodel parameterizations on the PTB devel-
opment set.

submodel smoothing CPPL
ps(W|B,X, £1) GT 35.2
KN 31.1
Ppa(U,0/G,Z,X,2) GT 1.88
KN 1.80
p(U,08]z,G,L1) GT 1.20
KN 1.15

2.197

2.144

[7.617] [1461] [19.80]

‘ L
z%
Z

X

8.428

Figure 4.5.Greedy parameterization optimization of the GT smootbggmodel.

3. Ifthe largest decrement of the CPPL is larger than a preset threshold value, add
the corresponding parameter to the context as the least significant item. Else
terminate.

4.  Go backto step 2.

This procedure was repeated for each submodel with Kneser-Ney smoothing and
Good-Turing discounting. The results were identical to the manually selected param-
eterizations, except for the project model, for which in both smoothing schemes a
parameterizatiop, (U, §|Z, G, z, X) was found, which performed slightly worse than
(4.2).

In Fig. 4.5, the greedy parameterization optimization of the GT smoqihgt$ visu-

alized as an optimal path search through a tree graph: nodes are labeled with CPPL, a
transition represents adding a feature as the least significant item to the context.

Note: The shift submodel in the C&J model can actually be emulated by choosing
the parameterizatiops(w|X,x, L1, ¢1) — in other words, by omitting and addingX
andL; to the conditioning context. The CPPL obtained with this parameterization is
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Table 4.2. Evaluated submodel smoothing techniques. They are explained in more detail in
Sec. 1.5 and Sec. 1.6.

Abbrev.  Discounting Back-off strategy Reference

GT Good-Turing non-linear back-off [Katz, 1987]

KN absolute linear Kneser-Ney [Chen and Goodman, 1998]
DI linear, context-dep. linear deleted interp.  [Jelinek and Mercer, 1980]

109.5 using GT smoothing, in contrast with the CPPL of 35.2 with parameterization
(4.1). This clearly illustrates the relevancefbfor conditioning the next word in the
PLCG-based model. In the C&J model, there is no sich

On the other hand, the reduction of shift ambiguity ®ys counteracted by the am-
biguity of B itself, since it is stochastically predicted by the project submodel. By
comparing the CPPL of 1.88 with the project submodel with the CPPL of 1.54 with
the ‘parser’ (i.e., reduce) submodel of the C&J model [Chelba, 2000, Table 4.7], one
can conclude that projecting in the PLCG-based model is significantly more ambigu-
ous than reduction in C&J. This is actually logical since the project submodel jointly
predicts 2 or more labels (of the mother and sister nodes). The reduce submodel only
predicts the mother category, based on the syntactic and lexical labels of both daugh-
ters; in this way, it makes use of considerably more bottom-up information than the
project submodel. Fortunately, the latter can reduce ambiguity considerably with the
top-down featurés; without it, the CPPL would be 4.23 instead of 1.88 (GT smooth-

ing).

Initial models

Once submodel parameterizations are fixed, each tree-annotated sentence from the
training set is decomposed in its elementary LC derivation steps. Each step corre-
sponds with am-gram eventps, ppa andp; are initialized using conventionatgram
language modeling techniques. Three smoothing techniques were compared, as listed
in Table 4.2.

Note that adifferentsmoothing technique can be chosen for each submodel. For in-
stance, GT for the project submodel, and KN for the shift submodels. This additional
degree of freedom was not explored in my experiments, however.

Baseline model

Word-based 3-gram models were trained on the running text of the PTB training set
using the smoothing techniques listed in Table 4.2 for comparison with the correspond-
ing PLCG-based LMs. The 3-gram models are also used for interpolation with the

PLCG-based LM.
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Table 4.3.Influence of pruning parameters on PPL and execution time. Table entries are in

the format PPL/PPLi/time, where PPLi is obtained after interpolation with the baseline 3-gram

model, and time is total execution time on a P111/930MHz PC. Both the baseline 3-gram model

and the PLCG-based LM are trained with KN smoothing and tested on the verbalized punctua-
tion data.

pO — 10'3 pO — 10’35 pO — 104 pO — 1045
c=.7 130.5/100.7/0:13 113.2/97.5/0:20 106.4/96.0/0:35 104.9/95.5/1:06
o=.5 112.4/97.6/0:21 105.8/96.0/0:37 103.4/95.5/1:18 102.6/95.3/3:02
o=.3 106.0/96.2/0:37 103.2/95.5/1:21 102.4/95.3/3:23 102.5/95.3/9:25

4.1.2. Measurements
Data

The measurement set consists of sections 23 and 24 of the Penn Treebank. This test
set is very common in large-scale stochastic parsing literature. | have prepared a
‘verbalized punctuation’ (vp) and a ‘non-verbalized punctuation’ (nvp) version, to be
used with their corresponding models.

Influence of pruning

The pruning parametegs® ando (cf. Sec. 3.4.5) have an important influence on the
runtime behavior of the PLCG-based LM. Smaffland larges lead to fast execution

but inaccurate evaluation.

In Table 4.3, test set perplexities and execution times measured with varying pruning
settings are collected in a matrix. The measured PPL at very loose pruning settings
is interpreted as the ‘real’ PPL, and the difference with the real PPL at practical (i.e.,
tighter) pruning settings as the inaccuracy of the evaluation. There seems to be a rather
strong dependence betweghando, given a target PPL/time trade-off. In the next
experiments, the pruning parameters were fixeolte- 10°>° ando = .5.

Let M; denote the number of calls to the shift submodel at a word positia;

gives an idea of the ambiguity of the partial parse trees faced by the language model
at positioni. Fig. 4.6 shows the average and the standard deviatidvij ender 4
different pruning settings, measured on PTB sections 21-22 (nvp).

Influence of smoothing

Table 4.4 reports test set PPLs of differently smoothed PLCG-based LMs (cf. Ta-
ble 4.2). The PLCG-based LMs used in these experiments were not reestimated.
One notes that the DI and GT smoothed models do not significantly differ in perfor-
mance; KN smoothing, however, outperforms GT and DI smoothing with a significant
PPL reduction of roughly 10%.
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Figure 4.6. Estimated mean and standard deviation of the number of shift submodel calls at a
given word position under three different pruning settings.

Table 4.4.Test set PPL of differently smoothed PLCG-based LMs. The ‘3g+PLCG’ rows are
obtained by interpolating the PLCG-based LM interpolated with the baseline 3-gram LM where
the interpolation weight of the baseline 3-gram LM is .4.

PTB 23-24 nvp DI GT KN
baseline 3-gram 194 191 173
PLCG-based LM 175 174 154
3g+PLCG 164 161 145
PTB 23-24 vp DI GT KN
baseline 3-gram 129 126 114
PLCG-based LM 118 119 106
3g+PLCG 108 107 96
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4.1. Parameterization and optimization of the submodels

One can also conclude from the vp experiment series that the unreestimated PLCG-
based LM improves on the 3-gram PPL by rougly 6%, and by 15% when interpolated
with the 3-gram. For the nvp series, the measured PPL improvements are 10% and
15%, respectively.

Influence of reestimation

Reestimation is quite costly, because each iteration requires processing the training
corpus with a PLCG-based language model. For instance, at 50 words/sec on a
P11I/930Mhz PC, one reestimation iteration on a 1M word training corpus takes about
5.5 hours. Fortunately, it is easy to parallellize the reestimation over multiple proces-
sors.

Reestimating the model on the PTB training corpus did not deliver notable perfor-
mance gains. The reestimation results are collected in Table 4.5. Note the discrepancy
between the training set and test set PPLs, already present in the initializatiort phase.
The training set PPL tends to drop slightly and to converge after 1 iteration; how-
ever, monotonicity is not guaranteed because the smoothing of the expected transitions
counteracts the likelihood maximization. As a sanity check, it was verified that reesti-
mation without smoothing of the expected frequencies does yield a ‘normal’ evolution
of the training set PPL,; this is indicated by the ‘PTB vp, — figures at the bottom of
Table 4.5, which were obtained starting from KN smoothed initial submodels but with-
out smoothing during reestimation.

The development and test set PPLs, increase significantly at the first iteration with GT
smoothing. The test PPLs obtained with KN smoothing seem rather random. it can
be concluded that PLCG reestimation does not justify the considerable extra training
effort — at least not with such a small training corpus as the PTB.

The reason of failure is unclear. A possible cause is that KN and GT smoothing
are actually non-continuous techniques; using them here for counteracting EM over-
training is not theoretically justified. Another possible problem is the relatively small
size of the Penn Treebank, and its high quality, such that the reestimation problem is
rather ill-conditioned.

Comparison with other syntax-based LMs

The standard choice of the training and test set makes it possible to compare the PPL
performance of the PLCG-based LM quantitively with other recent grammar-based
language models.

Results extracted from publications and from my own experiments are collected in
Table 4.6. The table separates results obtained with different smoothing techniques
in different columns, since smoothing affects PPL considerably, as noted above. In

1. The training set PPL versus test set PPL discrepancy of the word-based 3-grams is actually even worse:
21 versus 126 for the GT-smoothed 3-gram, and 21 versus 114 for the KN-smoothed 3-gram.
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Experiments with the PLCG-based language model

Table 4.5.Influence of reestimation on PPL.

PTBvp, KN initial after 1it. after 2it.
Train set PPL 26.1 254 25.2
Dev set PPL 103.4 100.6 102.3
TestsetPPL  106.0 107.1 109.0
PTBvp, GT initial after1lit. after2it.
TrainsetPPL  31.7 19.3 19.3
DevsetPPL 1145 134.3 130.2
TestsetPPL  119.0 144.2 140.1
PTB nvp, KN initial after1it. after 2it.
Train set PPL 325 31.9 31.9
Dev set PPL 1515 152.4 156.0
TestsetPPL  154.0 162.0 166.1
PTB nvp, GT initial after 1it. after 2it.
TrainsetPPL  40.8 22.3 23.3
DevsetPPL  169.4 201.7 198.0
TestsetPPL  174.0 217.0 2125
PTB vp, — initial after 1it. after 2 it.
Train set PPL 26.1 9.6 8.9
Dev set PPL 103.4 388.7 3934
TestsetPPL  106.0 428.0 435.7

addition, test set PPLs were recalculated witlvk> probabilitiesincluded in order

to enable comparison with [Chelba, 2000, Roark, 2001, Charniak, 2001, Kim et al.,
20012

The lowest PPL (includingcunk>) in the table is 126. It is obtained with a KN
smoothed PLCG-based LM, interpolated with the baseline word-based trigram. C&J
with KN smoothed probabilities [Kim et al., 2001] comes close to the best result ob-
tained with the PLCG-based LM (130 versus 126). This model was reestimated, while
the PLCG-based LM was not. Since initialization on the PTB only takes a few minutes,
building a PLCG-based LM requires a tiny fraction of the time needed for building a
C&J model that has comparable performance (since one reestimation iteration takes
several hours).

Charniak’s model [Charniak, 2001] reaches the same performance with DI smoothed
probability distributions; it remains an open question whether KN smoothing may
improve Charniak’s model further. An important drawback of Charniak’s model is
that it cannot be interpolated with other models at the word level.

Roark’s LM [Roark, 2001] shows some potential too; again, improved smoothing

2. | believe, though, that the PPL excludirgnk> probabilities, as reported elsewhere in this chapter, is
more predictive for speech recognition performance.
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4.2. Rescoring speech recognition hypotheses lists

Table 4.6.Comparing PPLs (on PTB 23-24 nvp) obtained with other grammar-based LMs. The
C&J models are reestimated with 3 EM iterations. The PLCG-based LM is not reestimated.
DI GT KN
PPL without<unk> PPL PPLi PPL PPLi PPL PPLi
word-based 3-gram 194 194 191 191 173 173
PLCG-based LM 175 164 174 161 154 145
C&J LM 187° 174
PPL with <unk> PPL PPLi PPL PPLi PPL PPLi
word-based 3-gram 167 167 166 166 156 156
PLCG-based LM 151 139 150 138 133 126

C&JLM 153 14F 1419 13¢¢
Roark LM 152 137
Charniak LM 130 126

a Experiments run by F. Van Aelten and K. Daneels at L&dptained with a
reimplementation [Van Aelten and Hogenhout, 2000] of [Chelba, 20604};
reported in [Chelba, 2000, p. 49]as reported in [Kim et al., 2001§;as reported in
[Roark, 2001, p. 270]¢ as reported in [Charniak, 2001].

might reduce the PPL of 137, but no such results were reported thus far. Moreover,
the PPL of 126 of the PLCG-based model was measured at a rather tight pruning
setting; at equal execution speeds on comparable computers (30 words/s), Roark’s
model marked a PPL of 141.

4.2. Rescoring speech recognition hypotheses lists

A second series of experiments evaluates the PLCG-based LM in a more realistic
dictation setting. Models are trained on a large corpus and employed for rescoring
transcription hypotheses in a recognition task.

4.2.1. Modeling

The models are trained on the BLLIP-WSJ corpus plus sections 0-20 of the PTB.
The BLLIP-WSJ corpus is the ACL/DCI Wall Street Journal '87—'89 corpus that
was machine-parsed by the BLLIP lab at Brown University and distributed by the
LDC [Charniak, 2000]. BLLIP-WSJ has an annotation style and tag set that is very
similar to PTB’s, but is about 35 times larger. On the other hand, it contains more
parsing errors.

Care was taken that the speech recognition test set was excluded from the training
data. All the submodels and the baseline word-based 3-grams were slimmed down
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Experiments with the PLCG-based language model

Table 4.7.Word error rates on eval92 obtained with GT smoothed models. '+’ indicates linear
interpolation.

model WER

word 3-gram 7.98
PLCGO + word 3-gram  7.26
PLCG2 + word 3-gram  7.03

by omitting all maximum-order events that appeared less than twice in the training
corpus.

The submodels of the PLCG-based LM were parameterized in the same way as in
the PTB experiment series. GT smoothing was used for initialization, yielding model
PLCGO, as well as for two EM iterations, yielding models PLCG1 and PLCG2, re-
spectively.

Additionally, a GT smoothed word-based trigram was trained on the BLLIP-WSJ.
This model differs from the standard WSJ-trained trigrams in the tokenization (e.g.,
don’t is replaced withdo n’t and numbers are replaced with. Also, the BLLIP-

WSJ does not contain all the data from the WSJ corpus because sentences that could
not be machine-parsed in reasonable time were left out.

In cooperative work done at L&H, a DI smoothed class-based 4-gram model was
trained with automatically generated word classes. This model was used to assess
complementarity of the word class model with other grammar-based models.

4.2.2. Word error rate

The DARPA WSJ November 1992 LVCSR test suite (20k open vocabulary, verbal-
ized punctuation) was used for testing recognition performance of the PLCG-based
LM. 100-best lists were generated for both the evaluation (eval92) and development
(dev92) test sets using L&H VoiceXpress v4, a mainstream speech recognizer based
on context-dependent hidden Markov models of phonemes, represented as time series
of mel-scaled cepstral feature vectors; for the language model, the standard word tri-
gram was used. The 100-best lists were first preprocessed to match the tokenization
of the BLLIP-WSJ models. These lists were then rescored with the language mod-
els under scrutiny. The dev92 set was used for finding optimal model interpolation
weights.

Table 4.7 collects WER results with GT smoothed models. The un-reestimated PLCG-
based LM yields a relative improvement of 9% with respect to the word 3-gram. A
small but consistent improvement by EM reestimation is observed: the reestimated
PLCG-based LM yields a relative improvement of 12% below the word 3-gram base-
line WER. (This corrects the results reported in [Van Uytsel et al., 2001], which were
affected by bugs in my rescoring code.)
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4.2. Rescoring speech recognition hypotheses lists

Table 4.8.Word error rates on eval92 obtained with DI smoothed models. '+’ indicates linear
interpolation. The C&J model was reestimated with 3 EM iterations. Measurements by Filip
Van Aelten and Kristin Daneels at L&H.

model WER
word 3-gram 7.88
word 3-gram + class 4-gram 7.37
C&J 7.47
C&J + word 3-gram 7.31
C&J + word 3-gram + class 4-gram 7.08
PLCGO 7.08
PLCGO + word 3-gram 7.06

PLCGO + word 3-gram + class 4-gram  6.91

Comparative experiments using DI smoothed models were done at the L&H lab by
Filip Van Aelten and Kristin Daneels. Their results are summarized in Table 4.8.
The DI smoothed PLCGO model performs remarkably well, on a par with the KN
smoothed PLCG2 model, in spite of the previously perceived inferiority of DI smooth-
ing in perplexity measurements.

It was observed that the PLCGO0 model successfully complements a word 3agthm

a class 4-gram; the C&J model does so too, but its performance is slightly worse than
the PLCGO model’s, although the significance of the difference is disputable.

4.2.3. Grammaticality

In automatic speech recognition, the expected word error rate is minimized by mini-
mizing the expected sentence error rate; the latter is minimized by maximizing the a
posteriori probability of the transcript.

By its very nature, word error rate is much more correlated with sentence error rate
than with grammaticality. Minimizing the number of ungrammaticalities in the recog-
nition output, for example, in fadtarmsthe accuracy.

It may be, however, useful to recall that the motivation for rescoring with a grammar-
based language model is to improve accuraoyby improving the grammaticality of

the recognition output, but by improving the accuracy of its probability estimates; the
latter is realized by improving thgrammaticality of the probabilistic dependencies

on which the estimates are based.

A qualitative comparison of transcripts obtained with a 3-gram model, with those
obtained with a PLCG-based model, reflected this intended behavior, and did not re-
flect the non-intended behavior. No obvious difference in grammaticality was found.
Though, examples of the advantage of grammar-based language modeling can be
found at several isolated spots.
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Experiments with the PLCG-based language model

I will illustrate this with one example. In the (partial) hypothesisny of them
has made mistakes, the wordhas gets assigned a much lower probability by the
PLCGO model then by the word 3-gram (the scores argyloficonditional probabili-
ties):

many of them has made  mistakes . </s>

3-gram: -2.481 -0.728 -0.938-2.079 -2.609 -2.855 -0.645 -0.082
PLCGO: -2.481 -0.792 -0.926 -3.631 -1.927 -3.355 -0.449 -0.012

On the other handhave instead ofhas gets assigned a much higher probability by
the PLCGO model; this difference is less convincing with the 3-gram model:

many of them have made mistakes . </s>
3-gram: -2.481 -0.728 -0.938-1.469 -2.640 -2.682 -0.645 -0.082
PLCGO: -2.481 -0.792 -0.926 -0.900 -2.063 -3.115 -0.434 -0.016

Closer inspection reveals that the score of -0.900 is composed for 97% from shift
probabilities conditioned owy = <s>andw; = many, which is desired, and only for

2% from shift probabilities conditioned om, = of andws = them, which are more
influenced by the randomness of the training corpus. This example also illustrates that
the PLCGO model is better at recognizing the end of a sentence.

4.3. Summary

The PLCG-based LM was found to be a competitive alternative among the class of
syntax-based language models. Test set perplexities and word error rates compare fa-
vorably with, for instance, [Chelba, 2000], [Roark, 2001] and [Charniak, 2001]. From
the comparison of execution times, | believe that the PLCG-based LM is more efficient
than the other cited models. It was observed that the un-reestimated PLCG-based LM
performed at least as well as the reestimated C&J model, while building the former
model requires only a tiny fraction of the time needed to train the latter. Reestimat-
ing Penn Treebank models did not improve PPL. However, reestimated BLLIP-WSJ
models did yield an additional WER reduction of 3% relative.

| believe that a great part of efficiency is gained by representing the search space
as a minimal network instead of a search tree, as in [Chelba and Jelinek, 1999] and
[Roark, 2001]. Given the same computational resources, more probabilistic analyses
can be accounted for using the dynamic programming technique. A disadvantage of
this, however, is that the parser is less flexible at extracting the relevant conditioning
information from a partial analysis. That problem was solved by extending the nodes
with all features that were expected to be informative in selecting the next parse move.
A final suggestion for future work is about the detail of the underlying grammar. Cur-
rent syntax-based language models rely on an overly simplistic version of phrase struc-
ture grammar, namely the one that is most readily extracted from the Penn Treebank
and its relatives. A greater degree of generalization can be obtained by processing syn-
tactic features (such as tense, gender, number, finiteness), for instance in a unification-
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4.3. Summary

based style, instead of only one category label. The integration of a morpho-syntactic
analysis stage within the parsing system could introduce those features into the syn-
tactic analysis of the whole sentence; the linguistically sound treatment of previously
unseen wordforms would come as a welcome side-effect.
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CHAPTER 5 -

Conclusion and perspectives

5.1. Original contributions

The research described in this thesis combines elements of, and builds further on
two domains that are traditionally separated: computational linguistics and statistical
learning. More specifically, syntactic theory, in the form of hand-parsed text material
(treebank), was used aspriori knowledge for the initialization of a novel statistical
language model, the PLCG-based language model.

The operation of the PLCG-based language model is based on an efficient original
implementation of statistical left corner parsing. The parser uses a dynamic program-
ming technique to improve time and space efficiency. Inspired by inside-outside rees-
timation of PCFG probabilities, we defined forward, inner and outer probabilities of
nodes in a network, borrowing ideas from inside-outside reestimation of PCFG prob-
abilities and Bayesian networks. Mutually recursive relations were derived for these
probabilities, which enables the model to emit sentence prefix probabFH(id§),
conditional left-to-right language model probabilitil?swi\vv'b‘l), and expected fre-
guencies of moves. The latter are needed for the recursive maximume-likelihood reesti-
mation of the language model. A reestimation algorithm was proposed as an instance
of the general EM algorithm.

As to the linguistic side of the language model, the grammar used is a simple phrase-
structure grammar lacking more modern linguistic concepts such as unification and
indexing. On the other hand, the parser allows for extensive non-local probabilistic
conditioning of parser move probabilities on lexical and syntactic labels of previously
hypothesized constituents. Experimentally, this non-local conditioning was found to
improve the accuracy and the efficiency of the PLCG-based language model, by re-
ducing the average ambiguity. The conditional move probability distributions are ini-
tialized on a treebank, and statistically smoothed. The linear Kneser-Ney smoothing
technique turned out superior to Good-Turing and deleted interpolation smoothing.
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However, in contrast with deleted interpolation, Kneser-Ney smoothing is theoreti-
cally not justified for estimating probabilities from non-integer counts, as is needed
in our reestimation procedure. Still, we obtained slight improvements with it in our
speech recognition experiments. It would be interesting to evaluate a continuous ver-
sion of Kneser-Ney smoothing, once it gets developed.

Experiments were run with small and large language models, respectively trained on
the Penn Treebank and the BLLIP WSJ corpus. The small models were used for
perplexity/cross-entropy measurements, the larger were used as n-best list rescoring
models in a read newspaper speech recognition task.

We measured a cross-entropy reduction of 0.32 bits (20% perplexity reduction) and a
relative word error reduction of 12% from a word-based trigram baseline. Compared
with a baseline consisting of a word-based 3-gram and a class-based 4-gram, it was
also found that interpolating the baseline with our model yields a relative word error
rate reduction of 6.2%.

5.2. Perspectives

Despite its remarkable performance and its improved efficiency with regard to other
syntax-based language models, the PLCG-based language model is probably still too
heavy to be used in practical products. Though, it may be a starting point or a source
of inspiration for more efficient syntax-based language models e.g. exploiting shallow
parsing techniques.

Our intuition tells us that a great deal of parse ambiguity is not inherent, but due to too
coarse modeling assumptions. We therefore expect a further increase of efficiency by
(a) refining the syntactic structure annotation, and (b) integrating external knowledge.

Refining the syntactic structure annotation is obvious, given the simplicity of the syn-
tactic theory assumed in our language model. Practical problems may arise, however,
since the additional syntactic information has to be made available by hand in the
training data in case the extra information cannot be automatically obtained with a set
of deterministic rules.

External knowledge can be integrated from a lower level (prosody, morphology), as
well as from a higher level. The integration of a morphological component in the
PLCG-based language model is a topic of FLaVoR, an IWT-funded research project
currently running at the Katholieke Universiteit Leuven (ESAT) and the University
of Antwerp (CNTS). The main motivation is that a morphological analysis will fa-
cilitate propagating bottom-up information from the word level, such as agreement
features, thereby reducing ambiguity. Especially the linguistically justified handling
of out-of-vocabulary words is interesting with respect to robustness. This should also
mitigate the problem of the reduced accuracy and efficiency of our PLCG-based lan-
guage model on sentences containing out-of-vocabulary words.
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Conclusion and perspectives

It is also possible to let higher level information influence the parsing process. For
example, this information may consist of expectations from a dialog model about the
sentence type. Only a small portion of the probability parameters are to be explicitly
conditioned on this information, which keeps the model trainable.
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APPENDIX

Proofs of Lemma’s 1 and 2

First note the following observation.

Lemma 4 Let¥ be a PLCG network andiggy € 4. Then q < g implies po$q; ) <
pogqp). If g1 and @ are connected by a path, then [9gs) < posqy) implies g < gp.

Proof. A SHIFT increments pos) with 1, while PROJECTand ATTACH() moves
leave pos{ unaltered. Thus if a pathe (gi,qp) containsn SHIFT moves, then
poggz) = posgqi) +n> pogq;). Conversely, ify; andgy are connected by a path and
poga1) < pogdz), thengy < gz or gz < gz Assumeg < qz. Then posgd) < pogds)
which is in contradiction with the given. ]

Lemma 1 Lett be a partial path in a PLCG netwofk and(qg,q’) = ATTACH(q") be
amove int. IfATTACH(S) is a move in a path & (¢’,q) then d < s.

Proof. The first move(q’,q°) of u is a SHIFT move, sinceq” is incomplete. So
star{q®) = pogq”). Now supposé€q;,q;) is a move oru. If (g;,qj) is aSHIFT move,
then startg) < star(q;j). If (gi,q;j) is aPROJECTmove, then staft)) = star(q;).
If (gi,q;) is anATTACH() move, first consider the case that it is the fisSTACH()
move inu, so that staft) > pogq’) for all r € u for whichq” <r < g. Assume
(Gi,qj) = ATTACH(s),s # g”. Then po$q”) < pogs) < pogq;), since stafig) =
pogs), star{qi) < pogq;) and startg;) > posq’). By Lemma 4g" < s < g, which
was to be proven. In the other case tfwtq;) is not the firstATTACH() move, repeat
the above reasoning g, g;) instead of(q”,q). a

Lemma 2 If g = [; X | B[R]z, then on every yeconstrained path gy, q) there is a
node § = [iwii11/h]y.
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Proofs of Lemma’s 1 and 2

Proof. Any w{)-constrained path must contain a nade [wii,1|d]y If the given
g is on the same path, therandq can be connected l3RoOJECTMOVeS only, since
SHIFT andATTACH moves do not preserve the stgrifroperty. PROJECTMOVeES pre-
serve the local tree context. Herlte- g and thus = °. O

116



APPENDIX

Derivation of recursion formulas
(3.17), (3.18) and (3.32) for forward,

inner and outer probabilities

Let a constrained PLCG netwo%,g be given. Suppose one wants to computg’)
andv(q) whenu(q) andv(q) is already known for each: g < .

A move (q,q) = ATTACH(g") does not contribute a term(q)P(q/|g) to u(q), since
not all paths(q;,q) extend to paths ifq,q). Usinginner probabilitiesit can be
ensured that only paths € (q;,q) : g € t} contribute tou(q').

Letd be the node for which one wants to computg('). Then

<q|,q’>={U<q|,q”>(q”,q°)<q°,q>(q,q’)} U {U<q|,q>(q,q’)}7 (B.1)

a.9” a

where the first union is ovey,q” for which (g,q') = ATTACH(¢”) for someq” and
the second union is ovey for which (qg,q’) is not anATTACH move. The above
expansion is justified by Lemma 1 which states that any patlgjirg’) concate-
nates with(q”,q°) (q°,q) to a valid path in(q;,q), given that(g,q') = ATTACH(q"):
(9" (¢, ) (o, q) exactly covers the paths @y, q) that visitg”. In terms of
probabilities:

p(d) = Z

a,9”

{u(d’)P(Q"IQ”)P(Q’q) (Z P(t)}+2u(q)P(q’Iq>, (B.2)
te(qO,q) q

where the first sum is over ajlfor which (g, q') € %y and(q,q’) = ATTACH(q"), the
second sum is over ajjfor which (q,q) € %y and(q,q) is aPROJECTMOVe.
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Derivation of recursion formulas (3.17), (3.18) and (3.32) for forward, inner and outer
probabilities

The sum within the first summand is an inner probability. Hence (3.17) follows:

)= 3 wa)PEld)v(@P(d]a) +Zu P(of|a). (B.3)
a.q’

The derivation of a recursive formula for the inner probability is analogous with the
one above, where the node substituteg), . One obtains (3.18):

Zv q")P(a°ld")v(a)P qlq+zv P(q|q) (B.4)

for a nodeq.

A similar exercise can be done for the computation of the outer probability given

all £(q') where(g,q') is a move in the constrained network. Let us first consider the
case whereg is resolved, i.e(q,qd') is either aPROJECTOr anATTACH.

If (q,d") = ATTACH ("), then paths accounted for §(q') are legal combinations in
(ar,9°) x (gj,0e ). In order to obtain paths accounted for4rq), these path seg-
ments have to be combined with combinationsdf?,q”) (q”,q°) x {(qg,q')}. Since

all attach constraints are already accounted fof &y), the contribution ofy to £(q)

is obtained as the product

E(d)v(d")P(a°|q")P(d|a).
The situation is more simple {fy, ) is aPrRoJECTWhich impliesg® = ¢°. Path com-
binations accounted for i&(q) are extended by the afq,d’) to obtain path combi-
nations accounted for i§(q). Therefore, a terng (¢')P(d/|q) in the computation of
£(q) is obtained.
Summarizing the previous two paragraphs, the outer probability realved dis
obtained as

Ea= 5 S@Pla+ 5  &d)v(@)P@lq")P(d]a, (B.5)

a'€A(q) (9,9")€B(q)

where

A(9) = {q|(g,q') is aPrROJECTMOVE}, and

B(a) ={(d,q")|(a,q) = ATTACH(q")}.

This is the first part of (3.32).
If gis unresolved, thed (q) is of no use because it contains probabilities of paths
that visitq but notg. There is however another way: consider all mog@gsq,) =
ATTACH(q) in the constrained network. Paths coveredilfg,) have to be extended
with segments in respectively(q,q’ = ¢3)}, (af,a1) and{(qs,02)}. In other words,
(g1,092) contributes a terng (q2)P(q|q)v(a1)P(gz]a1) to £(q). Summing over all
(01, %2):

E@= 5  &(wP(d]a)v(d)P(azlm), (B.6)

(01,02)€C(a)
whereC(q) = {(01,02)|(q1,02) = ATTACH(q)}. This is the second part of (3.32).
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APPENDIX

Derivation of the expected move
frequency formula (3.31)

The expected frequency of a mo{a, q;) is computed as

Pl apW) = ) —

P(t),
teT(;,qj)

whereT (g, q;) is the set of all constrained paths(m, gr ) that contain a movéy;, g; ).
For the factoring of the sum ov@i(q;,q;), one has to consider three cases, depending
on (g, d;)-

Case 1 (q;,q;) is asHIFT move. There is only one arc starting frogn (namely
(gi,9;j)), so all paths throughy also visitg;. The sum of the probabilities of these
paths isv(qi)&(gi): v(a) is the sum of the probabilities of subpaths@f, q;), while
&(qi) takes the complements of these subpaths: foprto g° and fromg; to gg,
observing all attach constraints.

Case 2 (g,q;j) is aPROJECTmove. In this cas@ = ¢f. Paths inT(q;,q;) are
characterized as concatenations of subpathsimf), (o°,di), (ai,d;) and(q,—,qp>,
as is illustrated in Fig. C.1. The probability sum over,g°) is given byv(q;). The

&(aj)
v(ai)
q %w
|
i q) OF
o’ =af

Figure C.1. Summing probabilities of all paths containinggaoJECTMOVeE (0, ;).
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Derivation of the expected move frequency formula (3.31)

&(aj)
| PRYCHIN . v(a) S | |
‘ ‘ ‘ SHIFT ATTACH(") ‘
a /! o ) ) aF
q qi ¢] qj

Figure C.2. Summing probabilities of all paths containing &rTACH move(g;,d;).

probability sum of valid combinations of elementséq ,q?> and <qj,q|:> is given
by &(q;). Therefore, the probability sum ov&lq;,q;) is v(ai)& (a;)P(qj|ai)-

Case 3 (0,qj) = ATTACH(q"). In this caseq‘j’ =< @g°. A similar reasoning as in case 2,
this time on Fig. C.2, leads to the conclusion that

P((ai,0;),W) = &(q)v(d")P(a?la")v(ai)P(qjlai).
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APPENDIX

The Penn Treebank Tag Set

The following tables were reproduced from [Marcus et al., 1993].

D.1. Part-of-speech tags

tag meaning tag meaning

cc coordinating conjunction  T0 to

CD cardinal number UH interjection

DT determiner VB verb, base form

EX existential VBD  verb, past tense

FW foreign word VBG  verb, gerund or present patrticiple

IN preposition or VBN  verb, past participle
subordinating conjunction VBP  verb, non-3rd person singular present

JJ adjective VBZ  verb, 3rd person singular present

JJR adjective, comparative WDT  wh-determiner

JJS adjective, superlative WP wh-pronoun

LS list item marker wWP$  possessivevh-pronoun

MD modal WRB  wh-adverb

NN noun, singular or mass # pound sign

NNS noun, plural $ dollar sign

NNP proper noun, singular sentence-final punctuation

NNPS  proper noun, plural s comma

PDT prdeterminer : colon, semi-colon

POS possessive ending ( left bracket character

PRP personal pronoun ) right bracket character

RB adverb " straight double quote

RBR adverb, comparative ‘ left open single quote

RPS adverb, superlative i left open double quote

RP particle ’ right close single quote

SYM symbol i right close double quote
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D.2. Syntactic constituent labels

tag meaning

ADJP adjective phrase

ADVP adverb phrase

NP noun phrase

pp prepositional phrase

S simple declarative clause

SBAR clause introduced by subordinating conjunctioroqisee below)
SBARQ direct question introduced hwh-word orwh-phrase

SINV declarative sentence with subject-aux inversion

sqQ subconstituent o§B4ARG excludingwh-word orwh-phrase

/4 verb phrase

WHADVP  whradverb phrase

WHNP wh-noun phrase

WHPP wh-prepositional phrase

X constituent of unknown or uncertain category

Null elements:

* ‘Understood’ subject of infinitive or imperative

0 zero variant othatin subordinate clauses

T trace — marks position where movedi-constituent is interpreted
NIL marks position where preposition is interpreted in pied piping contexts

D.3. Function tags

The following table summarizes section 2.2 of the Penn Treebank version 3 parsing

guide.
tag meaning tag meaning
Form/function discrepancies
-ADV  adverbial -NOM  nominal
Grammatical role
-DTV  dative -LGS logical subject
-PRD  predicate -PUT  locative complement cut

-SBJ  surface subject -TPC  topicalized
-voc  vocative

Adverbials

-BNF  benefactive -DIR  direction

-EXT  extent -LOC  locative

-MAN  manner -PRP  purpose or reason

-TMP  temporal
Miscellaneous
-CLR  closelyrelated -CLF  cleft
-HLN  headline -TTL  titel
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APPENDIX E -

Extended Dutch summary:
Probabilistische taalmodellering met
linkerhoekontleding

Inleiding

Sinds de beginjaren van spraakherkenning is statistische taalmodellering een bron van
frustratie geweest voor vele onderzoekers. Toen Jelinek and Mercer [1980F} hun
gramtaalmodel voorstelden, eerigfaviarkovmodel van orde — 1, vermoedden ze

niet dat hun eerste ruwe poging de volgende twintig jaar toonaangevend zou blijven.
Het blijkt tot op heden bijzonder moeilijk om de combinatie van nauwkeurigheid en
eenvoud van hat-gramtaalmodel te verbeteren.

Onderzoek op taalmodellen heeft vooral vooruitgang geboekt op het gebied van statis-
tischeafvlakkings en modelcombinatietechnieken, die in de meeste gevallen breder
toepasbaar zijn dan enkel voor taal. Daarnaast werden er ook taalmodellen ontwikkeld
die, niet ter vervanging, maar asnvullingop hetn-grammodel, de spraakherken-
ningsnauwkeurigheid significant verbeteren. In een recent experiment bracht Good-
man [2001a] de belangrijkste van deze technieken samen en behaalde een verlaging
van 40% van de testsetperplexiteit en een verlaging van 8.9% van de woordfoutfre-
guentie in spraakherkenning.

Helaas kwam Goodman er niet toe om statistigpiaenmatica-gebaseerdaalmodel-

len in zijn experiment te betrekken. De belangstelling voor deze modelklasse nam
weer toe sinds midden de jaren 90, vooral onder invloed van de bemoedigende re-
sultaten bekomen door Chelba and Jelinek [1999] met hun zogealesauctureerde
taalmodel. Grammatica-gebaseerde taalmodellen zijn aantrekkelijk omdat ze taalpa-
tronen trachten te veralgemenen op een listisch-intitieve manier, namelijk met
syntactische grammatica-regels. Grammatica-regels (of een collectie vooraf ontleden
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zinnen) vormera priori kennis waarvan traditionele taalmodellen geen gebruik van
maken.

In deze thesis stel ik een nieuw taalmodel voor dat gebaseerdpsobpbilistische
linkerhoekontleding Het is vergelijkbaar met de grammatica-gebaseerde taalmodel-
len van Chelba [Chelba and Jelinek, 2000] en Roark [Roark, 2001], maar het gebruikt
een ander ontledingsalgoritme. Een verlaging werd vastgesteld van de kruisentropie
met 0,32 bits (20% in perplexiteit) en van de woordfoutfrequentie met 12% relatief

in combinatie met het referentiemodel, een woordgebaseerd trigram. De toevoeging
van het op linkerhoekontleding gebaseerde model aan een woordgebaseerd trigram en
een klassegebaseerd 4-gram verlaagt de woordfoutfrequentie met 6.2% relatief. Net
zoals andere grammatica-gebaseerde taalmodellen vereist het op linkerhoekontleding
gebaseerde model veel computerkracht in vergelijking met traditionele taalmodelle-
ringstechnieken, maar zijn nauwkeurigheid is opmerkelijk hoger.

Beperkingen

Vanuit wetenschappelijk oogpunt zijn de testresultaten van het op linkerhoekontle-
ding gebaseerde taalmodel substantieel. Nochtans zijn geavanceerde taalmodellerings-
technieken beperkt in hun praktische toepassingsmogelijkheden wegens hun steile
kosten/baten-verhoudingVaaromis taalmodellering moeilijk? Er zijn enkele rand-
voorwaarden die taalmodellering moeilijk maken:

1. Taalmodellen leren enkel uit tekstcorpora, terwijl de statistieken van taal door
veel meer niet-tekstgebonden parameters wordévloed. Het is onmogelijk
om met al deze parameters rekening te houden.

2.  Taalmodellen kunnen wel voor een eng taalbereik getraind worden, namelijk
op een specifiek, homogeen corpus. De mogelijkheden van deze aanpak zijn
beperkt, omdat de niet-tekstgebonden parameters nooit constant zijn. Deze vast-
stelling duidt op de inherente heterogeniteit van taal.

3. Taalmodellen zien woorden enkel als abstracte symbolen en zijn blind voor
woord-interne structuur.

4.  Taalmodellen krijgen enkel positieve voorbeelden. Mensen leren taal op een
interactieve manier.

5. Taalmodellen opereren in een ‘vijandige’ omgeving; namelijk door de imper-
fectie van de andere kennismodules (b.v. het akoestisch model) in de toepassing
moet het taalmodel een onderscheid maken tussen heel wat meer hypothesen
dan een mens.

Het op linkerhoekontleding gebaseerde taalmodel is aan al deze beperkingen onderhe-
vig, maar probeert de eerste twee te verleggen: de variabiliteit in taal kan beter worden
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gemodelleerd als de invarianten beter gekend zijn — waarbij men veronderstelt dat
syntax relatief invariant is, en het model integreert a priori kennis van grammatica met
observaties uit een tekstcorpus.

Het voorgestelde taalmodel is ook onderhevig aan de volgende beperkingen:

. Zijn modelhorizon reikt niet over de zinsgrenzen.

. Syntactische structuur wordt voorgesteld met bomen zonder kruisende takken
noch niet-lokale verwijzingen. Knooppunten worden benoemd met eenvoudige
syntactische categorienamen (boerkwoordszin), zonder opdeling in ken-
merken (b.v3de persoon).

. Er wordt enkel gebruik gemaakt van syntactische structuur; semantische cohe-
rentie wordt niet expliciet gemodelleerd.

. De initialisatie van het model gebruikt voorontlede zinnen; lisjische compe-
tentie, die niet blijkt uit deze voorontlede zinnen, kan niet worden aangeleerd.

° Woorden worden niet morfologisch geanalyseerd, wat ontleding van zinnen met
ongekende woorden moeilijker maakt.

Op het einde van de thesis volgt een bespreking van enkele mogelijke uitbreidingen
van het model om deze tekortkomingen te verhelpen.

De volgende twee hoofdstukken bevatten inleidend materiaal. Hoofdstuk 1 geeft een
inleiding tot het onderzoeksdomein van de statistische taalmodellering. Hoofdstuk

2 beschrijft het onderzoek op grammatica-gebaseerde taalmodellen. Het onderzoek
beschreven in deze thesis bevindt zich in de doorsnede van deze twee domeinen. De
theoretische aspecten van het voorgestelde taalmodel staan beschreven in hoofdstuk 3,
terwijl hoofdstuk 4 de experimentele resultaten beschrijft. Het laatste hoofdstuk bevat
besluiten en voorstellen voor verder onderzoek.

E.1. Statistische taalmodellering

Dit hoofdstuk geeft een korte inleiding tot het onderzoeksdomein van de statistische
taalmodellering. Na de definitie van het statistische taalmodel, volgt een korte bespre-
king van zijn toepassing, en vervolgens een overzicht van standaardtechnieken voor
taalmodellering. Het hoofdstuk sluit af met een samenvatting van de resultaten van
een experimentele studie, die de besproken technieken vergelijkt.

E.1.1. Wat is een statistisch taalmodel?

Taal wordt voorgesteld als een datastroom gamen waarbij elke zin een eindige
string vanwoordenis. De zinsgrenzen worden gemarkeerd met speciale symbolen
<s> (begin) en</s> (einde). Eerstatistisch taalmodéas een computermodel dat een
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bepaalde zin met een zekere probabiliteit genereert. De bepaling ‘statistisch’ wordt
weggelaten als deze duidelijk is uit de context. In wiskundige termen is een statistisch
taalmodel een probabiliteitsmassafunctie over de ruimte van alle zinnen.
Eenconditioneel taalmodeajenereert een volgend woord met een zekere probabiliteit,
gegeven de voorgaande woorden. In wiskundige termen is een conditioneel taalmodel
een verzameling conditionele probabiliteitsmassafuncties, elk gedefinieerd over een
vocabularium.

Elk conditioneel taalmodel leidt tot een gewoon taalmodel via de kettingregel van
Bayes, maar de omgekeerde bewering geldt niet altijd.

E.1.2. Toepassing van statistische taalmodellen

Verscheidene statistische methoden in spraak- en taaltoepassingen, maar ook daarbui-
ten, gebruiken statistische taalmodellen: bijvoorbeeld documentclassificatie, spelling-
correctie, automatische vertaling, maar ook modellering van DNA-strings. De meeste
traditionele taalmodelleringstechnieken kunnen nuttig zijn in elke situatie waarin een
discrete probabiliteitsmassafunctie over een multi-dimensionele categorische ruimte
nodig is.

De rol van het statistische taalmodeldntomatische spraakherkenni(@ySH) wordt

nu wat meer in detail besproken, omdat ASH als testomgeving zal fungeren voor het
model dat in deze thesis wordt ontwikkeld.

De probabilistische formulering van ASH streeft er naar de kans te minimaliseren om

1 of meerdere fouten in een te herkennen zin te maken. Dit kan door die zinshypothese
als herkenningsresultaat weer te geven, die met de meeste kans werd uitgesproken, ge-
geven de akoestische invoer. Noem de akoestische idveetaatV een willekeurige
zinshypothese betekenen, dan kan men schrijven:

W = arg maxP(W|A) = argmaxf (AJW)P(W). (E.2)

De a posteriori waarschijnlijkheidP(W|A) kan niet rechtstreeks worden gemodel-
leerd; daarom is het nuttig deze te herschrijven als het product van een conditione-
le densiteit (meestal is de akoestische ruimte continu gedefinieerd) neepderi
waarschijnlijkheidP(W). De zoekprocedure berekeftA|\W) met een aaneenschake-
ling van akoestische foneemmodellen; mogelijke aaneenschakelingen volgen uit een
uitspraaklexicon of -netwerk. De factBfW) wordt geschat door het statistische taal-
model.

Typisch zal de zoekmachine de hypothesen en hun probabiliteiten incrementeel van
links naar rechts opbouwen via de kettingregel. Op die manier kan hij deelhypothe-
sen, die met grote kans niet tot de meest waarschijnlijke volledige hypothese zullen
leiden, in een vroeg stadium buiten beschouwing laten. De uitvoertijd van de spraak-
herkenning blijft zodoende binnen aanvaardbare grenzen. Deze zoekstrategie vereist
een conditioneel taalmodel.
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E.1.3. Taalmodellen schatten uit observaties

Taalmodellen worden geschat uit een traincorPusen observatiesequentie van door-
lopende tekst. Het traincorpus kan voorgesteld worden als een sequentie van onaf-
hankelijke samengestelde gebeurtenissen(h,w), waarinw een woord is e de
woorden in dezelfde zin die aanvoorafgaan.

Volgens de normale werkwijze wordt een zekere geparametriseerde modelklasse aan-
genomen. Het is de taak van een schatter om optimale waarden te bepalen voor de
vrije parameters, waaruit het optimale model volgt, geselecteerd uit de aangenomen
modelklasse.

Deze sectie expliciteert wat onder ‘optimaliteit’ kan verstaan worden. Vervolgens zal
worden aangetoond dat dgeaximum-likelihooeschatter niet volstaat voor de klasse

van de woordgebaseerde trigrams: het onderzoek op taalmodellen is een zoektocht
naar betere schatters en modelklassen.

Taalmodellen zijn dikwijls een samenstelling van een aantal elementaire technieken,
die na deze sectie besproken worden: (a) de keuze van een clusterfunctie, die een
enkelvoudige modelklasse karakteriseert; (b) discounting-technieken; (c) combinatie
van taalmodellen.

Metrieken voor de kwaliteit van een taalmodel

De praktische bruikbaarheid van een taalmodel hangt af van de resulterende prestaties
van het systeem, waarbinnen dit taalmodel wordt gebruikt. Bijvoorbeeld, voor ASH
kan men dus het taalmodel evalueren in termen van gemiddelde woordfoutfrequentie,
geheugengebruik, uitvoersnelheid, .. ..

Dikwijls is er echter een toepassingsonafhankelijke kwaliteitsmetriek nodig; dit is
bijvoorbeeld het geval bij numerieke of analytische modeloptimalisatie.

Een bekende kwaliteitsmaat is derwachte kwadratische foutop de modelparame-

ters t.o0.v. de parameters van het echte model. De ‘beste’ set van parameters minima-
liseert deze metriek. Een schatter die deze strategie volgt, heet een MMSE-schatter
(minimal mean square errpr

De MMSE-schatter geeft even veel gewicht aan de nauwkeurigheid van elke model-
parameter. Voor de schatting van een stochastische verdeling is het gebruikelijker, de
Kullback-Leibler -afstand (KL) te minimaliseren. De KL-afstand tussen een taalmo-
del en de echte verdeling is te schrijven als een vaste term (de echte entropie) plus
de kruisentropie van het taalmodel t.0.v. de echte verdeling. Meestal worgiate
plexiteit (PPL) gerapporteerd in de literatuur. Deze 5§ fvaarinH de empirische
kruisentropie is, uitgedrukt in bits. De PPL van een taalmodel kan in een spraakher-
kenningssysteem g#erpreteerd worden als de gemiddelde amitégu(branching

factor) die het akoestisch model ziet bij toepassing van dat taalmodel. Minimalisa-
tie van de KL-afstand is equivalent met de minimalisatie varveievachtetestset-
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perplexiteit, en met de maximalisatie van de verwachte waarschijnlijkheid van een
willekeurige testset.

Maximum-likelihood-schatting en de noodzaak van afvlakking

De Maximum-Likelihooeschatter (ML) maximaliseert de waarschijnlijkheid van het
traincorpus. De ML-schatting van de probabiliteit van een gebeurtenis komt overeen
met zijn relatieve frequentie. In taalmodellen zijn de meeste gebeurtenissen zeldzaam,
zodat de relatieve frequenties te sterk afwijken van de verwachte waarde van de pro-
babiliteiten. Een extreem voorbeeld hiervan zijn gebeurtenissen die niet werden geob-
serveerd in het traincorpus: deze krijgen een probabiliteit O.

Bijgevolg is de toepassing van statistische afvlakkistati{stical smoothingnood-
zakelijk. Het grootste gedeelte van de literatuur over taalmodellering gaat precies
daarover. Hierna volgt een systematische bespreking van de voornaamste afvlakkings-
technieken, en daarna een empirische vergelijking van (enkele combinaties van) deze
technieken.

Een taalmodel gebruikt vaak een ingewikkelde combinatie van technieken; uit de vele
theoretisch mogelijke combinaties behoren slechts enkele ‘recepten’ tot de gangbare
praktijk.

Afvlakkingstechnieken zijn op te delen in drie categériecluster-, discount- en com-
binatietechnieken.

E.1.4. Clustertechnieken

Een traincorpus is voor te stellen als een sequentie gebeurteissen waarinw

een woord is erh de daaraan voorafgaande woorden (meestal beperkt tot dezelfde
zin). Een clusterfunctié(h, w) groepeert gelijkaardige gebeurtenissen in clusters. De
probabiliteit van een cluster kan betrouwbaarder worden geschat, omdat de frequentie
er hoger van is; het is namelijk de som van de frequenties van alle gebeurtenissen
die tot diezelfde cluster behoren. De probabiliteit van een welbepaalde gebeurtenis,
gegeven zijn cluster, kan in vele gevallen sterk worden vereenvoudigd met allerlei
onafhankelijkheidsveronderstellingen, waardoor ook deze probabiliteit betrouwbaar-
der kan worden geschat. Het product van de twee voornoemde probabiliteiten geeft
de samengestelde probabiliteith, w), waaruit de conditionele taalmodelprobabiliteit
P(w|h) volgt.

Hier volgt een overzicht van enkele welbekende clusterfuncties, die elk een aparte
taalmodelklasse karakteriseren (stéh, w) = (h,W)):

° W = w en h bestaat uit de laatste— 1 woorden varh (n is typisch 3 of 4).
Het is redelijk om aan te nemen dat de probabiliteit van een woord zich in vele
gevallen laat voorspellen op basis van naburige woorden. Deze clusterfunctie
geeft aanleiding tot hetvoordgebaseerden-gram-taalmodel. Dit simplisti-
sche model wordt getraind voor een bepaald specifiek taalgebruik, en vergt veel
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traindata. In praktische toepassingen, zoals in medische dicteersystemen, is het
taalgebruik inderdaad erg specifiek, en zijn er veel traindata beschikbaar. Het
blijkt erg moeilijk een taalmodel te formuleren dat het woordgebaseegiam

in zulke situaties overtreft.

° h bestaat uit devoordcategoriénvan de laatste — 1 woorden varh, enw is
de woordcategorie vaw. De woordcategorén kunnen overeenkomen met
linguistisch gedefinieerde concepten, maar kunnen ook abstracte labels zijn
van woordclusters die met een automatische, datagedreven procedure zijn be-
komen. Deze clusterfunctie geeft aanleiding tot tetegoriegebaseerde-
gram-taalmodel. Dit model vergt minder traindata dan een woordgebaseerd
taalmodel en verhoogt de robuustheid tegen toepassingsvreemd taalgebruik.

. h bestaat uit de— 1 woorden varh die onmiddellijk voorafgaan aan heste
laatste woord vam. Het gevals = O leidt tot het gewone woordgebaseerde
gram-taalmodel. De keuze> 0 resulteert in eeskip-n-gram-taalmodel. Een
skip-n-gram benadert in combinatie met een gewaegram een(s-+ n)-gram,
waar de directe schatting van st n)-gram onmogelijk zou zijn door te lage
observatiefrequenties.

° W =w, enh is de frequentie van in h; in dit geval overschrijdh de zins-
grenzen en bevat typisch de laatste 1@08000 woorden. Het blijkt dat het
gebruik van een woord de kans verhoogt dat het binnen korte tijd nogmaals ge-
bruikt wordt. Het resulterende model heetche-gebaseerd unigram model
Een veralgemening naar cache-gebaseerde bi- en trigrams ligt voor de hand.
Trigger-gebaseerde modellenvormen een veralgemening in de andere rich-
ting: alle woorden uit die eentrigger-paar vormen metw, en niet alleerw
zelf, verhogen de probabiliteit vam

. W=w, enhish plus een — eventueel gedeeltelijke — grammaticale analyse
vanh. Uiteraard is de grammaticale analyse meestal ambigu, d.w.z. de cluster-
functie is stochastisch. In deze thesis heet deze k#datistische grammatica-
gebaseerde taalmodellenHet PLCG-gebaseerde taalmodel, het hoofdonder-
werp van deze tekst, behoort tot deze klasse. Het acroniem PLCG staat voor
probabilistic left corner grammaren zal verder worden verklaard.

E.1.5. Discounttechnieken

Een clusterfunctie>(h,w) = (h,W) alleen, met gebruik van de ML-schatter

frequenti¢h, W)

P(Wh) = 2
(Wlh) frequentigh)

volstaat meestal niet voor een optimale afvlakking.
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Discounttechnieken groeperen de gebeurteniéisem) die even vaak voorkomen in

het traincorpus, en schatten voor de gebeurtenissen in eenzelfde groep een gemeen-
schappelijke probabiliteit. Deze probabiliteit ligt meestal lager dan de ML-schatter,
vandaar de term ‘discount’.

Nu volgt een kort overzicht van courante discounttechnieken:

1. Laplace’s opvolgingswet tel 1 bij elke geobserveerde frequentie, alvorens de
ML-schatter toe te passen. Bijgevolg krijgen alle ongeziene gebeurtenissen toch
een probabiliteit 1|O| (|O| is het totaal aantal observaties, d.i. de grootte van
het traincorpus). Deze aanpak is optimaal in de zin van kleinste kwadraten, als
de a priori verdeling uniform is. Deze techniek is bruikbaar voor de afvlakking
van unigrams.

2. Jelinek-Mercer(JM)-discounting neemt een frequenti€ aan waarboven de
ML-schatter betrouwbaar genoeg is (H&= 1). De frequenties van gebeur-
tenissen die vaker dak keer voorkomen worden lineair gescaleerd met een
parameterx < 1, alvorens de ML-schatter toe te passen. Hierdoor komt er pro-
babiliteitsmassa vrij die kan herverdeeld worden over de probabiliteiten van de
gebeurtenissen dik of minder keer voorkwamen. Deze probabiliteiten kun-
nen volgen uit een eenvoudiger taalmodel, of experimenteel bepaald worden uit
een apart gehouden gedeelte van het traincorpus. JM-discounting blijkt min-
der goede resultaten te leveren dan GT-discounting, behalve op kleine traincor-
pora. Ook is JM-discounting nuttig bij niet-gehele observatiefrequenties (b.v.
verwachtingen van frequenties).

3.  Good-Turing(GT)-discounting is wellicht de theoretisch best onderbouwde
techniek. Stel dat een gebeurtekikeer voorkomt, en daty, het aantal ver-
schillende gebeurtenissen is dikeer voorkomen, dan wordt de gewijzigde
frequentiekgT = (K+ 1)nk.1/nk. De ML-schatter wordt vervolgens toegepast
op de gewijzigde frequentieKatz discounting is een variant, die enkel de
frequenties lager dan een bepaalde paranieteijzigt (K is typisch 7. .. 10).

4.  Nadas-afvlakking veronderstelt dat de observatiefrequelktiean een gebeur-
tenis binomiaal verdeeld is, en kan bijgevolg een a posteriori probabiliteit bere-
kenenpy = E[p|k] uit de binomiaalverdeling vakien een aangenomen a priori
beta-verdeling vapx. Deze methode geeft resultaten die vergelijkbaar zijn met
die van GT-discounting, maar is ingewikkelder. Mogelijk hierdoor wordt hij
zelden gebruikt.

5. Absolute discounting deze methode trekt een vaste hoeveeldeidl af van
de frequenties van geziene gebeurtenissen alvorens de ML-schatter toe te pas-
sen. De vrijgekomen probabiliteit herverdeelt de vrijgekomen probabiliteits-
massa over alle, geziene en ongeziene, gebeurtenissen in verhouding met een
achtergrondverdeling. Absolute discounting is een erg simplistische, maar in
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de praktijk betrouwbare, robuuste en vaak gebruikte methode. Dit geldt in het
bijzonder in situaties — en zo zijn er vele — waar GT-discounting niet betrouw-
baar is.

E.1.6. Modelcombinatie

Voor de afvlakking van een mode(w| h) is ook de combinatie met een ander model
q(wjh) nuttig. q gebruikt een meer doorgedreven vereenvoudiging hjaof is ge-

traind op diversere data. Bijgevolgdaninder waarheidsgetrouw dgmmaar baseert

het zijn probabiliteitsschattingen op hogere observatiefrequenties, wat de betrouwbaar-
heid verhoogt. Men noentt eenback-off-model (of -verdeling). Een typisch voor-
beeld is eer{n — 1)-gram taalmodel als back-off-model voor de afvlakking van een
n-gram taalmodel. Men gebruikt ook de teanhtergrond-model als de afvlakking

de bedoeling heeft de robuustheid tegen toepassingsvreemd taalgebruik te verhogen.
Hier volgt een kort overzicht van modelcombinatietechnieken.

1. Katz-back-off maakt een onderscheid tussen gebeurtenissen die vaker voorko-
men in het traincorpus dan een ingesteddenijfrequentie K(typisch isK =
0...3), en de andere. Deze methode gaat ervan uitpdath) betrouwbaar
genoeg is als frequen(ife,w) > K en laat deze ongemoeid. De andere probabi-
liteiten worden uit de back-off-verdeling gehaald en gescaleerd, zodanig dat de
som van alle probabiliteiten 1 blijft.

2. Interpolatie-back-off interpoleert het af te vlakken model met het back-off-
model. Als de interpolatiefactor constant is, spreekt men a@rtext-onaf-
hankelijke lineaire interpolatie; als deze enkel vah afhangt, spreekt men
van context-afhankelijke lineaire interpolatie. In niet-lineaire interpolatie
hangt de interpolatie@fficient van het af te vlakken model af van zoweals
h; de interpolatiecéfficient van het back-off-model hangt enkel af Varen
zorgt ervoor dat het geterpoleerde model genormaliseerd blijft.

3. Kneser-Ney(KN)-back-off. deze methode stelt een gewijzigde back-off-verde-
ling voor. De schatting van het gewone back-off-mogi@¥| ﬁ) is gebaseerd op
relatieve frequenties frequer(tfew)/frequentiéﬁ). De KN-schatting gebruikt
voor de schatting qu(w|ﬁ) echterhet aantal verschillenda die voor w wer-
den geobserveerd érals back-off-context hebben. De KN-back-off-verdeling
kan gebruikt worden met zowel Katz-back-off als interpolatie-back-off, en geeft
meestal beduidend betere resultaten dan de gewone back-off-verdeling.

4.  Maximum-entropie-modellen combineren niet alleen informatie uit andere
taalmodellen; de enige voorwaarde is dat de informatie kan worden voorgesteld
als eerkenmerkfunctiean (h,w). De vorm van het maximum-entropiemodel
is de exponenéile functie van een gewogen som van de kenmerkfuncties. De
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gewichten bepalen het relatieve belang van de kenmerkfuncties. De algemene
formulering maakt het maximum-entropiemodel aantrekkelijk, maar zowel de
schatting (het bepalen van de gewichten) als het gebruik van het model (het
vinden van de niet-verwaarloosbare kenmerkfuncties voor een bepaatds®

vergen veel computertijd.

5.  Log-lineaire interpolatie is verwant met maximum-entropiemodellering, maar
gebruikt enkel informatie uit andere taalmodellen. Het model met maximale
entropie, dat zich tegelijk op gegeven KL-afstanden van de respectieve te in-
terpoleren taalmodellen bevindt, blijkt een lineaire interpolatie te inijhet
logprob-domeir{het logaritme van de combinatie is een lineaire combinatie van
de logaritmes van de respectieve taalmodelprobabiliteiten). Hernormalisatie is
evenwel nodig. Log-lineaire interpolatie blijkt uit experimenten beter te pres-
teren dan context-onafhankelijke lineaire interpolatie, maar vindt in de praktijk
weinig toepassing om mij onbekende redenen.

E.1.7. Empirische vergelijking van taalmodelleringstechnieken

Alle tot nu toe besproken technieken laten zich op een oneindig aantal wijzen combi-
neren; slechts enkele daarvan zijn gangbare praktijk geworden.

De experimentele studies van Chen en Goodman [Chen and Goodman, 1999, Good-
man, 2001a] zijn waarschijnlijk de meest uitgebreide en betrouwbaarste in de litera-
tuur over taalmodellering. Zij vergeleken de onderlinge prestatieverhoudingen tus-
sen verschillende afvlakkingstechnieken en combinaties daarvan voor e&enee
traincorpusgrootte. Prestatie werd gemeten in empirische kruisentropie (het logaritme
van testsetperplexiteit) en woordfoutfrequentie bij gebruik van het taalmodel in een
spraakherkenningstest.

Uit een vergelijking van verschillende afvlakkingstechnieken, toegepast op een woord-
gebaseerd trigram, bleek Kneser-Ney lineaire-interpolatie-back-off de beste keuze
voor traincorpora van 1k tot 200M woorden.

Het woordgebaseerde trigram, afgevlakt met Kneser-Ney lineaire-interpolatie-back-
off, functioneert vervolgens als basismodel in de vergelijking met volgende modellen
(alle afgevlakt met Kneser-Ney back-off-verdelingen, en gecombineerd met het basis-
model zelf): een woordgebaseerd 5-gram, een trigram-cache, een skip-model en een
categorie-gebaseerdgram. Met een traincorpusgrootte van 284M woorden verlaagt
elk van deze modellen de empirische kruisentropie met 0.1 tot 0.3 bit/woord t.o.v. het
basismodel. Door bovendien al deze modellen te combineren, kon een verlaging van
0.5 bit/woord verkregen worden, en een relatieve verlaging van de woordfoutfrequen-
tie van 7.3%.

Chen en Goodman beperkten zich weliswaar tot het genre van fsbamieuwsbe-
richten; dit vormt voor de vergelijkbaarheid met mijn experimenten geen bezwaar,
aangezien mijn modellen op een gelijkaardig genre werden getraind en getest. Men
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kan er echter niet van uit gaan dat de relatieve prestaties van afvlakkingstechnieken
zich doortrekken naar andere tekstgenres; hiernaar werd nog geen diepgaand empi-
risch onderzoek naar verricht.

E.1.8. Besluit

Dit hoofdstuk gaf een inleiding op het onderzoeksdomein van de statistische taalmo-
dellering. Een taalmodel geeft de waarschijnlijkheid van een woordstring terug, of de
waarschijnlijkheid van een volgend woord gegeven de woorden die er aan voorafgaan.
De schatting van een taalmodel uit een traincorpus (een grote tekstcollectie) is proble-
matisch omdat de observatieruimte erg schaars bevolkt is, waardoor een eenvoudige
schatting op basis van relatieve frequenties niet volstaat. Het onderzoek naar taalmo-
dellen heeft een aantal afvlakkingstechnieken ontwikkeld. Deze technieken kunnen
opgedeeld worden in drie rubrieken: clustering, discounting en modelcombinatie.
Deze technieken kunnen op enorm veel manieren worden gecombineerd. Daardoor
kan de optimaliteit van een zekere combinatie van technieken niet voor 100% worden
gegarandeerd op basis van empirisch onderzoek. Wel zijn er uit ervaring ‘gangbare
praktijken’ ontstaan; de belangrijkste hiervan werden uitgebreid getest door Chen en
Goodman, waarvan tenslotte de voornaamste resultaten werden vermeld.

E.2. Grammatica-gebaseerde taalmodellen

Dit hoofdstuk motiveert, en geeft een overzicht van grammatica-gebaseerde (statisti-
sche zowel als niet-statistische) taalmodellen. Het onderwerp van deze thesis wordt
gesitueerd in dit onderzoeksveld.

E.2.1. Motivatie

De traditionele taalmodellen, die in het vorige hoofdstuk aan bod kwamen,&tefini

de afhankelijkheden niet volgens de grammaticale structuur van de invoerzin. Dit sim-
plisme is mee verantwoordelijk voor de verre achterstand van taalmodellen op hun
menselijke equivalenten. Om toch tot taalmodel van aanvaardbare kwaliteit te komen,
is een heel groot toepassingsspecifiek traincorpus nodig, en dit is niet altijd commer-
cieel haalbaar. Taalmodellen zijn tenslotte erg toepassingsspecifiek: ze zijn moeilijk
herbruikbaar voor een andere toepassing, dan waarvoor ze ontwikkeld werden.
Grammatica-gebaseerde taalmodellen baseren (al dan niet probabilistische) regels op
grammaticale structuur. De gunstige resultaten bekomen met recente grammatica-
gebaseerde taalmodellen, met inbegrip van het op linkerhoekontleding gebaseerde
taalmodel, tonen aan dat grammaticale structuur wel degelijk een nuttige manier biedt
om taalmodelprobabiliteiten te schatten.

Men hoopt eveneens dat grammaticaal gestructureerde afhankelijkheden ook gene-
rieker zijn; d.w.z. dat ze, eenmaal aangeleerd voor de ene toepassing, geheel of ge-
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deeltelijk overgedragen kunnen worden naar andere toepassingen. Dit hypothetische
voordeel werd nog niet grondig onderzocht, en valt ook buiten het bestek van deze
thesis.

E.2.2. Grammatica-gebaseerde taalmodellen: een overzicht

Er is een onderscheid tussen taalmodellen gebaseerd op eindige-toestandsgrammati-
ca’s finite-state grammard$SG), contextvrije grammatica’sgntext-free grammays

CFG) en contextgevoelige grammatica®iftext-sensitive grammar€SG). De pro-
babilistische uitbreidingen van FSG, CFG en CSG worden verder in deze tekst respec-
tievelijk PFSG, PCFG en PCSG genoemd.

Deze drie soorten grammatica’s verschillen in verscheidene opzichten. De belangrijk-
ste zijn:

1. Hetvermogen van een grammatica om complexe afhankelijkheden met een com-
pacte (lingiistisch begrijpbare) set van regels voor te stellen. Deze eigenschap
wordt desterke generatieve capacitgitrong generative capacitygenoemd.

Een (P)CSG is in dit opzicht superieur tegenover een (P)CFG, die op zijn beurt
superieur is aan een (P)FSG. Voor een grammatica-gebaseerd taalmodel is een
(P)CSG-formalisme dus in dit opzicht te verkiezen, omdat deze leidt tot min-
der parameters en een meer waarheidsgetrouwe veralgemening van structurele
afhankelijkheden.

2. De efficiéntie van de ontleding volgens een bepaalde grammatican Akt
aantal woorden van de invoerzin is, vergt ontleding met een (PYB@Gcom-
putertijd, met een (P)CFG echt&(n®). Voor ontleding met een (P)CSG zijn
er geen algemeen geldende complexiteitsanalyses, maar deze vergt minstens
O(n®) computertijd. In een probabilistische context kan de éffitie wor-
den opgedreven door het vroegtijdig afbreken van onwaarschijnlijke analyses;
een rigoreuze stochastische complexiteitsanalyse is in deze gevallen meestal te
moeilijk.

3. Integratie in een zoekalgoritme (zoals in ASH): een FSG kan zeer nauw verwe-
ven zijn met het zoekalgoritme, wat esingle-passzoektocht mogelijk maakt.
Een CFG past ook in eegingle-passzoektocht, maar het is meestal computa-
tioneel voordeliger om de CFG-ontleding toe te passen op het intermediaire
resultaat van een eerste zoekpas; dit kan een beperkte lijst van waarschijnlij-
ke zinshypothesen zijn (typisch 1@01000), of een woordgraaf (waarin elk
pad een zinshypothese voorstelt). CSG-gebaseerde taalmodellen zijn meestal te
complex om op een woordgraaf toe te passen.
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Eindige-toestandsgrammatica’s

De meeste taalmodellen, die in de eerste zoekpas van een spraakherkenner worden ge-
bruikt, zijn gebaseerd op een (P)FSG of kunnen als dusdanig worden beschouwd. Zo
zijn n-grams alomtegenwoordig op het gebied van ASH met een groot vocabularium.

In command-and-contr@n andere toepassingen waarbij de dialoog tussen de gebrui-
ker en de machine zeer gecontroleerd verloopt, zijn handgeschreven FSG-grammati-
ca’s gebruikelijk. Spraakherkenningsbibliotheken accepteren soms ook CFG-regels
als invoer, maar zetten deze intern om in een FSG.

Context-vrije grammatica’s

CFG-parsers (gebruikt als taalmodellen) die met de hand geschreven zijn vinden ty-
pisch hun toepassing in ASH met een klein vocabularium. CFG’s die een algemener
taalgebruik modelleren hebben een extreme neiging tot overgeneratie; daarom hebben
ze vooral zin in een probabilistische context (PCFG).

De integratie van het (P)CFG-gebaseerde taalmodel met de zoekmotor van een spraak-
herkenner is problematischer dan het (P)FSG-gebaseerde taalmodel. Voor zeer be-
perkte toepassingen kan het (P)CFG-gebaseerde taalmodel in de eerste zoekpas ge-
integreerd worden, maar meestal is het nodig om de eerste zoekpas met een eenvou-
dig (P)FSG-gebaseerd taalmodel te doorlopen (b.v.negram), en de resulterende
woordgraaf of beperkte lijst van kandidaathypothesen te herscoren of te filteren met
de PCFG, respectievelijk CFG.

Uitbreidingen op contextvrije grammatica’s

Het CFG-formalisme blijkt ontoereikend voor de beschrijving van algemener taalge-
bruik, b.v. zoals die zich voordoet in kantoordicteersystemen of in journalistiek proza.

Unificatie-gebaseerde grammatica’s (UB@iificatie is een algemeen principe dat
in de meeste huidige grammatica-formalismen wordt toegepast. Het principe
houdt in dat een zinsdeel wordt gekenmerkt door een kenmerkenvector, i.p.v.
enkel een syntactische categorie. De unificatie-operator controleert de vere-
nigbaarheid van overeenkomstige kenmerken in twee of meer kenmerkenvec-
toren. Op deze manier kunnen fenomenen zoals overeenkomst in getal op een
beknopte manier worden voorgesteld. Egtexicaliseerdegrammatica is een
bijzondere vorm van een UBG, nl. waarin de kenmerkenvector bestaat uit twee
kenmerken: de syntactische categorie en het hoofdwoord.

Dependency- en link-grammatica’s: deze stellen de structuur van een zin niet voor
als een boom, maar d.m.v. rechtstreekse afhankelijkheden tussen de woorden
zelf. De experimentele resultaten die behaald werden met taalmodellen, geba-
seerd op dependency-grammatica’s, waren niet overtuigend. Hun verdienste
ligt voornamelijk op het methodologische viak: de nadruk op lexicalisatie en
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contextgevoeligheid, twee eigenschappen die van belang zijn voor het succes
van de huidige grammatica-gebaseerde taalmodellen.

History-gebaseerde grammatica’s: deze stellen de generatie van een zin en zijn

bijhorende structuur voor als een reeks van elementaire acties. De probabi-
listische voorspelling van de volgende elementaire actie is gebaseerd op de
voorgaande elementaire acties, waarvoor de algemeen bruikbare technologie-
en van tijdreeksvoorspelling kunnen worden aangewend (b.v. modellering met
een Markov-keten).

Al deze pogingen leidden tot complexe, zware taalmodellen die inferieur bleven t.o.v.

traditionele taalmodelleringstechnieken voor toepassing in ASH met groot vocabula-
rium. De belangrijkste hinderpaal was een tekort aan trainmateriaal (d.i. handmatig

geanalyseerde tekst), gegeven het detail van de gebruikte grammaticale formalismen.
De vooruitgang op het gebied van probabilistische ontleding gaf het onderzoek op

taalmodellen een antwoord op enkele belangrijke vragen:

1.

3.

Wat is de juiste verhouding tussen de hoeveelheid aan trainmateriaal en de ver-
fijning van het grammaticale formalisme?

Welke zijn de kenmerken van een palt ontleding die predictief genoeg zijn
voor het verdere verloop van de zinsgeneratie?

Hoe verkrijgt men op automatische wijze voldoende trainmateriaal?

In de volgende paragraaf bespreek ik enkele resultaten van het huidige onderzoek naar
grammatica-gebaseerde taalmodellen.

Het PLCG-gebaseerde taalmodel en zijn soortgenoten

Het PLCG-gebaseerde taalmodel maakt deel uit van een recente generatie van taalmo-
dellen met een aantal gemeenschappelijke kenmerken:
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Ze vertrekken van een generatieve, probabilistische kijk op grammatica. Dit wil
zeggen dat de toepassing van een grammaticaregel een stukje van de zin of de
zinsstructuur genereert met een zekere waarschijnlijkheid. Deze waarschijnlijk-
heid hangt af van de voorgeschiedenis, en wordt geschat uit een corpus van met
de hand ontlede zinnen.

De voorgeschiedenis wordt niet voorgesteld als een reeks elementaire acties,
maar als het resultaat van die elementaire acties (detlgadf intermediaire
ontleding).

Lexicale kenmerken (met name hoofdwoorden) van deglarintleding spelen
een belangrijke rol in de predictie van de volgende elementaire actie.
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. De waarschijnlijkheid van een zin wordt berekend als de som van de waarschijn-
lijkheden van alle mogelijke afleidingen (generatie-scenario’s) van die zin.

Deze gemeenschappelijke kenmerken laten uiteraard nog vele mogelijkheden tot vari-
atie toe. Zo zijn nog te bepalen: de voorstelling van de grammaticale structuur (het
grammaticale formalisme), de elementaire acties, de belangrijkste kenmerken van een
partiéle ontleding, en de strategie om alle mogelijke afleidingen bij te houden.

Nu volgen enkele voorbeelden van zulke taalmodellen. Deze worden vergeleken met
het PLCG-gebaseerde taalmodel.

Het taalmodel van Chelba and Jelinek [1999] (C&J) vervulde een pioniersrol, in die
zin dat het als eerste grammatica-gebaseerd taalmodel significante verbeteringen in de
nauwkeurigheid van ASH met groot vocabularium wist te realiseren.

Het model gaat uit van een eenvoudjg@ase-structure grammgPSG), waarin elk
constituent benoemd wordt met een syntactische categorie — b.v. ‘noun phrase’ —
en een hoofdwoord — b.v. ‘boek’ voor ‘een spannend boek’. De ontleding volgt een
shift-reducestrategie, die essentieel ebottom-upmethode is. Het taalmodel breidt

in parallel de paréle ontledingen uit die zich boven een bepaalde waarschijnlijkheids-
drempel bevinden; hiervoor gebruikt het een variantlvaam search

Roarks taalmodel [Roark, 2001] gaat uit van hetzelfde grammaticale formalisme, en
past eveneeneam searchlioe, maar gebruiktop-downontleding met eemottom-
up-filtermechanisme. De selectie van de kenmerken uit eenéfmudintleding, die

het verdere verloop van de afleiding conditioneren, is niet vast zoals bij C&J. Deze
worden bepaald met een handmatig geoptimaliseerde beslissingsboom.

Het taalmodel van Charniak [2001] is een buitenbeentje: dit model geeft enkel de
probabiliteit van de volledige zin, niet van gedeelten ervan, noch de conditionele pro-
babiliteit van een woord gegeven de voorafgaande. Dit is een belangrijk nadeel, vooral
met betrekking tot de mogelijkheid tot combinatie met andere taalmodellen. Ander-
zijds zijn de prestaties van het model in termen van perplexiteit beter dan die van C&J
en Roark, en vergelijkbaar met het PLCG-gebaseerd model. Spijtig genoeg werden
geen spraakherkenningsresultaten met Charniaks model gepubliceerd.

Dit model opereert in twee stadia: in het eerste stadium selecteert het kandidaat-
afleidingen met behulp vamottom-up chart parsingn het tweede stadium herschat

het model de probabiliteit van de kandidaat-afleidingen inteprdownrichting.

Het PLCG-gebaseerd taalmodel, tenslotte, gebruikt hetzelfde grammaticale forma-
lisme als C&J, Roark en Charniak, maar gebruikt linkerhoekontledifty ¢orner
parsing. De richting van linkerhoekontleding kan omschreven worderbatsom-

up, weliswaar met eetop-downfiltermechanisme; dit laatste betekent een poétmti

winst t.0.v. puubottom-upafleiding, zoals in het C&J-model. In zekere zin is linker-
hoekontleding duaal aan Roarkap-downontleding. Het PLCG-gebaseerde taalmo-
del past een vorm van dynamische programmering (DP) toe, waarbij identieke stukken
van verschillende afleidingen slechts 1 keer wordt uitgevoerd; dit is een andere winst
in efficiéntie t.0.v. beam search. Anderzijds blijkt voor de toepassing van DP een vaste
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keuze van kenmerkextractie uit de pélei afleidingen noodzakelijk, zoals ook in het
C&J-model, in tegenstelling tot de modellen van Roark en Charniak.

E.2.3. Besluit

Grammatica-gebaseerde taalmodellen zijn potentieel superieur aan traditionele taal-
modellen op het vlak van ASH met groot vocabularium. Dit wordt bekomen door

de veralgemeningen, aan te leren uit het beschikbare trainmateriaal, grammaticaal te
structureren. Hierbij wordt aangenomen dat grammaticaal gestructureerde veralgeme-
ningen minder onderhevig zijn aan het toeval (dan de veralgemeningen die traditionele
taalmodellen leren).

In de praktijk blijken pas de meer recente probabilistische grammatica-gebaseerde taal-
modellen, waaronder het PLCG-gebaseerde taalmodel, deze verwachting in te lossen.
Sleutels tot het succes van deze taalmodellen zijn: een hoge mate van conditionering
van probabiliteitsschattingen op lexicale informatie, en conditionering op niet-locale
kenmerken van de paéle afleiding, waardoor de vooronderstelling van contextvrij-
heid vervalt.

Totnogtoe ligt een riave, eenvoudigphrase-structure grammaran de grondslag van

het PLCG-gebaseerde taalmodel en ermee verwante modellen. Deze keuze werd voor-
al bepaald door de beschikbaarheid van het ‘Penn Treebank’-corpus. De ontwikkeling
van taalmodellen, gebaseerd op meer geavanceerde vormen van unificatie-gebaseerde
grammatica’s, zal pas mogelijk zijn zodra er voldoende geschikt trainmateriaal be-
schikbaar wordt.

E.3. Een taalmodel gebaseerd op probabilistische
linkerhoekontleding

Dit hoofdstuk beschrijft de ontwikkeling van een taalmodel, dat gebaseerd is op pro-
babilistische linkerhoekontleding. Dit taalmodel is een antwoord op de hoofdvraag
van mijn thesis: op welke manier kan eenvoudige grammaticale voorkennis bijdragen
tot betere statistische taalmodellen?

E.3.1. Probleemstelling en methodologie

Statistische taalmodellen modelleren eigenlijk de probabilistische generatie van een
zin. Het ligt bijgevolg voor de hand de grammaticale analyse vanuit het generatieve
aspect te bekijken: de ontleding van een zin bestaat uit de generatie van een gramma-
ticale structuur die tot die zin leidt.

De eerste stap van de oplossing bestaat uit de rechtstreeks afleiding van de probabili-
teiten van elementaire ontledingsstappen (dit zijn dus eigenlijk generatiestappen) uit
eentreebank d.i. een grote verzameling van vooraf ontlede zinnen. Zodoende wordt
de handmatige invoering vermeden van grammaticale voorkennis in de vorm van een
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beperkte set van regels, die niet-probabilistisch, en in die zin ongenuanceerd zijn. De
datagebaseerde aanpak bleek in recent, vergelijkbaar onderzoek erg succesvol, in het
bijzonder voor ASH met een groot vocabularium.

De afgeleide vraag is bijgevolg hoe de elementaire ontledingsstappen er moeten uit-
zien, m.a.w. welke ontledingsstrategie optimaal is. Ik koos voor linkerhoekontleding,
die de analyse vanuit de eigenlijke zin koppelt aan de verwachtingen omtrent zijn glo-
bale structuur; deze strategie vermijdt hierdoor de inéffite die ontstaat uit het op-
bouwen van deelanalyses vanuit de zin die achteraf niet in de globale structuur blijken
de passen, of het opbouwen van globale structuren die achteraf niet op de eigenlijke
zin blijken te passen. Ik defidger een PLCGprobabilistic left corner grammarals

het ensemble van de probabiliteiten van de elementaire stappen van de linkerhoekont-
leding.

De kracht van de datagebaseerde aanpak ligt in de mogelijkheid om probabiliteiten
te schatten die geconditioneerd zijn op zeer gedetailleerde eigenschappen van deel-
analyses. Hierdoor verhoogt het aantal mogelijke analyses voor een zin aanzienlijk;
bijgevolg is de effigéntie van het ontledingsalgoritme, die alle probabiliteiten van deze
analyses accumuleert, cruciaal. Hiervoor werd een recursieve rekenstrategie, die geba-
seerd is op het principe van dynamische programmatie, ontwikkeld. Het resulterende
ontledingsalgoritme kan zonder meerkost gebruikt worden als een conditioneel taal-
model — het PLCG-gebaseerde taalmodel — en laat toe om de PLCG-probabiliteiten
te herschatten op ongeanalyseerde tekst.

E.3.2. Probabilistische linkerhoekontleding

Deze sectie ontwikkelt het concept van probabilistische linkerhoekgrammatica, PLCG
(probabilistic left corner grammarHet uitgangspunt is linkerhoekafleiding en de lin-
kerhoekautomaat (LCAeft corner automaton)De LCA wordt vervolgens uitgebreid

naar zijn probabilistische formulering PLCA, met conditionering van de elementaire
LCA-stappen op niet-locale en/of lexicale contextkenmerken; de PLCG zal bestaan uit
het ensemble van de conditionele probabiliteiten van de elementaire contextgevoelige
PLCA-stappen.

Niet-probabilistische linkerhoekontleding

Niet-probabilistische ontleding is gekend als een éffité ontledingsstrategie voor
contextvrije grammatica’s. Het meest gekende canonieke afleidingsschiefitradst
derivation dat erin bestaat, vertrekkende van het startsymbool, steeds het meest linkse
niet-terminale symbool te herschrijven. Daarnaast bestaan er vele andere canonieke
afleidingsschema’s, waarvéinkerhoekafleidinger één is.

Linkerhoekafleiding vertrekt vanuit het startsymbool en is een opeenvolging van 3
soorten elementaire stappen: (a) BenFT-stap genereert een volgend woord; d.w.z.

als reeds de woordem . ..w; werden gegenereerd, dan zal senFT(w) het volgende
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woordw;1 =wgenereren. (b) EePROJECTFStap voorspelt vanuit een volledige doch-
terknoop de categorie van de moeder en die van de rechterzusters. (g)TBem-

stap verbindt een volledig geanalyseerde dochterknoop aan de volgende openstaande
knoop van een onvolledige (moeder-)knoop.

De linkerhoekautomaat of higift corner automatoLCA) simuleert de generatie van

een zin met zijn analyse volgens het linkerhoekafleidingsschema. Het LCA wordt om-
schreven als een push-down-automaat waarvan de stapelementen constituenten zijn,
en de stapelmutatieregels overeenkomen met linkerhoekafleidingsstappen.

Deze LCA kan nu op een probabilistische manier worden geherformuleerd tot een
PLCA, door aan elke stapelmutatieregel een probabiliteit toe te kennen. Deze pro-
babiliteit is geconditioneerd op de twee constituenten die zich in de uitgangspositie
bovenaan de stapel bevinden. Nu kan het begrip ‘constituent’ met een context worden
uitgebreid; de context bestaat uit enkele welgekozen, niet-locale en mogelijk lexicale
kenmerken van gedeeltelijke ontledingsbomen. Welgekozen, omdat de context van
enkel de constituent bovenaan de stapel volstaat om de probabiliteit van elke volgen-
de stapelmutatieregel te conditioneren, en omdat de context van nieuwe constituenten
via overervingsregels uit de context van oude constituenten volgt. Niet-locaal, omdat
deze kenmerken komen van knopen die zich verder af bevinden dan de locale knoop
waarop het constituent betrekking heeft. Met lexicale kenmerken wordt bedoeld: met
elke knoop van de ontledingsboom wordt een hoofdwoord geassocieerd; d.i. het be-
langrijkste woord in het zinsdeel dat zich onder de knoop bevindt.

De conditionele probabiliteiten van de stapelmutatieregels van de PLCA vat ik samen
onder de noemer van een shift-submodel, project-submodel en attach-submodel. De-
ze drie submodellen vormen samen een probabilistische linkerhoekgrammatica, ofwel
probabilistic left corner grammafPLCG). De PLCG wordt daitialiseerd op een
treebank door elke ontledingsboom te herschrijven als een opeenvolging van stapel-
mutaties volgens het linkerhoekafleidingsschema, en de conditionele probabiliteiten
te schatten als uitgevlakte relatieve frequenties van stapelmutaties.

E.3.3. PLCG-ontleding in een compact netwerk

In de vorige paragraaf werd een linkerhoekafleiding voorgesteld als een opeenvolging
van elementaire stapelmutaties van een PLCA. Voor de gelijktijdige voorstelling van
vele alternatieve afleidingen die dezelfde zin genereren, schakel ik nu over naar een
equivalente netwerkvoorstelling. Een linkerhoekafleiding wordt nu voorgesteld door
eenpad dit is een lineair netwerk, waarvan elke knoop overeenkomt met een stapel,
en elke pijl overeenkomt met een elementaire stapelmutatie, zodat de stapelmutatie,
toegepast op de stapel van de bronknoop, resulteert in de stapel van de doelknoop. De-
ze voorstelling kan verder zonder verlies van informatie vereenvoudigd worden door
enkel het constituent dat zich bovenaan de stapel bevindt, bij elke knoop te vermelden,
in plaats van de volledige stapel.
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Het PLCGnetwerkvoor een bepaalde invoerzin is het minimale netwerk dat alle mo-
gelijke paden bevat die deze zin genereren. Het netwerk is minimaal in die zin dat
geen twee verschillende knopen mogen voorkomen die met hetzelfde constituent over-
eenkomen.

Het PLCG-netwerk voor een bepaalde invoerzin wordt dynamisch opgebouwd door
een woord-synchroon ontledingsalgoritme. Dit algoritme berekent van elke knoop
(a) devoorwaartseprobabiliteit, d.i. de som van de probabiliteiten van de deelpaden
die vertrekken in de iniéile knoop en in deze knoop aankomen; (b)imeendige
probabiliteit, d.i. de som van de probabiliteiten van het gedeelte van deze deelpaden
vanaf de shift-operatie van het eerste woord van het zinsdeel waarop de huidige knoop
betrekking heeft. Deze berekening gebeurt gelijktijdig met het opbouwen van het
netwerk en is incrementeel, waardoor het algoritme de constructie van knopen kan
vermijden waarvan de voorwaartse probabiliteit verwaarloosbaar klein is. Op deze
manier wordt het netwerk ‘gesnoeid’.

E.3.4. Het PLCG-gebaseerde taalmodel

Het PLCG-gebaseerde taalmodel volgt uit een kleine aanpassing van het woord-syn-
chrone PLCG-ontledingsalgoritme. De probabiliteit van de volledige invoerzin is na-
melijk de voorwaartse probabiliteit van de eindknoop.

De probabiliteit van het gedeelte van een zin vanaf het eerste woord tot een bepaald
woord, blijkt bekomen te kunnen worden als de som van de voorwaartse probabilitei-
ten van de knopen die zich vlak na de shift-operatie van dat bepaalde woord bevinden,
ofwel als de som van de voorwaartse probabiliteiten van de knopen die zichbdak v

de shift-operatie van het woord bevinden dat na dat bepaalde woord zou volgen.

Uit de vorige eigenschap volgt een eenvoudige formule voor de conditionele probabi-
liteit van een woord, gegeven de voorgaande woorden: deze is namelijk een gewogen
gemiddelde van shift-probabiliteiten, waarin de genormaliseerde voorwaartse proba-
biliteiten van de respectievelijke bronknopen van de shift-operaties, als respectieve
gewichten fungeren.

Ten slotte werd een iteratieve procedure voor de herschatting van PLCG-probabili-
teiten op ongeanalyseerde tekst ontwikkeld. Deze is gebaseerd egdestation-
maximizatiofEM)-algoritme. Het PLCG-netwerk blijkt hierbij andermaal nuttig, na-
melijk voor de berekening van de verwachte frequenties van elke operatie. Deze be-
rekening maakt gebruik vamitwendigeprobabiliteiten, die complementair zijn aan
inwendige probabiliteiten, en recursief achterwaarts berekend worden vertrekkende
vanuit de eindknoop.

E.3.5. Besluit

In dit hoofdstuk beschreef ik de ontwikkeling van het PLCG-gebaseerde taalmodel uit
een efficént woord-synchroon PLCG-ontledingsalgoritme. Het algoritme bouwt op
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een dynamische manier een probabilistisch netwerk op, waarin elk pad overeenstemt
met een mogelijke linkerhoekafleiding. De PLCG-probabiliteiten worden initieel ge-
schat uit een treebank met behulp van gebruikelijke taalmodelleringstechnieken, en
kunnen verder worden herschat op ongeanalyseerde tekst met een EM-gebaseerde ite-
ratieve procedure.

E.4. Experimenten met het PLCG-gebaseerde taalmodel

De experimenten worden in twee fasen uitgevoerd. De eerste fase bestaat uit een
studie van de effecten van verschillende submodelparametrisaties en snoeiparameters
op de testsetperplexiteit en de uitvoercomplexiteit, en uit een vergelijking van het
PLCG-gebaseerde taalmodel met andere grammatica-gebaseerde modellen op basis
van de testsetperplexiteit. In de tweede fase worden de mogelijkheden van het PLCG-
gebaseerde taalmodel verkend op een spraakherkenningstaak met groot vocabularium.

E.4.1. Parametrisatie en optimalisatie van de submodellen
Modellering

De train- en testdata werden geselecteerd uit de WSJ-sectie van de Penn Treebank
(PTB). Training gebeurde op secties 0—-20. Secties 21-22 dienden als testmateriaal
voor optimalisatiedoeleinden tijdens de ontwikkelingsfase, terwijl 23—24 voorbehou-
den bleven voor de vergelijkende evaluatie met andere grammatica-gebaseerde model-
len. Alle data uit de Penn Treebank ondergingen een voorverwerkingsprocedure die
volledig analoog is aan de procedure beschreven in [Chelba, 2000]; er werd bovendien
een versie voorzien waarin de leestekens behouden bleven. De voornaamste stappen
uit de voorverwerking zijn de binarisatie en de hoofdwoordpercolatie.

De parametrisatie van een PLCG-submodel bestaat uit de keuze van de relevante ken-
merken van de constituent die als gegeven wordt beschouwd voor de conditionele
probabiliteit van een elementaire operatie; hoe meer gedetailleerd deze kenmerken,
des te preciezer het submodel, maar ook des te moeilijker de schatting van het sub-
model wegens dataschaarste wordt. De parametrisatie legt tevens de volgorde van de
belangrijkheid van de kenmerken vast.

Voor elk submodel werd manueel een parametrisatie gezocht die de conditionele per-
plexiteit — d.i. een fictieve testsetperplexiteit bekomen door de andere submodellen
te vervangen door ‘wizards’, die dus geen bijkomende anitd@guntroduceren —
minimaliseert. Een automatische gretige zoekprocedure bleek achteraf, op een klein
detail na, dezelfde parametrisaties op te leveren.

Drie verschillende technieken voor de uitvlakking van de submodellen worden verge-
leken: Good-Turing-discounting met Katz-back-off (GT), absolute discounting met
lineaire Kneser-Ney-back-off (KN), en lineaire context-afhankelijke discounting met
‘deleted interpolation’ (D).
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Als referentiemodellen fungeerden een GT-, KN- en DI-versie van een woordgeba-
seerde trigrammodel getraind op hetzelfde traincorpus (het tekstgedeelte van secties
0-20 van de PTB).

Metingen

Met de snoeiparameters kunnen de nauwkeurigheid en de tijds- en geheugeneffici-
entie van het PLCG-gebaseerde taalmodel ingesteld worden. Bij een redelijke balans
tussen nauwkeurigheid en efficitie verlaagt het PLCG-gebaseerde taalmodel de test-
setperplexiteit van het trigrammodel met typischal05 percent. Bij deze instelling
bedraagt de uitvoeringssnelheid bedraagt typisch 50 woorden/sec op een P111/930Mhz
PC. De voorspelling van het 15de woord van een zin vergt dan gemiddeld 200 shift-
stappen.

De gebruikte uitvlakkingstechniek blijkt een belangrijke invioed te hebben. KN is
superieur t.0.v. GT en DI; GT heeft een lichte voorsprong op DI, maar zoals verder zal
blijken, is DI bruikbaarder voor herschatting. Uit de experimenten werd niet duidelijk

of met een DI-herschat PLCG-gebaseerd taalmodel betere resultaten kunnen worden
bekomen dan met een niet herschat KN-uitgevlakt PLCG-gebaseerd taalmodel.

In vergelijking met de rivaliserende grammatica-gebaseerde taalmodellen scoort het
PLCG-gebaseerde model uitstekend, verwijzend naar Table E.1. Het haalt de laagst
vermelde perplexiteit van 126, en heeft telkens voordelen t.o.v. de andere taalmodellen,
zoals combineerbaarheid met andere taalmodellen en de lagere kost van de ontwikke-
ling en het gebruik van het model.

E.4.2. N-best-lijsten van spraakherkenningshypothesen herscoren
Modellering

Het gebruikte trainmateriaal is het BLLIP-WSJ corpus (een automatisch zinsontleed
corpus) aangevuld met het traincorpus dat voor de PTB-modellen ook werd gebruikt.
De voorverwerking, parametrisaties en uitvlakkingstechnieken voor de PLCG-geba-
seerde modellen werden overgenomen uit de PTB-modellen. Het referentiemodel
is een woordgebaseerd trigrammodel, getraind in 3 versies (met GT-, KN- en DI-
uitvlakking).

Woordfoutfrequentie

Als test heb ik de ‘Wall Street Journal’(WSJ)-taak van november 1992 van DARPA
geselecteerd. In een eerste stap werd met een standaard spraakherkenner en het stan-
daardtrigram voor elke testzin een lijst gegenereerd van de 100 hoogst scorende hy-
pothesen. Vervolgens herscoorde het PLCG-gebaseerde taalmodel deze hypothesen,
waarna de hoogstscorende hypothese als herkenningsresultaat gold.
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Tabel E.1.Vergelijking van perplexiteiten (op PTB secties 23-24 zonder leestekens) bekomen
met het PLCG-gebaseerde taalmodel en andere grammatica-gebaseerde taalmodellen. De C&J-
modellen werden met 3 iteratiestappen herschat. Het PLCG-gebaseerde taalmodel werd niet
herschat.

DI GT KN

PPL zonderkunk> PPL PPLi PPL PPLi PPL PPLI
woordgebaseerd 3-gram 194 194 191 191 173 173
PLCG 178 164 174 161 154 145
C&J 187 174

PPL met<unk> PPL PPLi PPL PPLi PPL PPLI
woordgebaseerd 3-gram 167 167 166 166 156 156
PLCG 151 139 150 138 133 126
C&J 15% 147 1419 1308
Roark 152 137

Charniak 136 126

a Bekomen door F. Van Aelten and K. Daneels at L&Hhekomen met een
herimplementatie van [Chelba, 2000] door [Van Aelten and Hogenhout, 2000];
zoals vermeld in [Chelba, 2000, p. 49]zoals vermeld in [Kim et al., 2001};zoals
vermeld in [Roark, 2001, p. 270§;zoals vermeld in [Charniak, 2001].

In vergelijking met het referentiemodel realiseerde het PLCG-gebaseerde model een
verlaging van de woordfoutfrequentie van 7.98% naar 7.03%, d.i. een relatief verschil
van 12%. Voor het C&J-model bedraagt deze relatieve verbetering slechts 6%.

E.5. Besluit en perspectieven

E.5.1. Oorspronkelijke bijdragen

De algemene doelstelling van deze thesis was de introductie van grammaticale voor-
kennis in een statistisch taalmodel dat bruikbaar is voor ASH met een groot vocabula-
rium.

Deze resulteerde in het PLCG-gebaseerde taalmodel, dat zich op probabilistische lin-
kerhoekontleding baseert. Zowel in nauwkeurigheid als éffig is het een competi-

tief alternatief ten opzichte van andere recente grammatica-gebaseerde taalmodellen.
Voor de nauwkeurigheid werd linkerhoekontleding uitgebreid met een gedetailleerde
conditionering van de probabiliteiten op niet-locale en eventueel lexicale kenmerken
van de deelanalyses; voor de efficiie ontwikkelde ik een zoekalgoritme dat het
principe van dynamische programmatie toepast, en dat de grammatica voorstelt als
een compact probabilistisch zoeknetwerk.
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E.5.2. Perspectieven

De efficiéntie van de ontleding kan mogelijk verhoogd worden door een hybride com-
binatie van linkerhoekontleding en ondiepe ontledingstechniekieallow parsing,.

De huidige formulering van het PLCG-gebaseerde taalmodel gaat uit van een eenvou-
dige grammatica, zonder het gebruik van unificatie; hierin ligt een mogelijkheid tot
verfijning van het model.
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