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Abstract

In this thesis, we successfully apply connectionist approaches, particularly
the Multi-Layer Perceptron (MLP), to tasks of speech recognition. We
present in detail the Back Propagation theory and its implementation is-
sues, including a modified weight adaptation algorithm. We provide a
weight updating strategy to speed up the convergence during network train-
ing. The training data is balanced phonetically such that the network treats
all phonemes equally. We introduce a random database generator to obtain
a robust MLP network. We introduce the fuzzy MLP into speech recog-
nition and use the overlapped Hamming window as the fuzzy membership
function for the MLP output.

We design and implement the Multi-Layer Perceptron to be used as a
labeler for the Hidden Markov Model (HMM) system, which combines the
good short-time classification properties of MLLPs with the good integration
and overall recognition capabilities of discrete HMMs. The standard vector
quantization has been replaced by an MLP labeler giving phone-like labels
in an MLP/HMM hybrid system. Compared with using MLPs as proba-
bility generators for HMMs, our system is more flexible in system design
because it can use the word models instead of phonetic models. Moreover,
as it does not need to be trained to reach a global minimum, the network
can have fewer hidden units and therefore can be trained faster. Also, we
do not need to retrain our MLPs with segmentations generated by a Viterbi
alignment. Compared to Euclidean labeling, our method has the advan-
tages of needing fewer HMM parameters per state and of obtaining higher
recognition accuracy.

We use histograms to illustrate the MLP output value for each phonetic
class. From those MLP output histograms, we observe that the winner-



take-all MLPs ignore the relativity of different phonetic classes. We extend
our base-line winner-take-all method to several Top-N methods. A series of
MLP/HMM hybrid models are discussed to fully use the MLP output infor-
mation and to improve the speech recognition performance. Those inves-
tigated models are: MLP multi-dimensional labeling, MLP multi-labeling,
MLP fuzzy-labeling, multi-MLP multi-labeling and multi-MLP fuzzy label-
ing.
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A/D Analog/Digital

ANN Artificial Neural Network
ASR Automatic Speech Recognition
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DFT Discrete Fourier Transform
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D VQ distortion
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E Mean square error

E, MLP error for input pattern p

E[z] Linear prediction error in the z-domain
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F() Semi-linear function (sigmoid function)
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G Vocal tract excitation gain

Hlz] Vocal tract spectrum in the z-domain

L Codebook length

M Number of samples of frame shift

N Window length

P Linear prediction order
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e[n] Linear prediction error signal



ix

Frequency

Mel-scaled Frequency or discrete time index

Fuzzy VQ observation component

Discrete time index

Number of units in the MLP input layer

Number of units in the MLP hidden layer (only one hidden layer)
Number of units in the MLP output layer

i-th state in an HMM

Sampled speech signal
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Time
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Weight change for the input pattern p
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MLP total input to unit j for the input pattern p






Contents

Acknowledgments i
Abstract v
Glossary vii
List of Abbreviations . . . . . . . . . . . .. vii
List of Symbols . . . . . . . . ..o vii
Contents b'e
List of Tables XV
List of Figures xvii
1 Introduction 1
1.1 Motivation . . . . . . . . . . e 1
1.2 Automatic Speech Recognition . . . . ... ... ... ... 2
1.2.1 The Challenge of Speech Recognition. . . . . . . .. 4
1.2.2 The Stateof the Art . . . . . . ... ... ... ... 8
1.3 Neural Networks in Speech Recognition . . . . ... .. .. 11
1.3.1 Artificial Neural Networks . . . . . . . . . ... ... 11
1.3.2 Benefits of Neural Networks . . . . . . ... ... .. 11

1.3.3 Using Neural Networks for Speech Processing and
Recognition . . . . ... ..o o0 12

1.4 The Goal of This Dissertation and the Main Results of the
Work . . . . 14
1.5 Outline of the Dissertation. . . . . . . . . ... ... .... 15



CONTENTS

2 Speech Processing and Speech Recognition 17
2.1 Imtroduction . . . . . . .. ... ..o 17
2.2 Human Speech Production and Perception . . . . . .. . .. 17

2.2.1 Human Speech Production and Perception . . . . . 17

2.2.2  Information in the Speech Signal . . . . .. ... .. 18

2.3 A General Speech Recognition System . . . . ... ... .. 22

2.4 Signal Processing and Feature Extraction . . .. ... ... 23
2.4.1 Recording, First Order Pre-emphasis, Windowing and

Buffering . .. ... ... o o o 25

2.4.2 Spectral Analysis . . .. ... ... ... 26

2.4.3 Vector Quantization . . . .. ... ... ....... 33

2.5 Time Alignment and Pattern Matching . . .. .. ... .. 33

2.5.1 Dynamic Time Warping . . . . . .. ... ... ... 33

2.5.2 Hidden Markov Models . . . . ... ... .. .... 35

2.6 Natural Language Processing . . . . .. .. .. ... .... 38

2.7 Summary . ... ... 42

3 Multi-Layer Perceptron for Speech Recognition 43

3.1 Imtroduction . . . . .. .. ... ... 43
3.1.1 Multilayer Perception . . .. ... ... ....... 43
3.2 Back Propagation Algorithm . . .. ... ... ... ..., 45
3.2.1 Feed Forward Process . . ... ... ... ...... 46
3.2.2 Standard Delta Learning Rule . . . .. .. ... .. 48
3.2.3 Generalized Delta Rule and Backward Process . .. 49
3.2.4 Back Propagation Algorithm . . ... ... ... .. 52
3.3 BP Implementation . . . . . ... ... ... ... ... ... 53
3.3.1 Network Initialization . . .. .. ... ... ..... 53
3.3.2 Momentum Term and Learning Rate . . . . . . . .. 54
3.3.3  Weight Adaptation . . . ... ... ... ...... 54

3.4
3.5

3.6

3.3.4 Learning Time, Cross Validation and Stop Criterion 55
3.3.5 Modified Weight Adaptation and Weighted Training

Data . . . . . . ... 56
Scaling the Network . . . . .. .. .. .. ... ... ..., 57
Time Delay Neural Networks for Phoneme Recognition . . . 60
3.5.1 Structureof a TDNN . . .. ... ... ... .... 60
MLP for Speech Frame Recognition . .. ... ... .. .. 64
3.6.1 MLP Structure . . . . . ... ... 64

3.6.2 Random Frame Selection . . ... ... .. ..... 65



CONTENTS xiii

3.7
3.8

3.9

Analysis of the MLP Output . . ... ... ......... 70
Fuzzy Multi-Layer Perceptron . . . . . . .. ... ... ... 70
3.8.1 Fuzzy Set Theory in Speech Recognition . . . . . . . 72
3.8.2 Fuzzy Multilayer Perceptron . . . ... .. ... .. 73
3.8.3 Fuzzy Output and Weighted Input . . . . . ... .. 76
SUMMATY . . . . o o e e e e e 76

4 Vector Quantization and Connectionist Vector Quantiza-

tion

4.1

4.2

4.3

4.4

4.5

4.6

4.7

79
Introduction . . . . . ... o o L 79
Vector Quantization . . . . . . ... ... ... ....... 80
Conventional Vector Quantization . .. ... ... ... .. 82
4.3.1 Vector Quantization . . .. ... ... ... ..... 83
4.3.2 Clustering . . . . . . .. ... 85
4.3.3 Labeling . . . . ... ... ... L. 87
Hidden Markov Modeling . . . . .. .. .. ... ...... 88
44.1 Discrete HMMs . . . . . .. ... o oL 88
4.4.2 Conventional HMM Algorithms . . . . . .. ... .. 88
4.4.3 Modified Observation Probability . . . . . . ... .. 89
444 Modified HMMs . . ... ... ... ... ... .. 90
VQ/HMM Hybrid Modeling . . . . ... ... .. ...... 90
451 Discrete VQ/HMM . . . . . . ... ... ... .. 90
4.5.2  Mixture Density HMM . . . . . . ... ... ... .. 92
4.5.3 Multi-Labeling . . . . .. .. ... o0 94
4.5.4  Multi-Dimensional Labeling (Multiple Codebooks) . 96
4.5.5 Multi-Dimensional Multi-Labeling . . . .. ... .. 97
4.5.6 Fuzzy Vector Quantization . . ... ... ... ... 98
Multi-Layer Perceptron Vector Quantization . . . . . . . . . 99
4.6.1 Introduction . . ... ... ... ... 99
4.6.2 MLP Labeling . ... ... ... ... ........ 100
4.6.3 Comparison of the MLP Labeler with the Conventional-
VQ . . 102
4.6.4 Comparison of the MLP Labeler with the MLP Prob-
ability Estimator . . . . . . . ... ... oL 104
Hybrid MLP VQ/HMM Systems . . . . .. ... ...... 105
4.7.1  MLP Multi-Dimensional Labeling . . .. ... ... 105
4.7.2 MLP Multi-Labeling . . . . ... ... ... ..... 106

4.7.3 Multi-MLP Labeling . . . . ... ... ... ..... 109



xiv CONTENTS
4.7.4 Multi-MLP Multi-Labeling . . .. ... ... .... 111
4.7.5 MLP Fuzzy Labeling . . . . ... .. ... ...... 111
4.7.6  Multi-MLP Fuzzy Labeling . . . ... ........ 114

4.8 Summary . ... o e 118
5 Implementation and Experimental Results 119
5.1 Introduction. . . . . . .. .. ... ... ... .. ..., 119
5.2 Time Delay Neural Networks . . .. ... ... ... .... 119
5.2.1 Vocabulary and Database . . . . ... ... ..... 120
5.2.2 'TDNN for Phoneme Recognition . . . . .. .. ... 121
5.2.3 Results and Discussion . . . . . ... ... ... ... 122

5.3 Experimental Environment . . . . ... .. ... ... ... 123
5.3.1 Vocabulary . ... ... ... ... ... ... 123
5.3.2 Speech Database . . . ... ... ........... 123
5.3.3 Speech Signal Preprocessing . . . . . ... ... ... 124
5.3.4 Database Initialization . . . . . . .. . ... ... .. 124
5.3.5 Hidden Markov Models . . . . ... ... ...... 125

5.4 Multi-Layer Perceptron Basics and MLP Labeling . . . . . 126
5.4.1 Frame Classification . . . .. ... ... ... .... 126

5.5 MLP Labeling/HMM Hybrid System . . . . . .. ... ... 128
5.5.1 HMM Training for Phonetic Segmentation . . . . . . 128
5.5.2 Building the MLP Training Database . . . .. ... 129
5.5.3 MLP Training . . ... ... ... ... ....... 129
5.5.4 MLP Labeling . ... .. .. ... ... ....... 130
5.5.5  Second HMM Training . . . . . ... ... ... ... 130
5.5.6 Discussion and Results . . . . . ... ... ... ... 130

5.6 Random Frame Selection and Weighted Training Data . . . 131
5.6.1 Discussion and Results . . . . .. .. ... ... ... 135

5.7  MLP Multi-Dimensional Labeling . . . . .. ... ... ... 136
5.7.1 Building the MLP Training Database . .. .. ... 141
5.7.2 System Training . . . .. ... ... ... ...... 141
573 Top-N Labels . . . . . .. .. ... ... .. ..... 142
5.74 Output Adaptation. . . . . ... ... ... ..... 143
5.7.5 Discussion . . . . . . . . ... ... 144

5.8 MLP Fuzzy Labeling . . . .. .. ... ... .. ....... 145
5.8.1 Results and Discussion . . . . . . ... ... ... .. 145

5.9 Summary ... ..o 146



CONTENTS

Xv

6 Conclusions 149
6.1 Introduction. . . . .. .. ... ... Lo . 149
6.2 Contributions and Findings . . . . . . ... ... ... ... 149
6.2.1 Multi-Layer Perceptron . . . .. .. ... ... ... 149

6.2.2 Multi-Layer Perceptron Labeling . . . . . ... ... 150

6.2.3 MLP/HMM Hybrid Models . . . .. ... ... ... 151

6.3 Future Work and Suggestions . . . .. ... ... ... ... 153
6.3.1 MLP/HMM Hybrid Models . . . .. ... ... ... 153

6.3.2 Output Feed Forward Multi-Layer Perceptron . . . . 153



xvi CONTENTS




List of Tables

1.1

3.1

3.2

5.1
5.2

5.3

5.4
9.5

5.6

The complexity of the ASR problem expressed as a function
of operating mode and speaking rate . . . . . ... ... .. 7

An example of applying weighting factors to phonetically

labeled frames . . . . .. .. .o oo 68
Training data generated by random frame selection . . . . . 69
The Dutch digit phonetic transcription . . . . . . . . .. .. 123
Training data transcription with labels and weights for each

frame . . . . . . ... e 134
The recognition results for using data weighting method . . 135
The recognition results for multi-dimensional labeling . . . 143

The word recognition results obtained respectively from Equa-

tion 5.2 with « various, Equation 5.3 with § changing, and
Equation 5.4 with v having the different values. The best
result is printed in bold face. . . . ... ... ... ... .. 144
The recognition results for MLP fuzzy labeling . . . .. .. 146



xviii LIST OF TABLES




List of Figures

1.1 A time domain speech signal . . . ... ... ... .....
1.2 Dialog design with error-recovery . . . . .. . ... ... ..

2.1 Speech production and perception process . . . . . .. ...
2.2 A module of the speech production system. . . .. ... ..
2.3 Time-domain representation of the speech signal (top), its

narrow-band (middle) and its wide-band spectrograms (bot-

2.4 A general speech recognition system . . . . ... ... ...
2.5 An example of auditory frequency Scales. The solid line is
for Mel-scale and the dashed line is for Bark scale . . . . . .
2.6 (a) Time-domain signal for digit one. (b) A hamming win-
dow. (c) (d) (e) Phonetic segments of speech corresponding
to phonemes /w/, /uh/and /n/. (f) (g) (h) LPC spectra up
to the Nyquist frequency corresponding to some segments in
each phonetic segment. . . . . . . . ... ...
2.7 An illustration of a DTW with optimal paths, accumulated
scores for a test utterance of Dutch digit eight and three
reference templates of Dutch digits: one, three and eight.
2.8 An illustration of a left-to-right hidden Markov model. This
architecture is well suited to speech application because its
inherent sequential structure models the temporal flow of

2.9 The word model for Dutch digit een. . . . . . . . ... ...
2.10 (a) An HMM with two states and two output symbols, A and

B. (b) The Viterbi computation using the HMM. . . . . ..
2.11 A finite-state grammar . . . . . . ... ...
2.12 A parse tree for the sentence “Tom has a computer”

34



XX LIST OF FIGURES
3.1 The structure of a Multi-Layer Perceptron . . . . . . . . .. 44
3.2 The block diagram of a unit . . . . . ... ... ... ... 47
3.3 The sigmoid function . . . . . ... ... ... 48
3.4 The MLP performance vs. the number of iterations . . . . . 56
3.5 Hamming weighting functions on Dutch digit een . . . . . . 58
3.6 A scaled network superimposed on the original one . . . . . 59
3.7 A unit in a Time Delay Neural Network . . . . ... .. .. 61
3.8 TDNN output with input CV syllables [da, ba, ga] . . . . . 62
3.9 TDNN output with input CV syllables [ba, bo/ . . . . . .. 63
3.10 The structure of an MLP for frame recognition . . . . . . . 65
3.11 The phonetic segments of Dutch digit een and its weighting

windows. . . .. ... 66
3.12 Histograms for 200 utterances of Dutch digit een. The dark

lines represent the output histograms on the phonetically

labeled MLP output units with the input data segmented to

the noise xx. The grey lines stand for those corresponding

to the part of ee. The light lines are for n. The horizontal

axes are the MLP output values between [0,1] on each unit

in the output layer. The vertical axes are the probabilities

of occurrences. The peaks indicate the conresponding values

occur most frequently. For example, the majority output

values of output units xx and ee, are around 0.1 and 0.2

when the output unit label is N in window NNWN. . . . . .. 71
3.13 The phonetic segments for Dutch digit negen. The regions

between two dotted lines around the solid segment lines are

confusing for phonetic segmentation. . . . .. ... ... .. 72
3.14 The overlapped Hamming windows as the fuzzy membership

function . . . . . ... 75
4.1 A schematic diagram of vector quantization techniques . . . 80
4.2 Partitioning of two-dimensional space into 18 cells. All input

vectors in cell C; will be quantized as the code vector z;. The

shapes of the various cells can be very different. . . . . . . . 84
4.3 A simple VQ/HMM speech recognition system . . . .. .. 91
4.4 Comparison of three different VQ techniques: Mixture den-

sity, VQ and Fuzzy VQ . . . . . ... ... ... ... 93



LIST OF FIGURES xxi

4.5

4.6
4.7

4.8
4.9

4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

6.1

Label sequences by the conventional labeling (a) and the
multi-labeling (b). z; is the codeword and indicates the label

number j. ... L Lo 95
Frame sequences labeled by the multi-dimensional VQ. . . . 96
Frame sequences labeled by the multi-dimensional multi-

labeling VQ. . . . . . . . . 97

A baseline MLP/HMM hybrid speech recognition system . 101
The time progress of two cepstral coefficients with the MLP
labeler vs. the phonetic Euclidean VQ for Dutch digit negen 103

An MLP multi-dimensional labeling/HMM system . . . . . 107
An MLP multi-labeling/HMM system . . . . .. ... ... 108
A multi-MLPs/HMM hybrid system . . . . . ... ..... 110
A multi-MLP multi-labeling/HMM system . . . . . . .. .. 112

The MLP output for Dutch digit een: (a) the normal input
and the crisp output, (b) the weighted input and the crisp

output, (c¢) the normal input and the fuzzy output. . . . . . 113
An MLP Fuzzy Labeling/HMM system . . . ... ... .. 115
A multi-MLP fuzzy labeling/HMM system . . . . . . .. .. 116
Summary of hybrid VQ/HMM techniques . . . . . ... .. 117
TDNN output with input CV syllables [da,ba,ga] . . . . . . 120
TDNN output with input CV syllables [ba,bo] . . . .. .. 121

The results of frame classification vs. the number of hidden
units (the dotted line for training and the solid line for testing).127
The MLP output (top), the Viterbi-labeled speech signal
(middle), and internal activations with scaling (bottom). . . 132
The digit recognition results for MLP labeling . . . . . . .. 133
The MLP output and its manually labeled speech signal
(top), and the MLP output and its testing speech signal

(bottom) . . . . . ... 137
The recognition results for each digit when the network is
under-trained. . . . .. ... 138
The recognition results for each digit when the network is
well-trained. . . . . ... Lo oo 139
The recognition results for each digit when the network is
over-trained. . . . ... ..o 140
A feed forward neural network . . . . ... ... 154



xxii LIST OF FIGURES




Chapter 1

Introduction

1.1 Motivation

Speech is the most natural form of human communication. What clinches
the case in favor of speech recognition is the experimental evidence estab-
lished by Ochsman and Cahpanis [61] in 1974, that voice communication
is critical to the single- and multi-modality communication links. A pair of
people communicated with each other via ten alternative communication
channels, including voice, typewriting, handwriting, close circuit video and
visual contact. They found that the communication centered around voice
channel was fast and liberating, so that the user could move around and
be involved in other tasks.

Artificial neural networks and computerized speech processing are two
technologies which are still in their developmental stages. Research in
speech processing is focused primarily on the man-machine interface. One
of the goals of artificial neural networks (ANN) is to process information in
a manner similar to that of biological neural systems. The common denom-
inator between these two disciplines is the auditory processing mechanism
we use to understand speech.

The speech recognition process is a fascinating phenomenon which in-
volves numerous processing stages between signal detection and language
understanding. It is an important scientific problem because in the future
it may help us understand how humans think and form conceptual rela-
tionships. For instance, when listening to different languages, at what level
of neural processing do multi-lingual individuals understand what is being
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said? The answer is not known, although it has been shown that the au-
ditory pathway must be trained to recognize phonemes which are unique
to some languages. At a higher level, people often think to themselves in
grammatically structured sentences. Does this “thinking” take place in an
area of the brain which is stimulated by the auditory pathway? Unfor-
tunately, the mechanisms by which humans understand speech are poorly
understood. Much more research needs to be performed before many of
these questions can be answered.

Automatic Speech Recognition (ASR) is an appropriate problem to in-
vestigate with ANNs. Two characteristics of ANNs must be noted. First,
ANNs can be used in each part of traditional approaches, in which the
recognition problem is often divided into signal processing, feature extrac-
tion, pattern matching and language modeling. This modularity is ideal
for implementing and evaluating ANNs , especially using ANNs to solve
subtasks of the ASR problems and integrating these ANNs into conven-
tional recognition systems. In this manner, ANN and conventional speech
recognition techniques can be examined within the same framework to de-
termine which approach is best suited for specific subtasks. Second, since
ANNSs are the simulation of human neural system, they go one step ahead
of the conventional mathematical models in understanding human speech
production and perception.

1.2 Automatic Speech Recognition

The goal of Automatic Speech Recognition is to develop techniques and sys-
tems that enable computers to accept speech input. A typical digitized time
domain speech signal is illustrated in Figure 1.1. The speech recognition
problem may be interpreted as a speech-to-text conversion problem. Users
want their voices, speech signals such as shown in Figure 1.1 to be tran-
scribed into text by a computer. From a commercial point of view, speech
recognition is a technology with a potentially large market. Since the early
80’s, compact implementations of accurate, real-time speech recognizers
have found widespread use in many applications, including voice-activated
transcription, simplified man-machine communication, aids for hearing im-
paired individuals and the physically disabled, telephone assistance, and
other man-machine interface tasks.

As one goes from problem solving tasks such as puzzles and chess to
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Figure 1.1: A time domain speech signal

perceptual tasks such as speech, the problem characteristics change dra-
matically: knowledge-poor to knowledge-rich, low data rates to high data
rates, slow response time (minutes to hours) to virtually instantaneous
response time. Taken together, these characteristics increase the computa-
tional complexity of the problem by several orders of magnitude. Further,
speech provides a challenging task domain which embodies many of the
requirements of intelligent behavior: operating in real time, exploiting vast
amounts of knowledge, using symbols and abstractions, communicating in
natural language and learning from the environment.

Unfortunately, current speech recognizers perform poorly on speaker in-
dependent continuous speech recognition tasks that people perform without
apparent difficulty. Although children learn to understand speech with little
explicit supervision and adults take speech recognition ability for granted,
speech recognition has been proven a difficult task to duplicate with ma-
chines. This is due to the variability and overlap of information in the
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acoustic signal, the need for high computation rates (a human-like system
must match inputs to 50,000 words in real time), the multiplicity of analy-
ses that must be performed (phonetic, phonemic, syntactic, semantic, and
pragmatic), and the lack of any comprehensive theory of speech recognition.

The dominant technological approaches for speech recognition systems
are based on pattern matching of statistical representations of the acoustic
speech signal, such as Hidden Markov Model (HMM) whole word and sub-
word (e.g., phoneme) models. However, although significant progress has
been made in the field of ASR these last years, the typical vocabulary size
is still very limited and the performance of the resulting systems is still not
comparable to that achieved by human beings.

1.2.1 The Challenge of Speech Recognition

Humans are able to understand speech so easily that we often fail to ap-
preciate the difficulty that this task poses for machines. Here are some
dimensions in which machine performance faces the challenge:

e Speaker dependence or independence

The operating mode of speech recognition systems can be divided into
three categories: speaker-dependent, speaker-independent and multi-
speaker, each involving different training paradigms. A speaker-depen-
dent system uses speech from the target speaker to learn its model
parameters. This strategy leads to good accuracy, but requires a new
training session that has to be done for every new speaker and a large
memory that has to be used to store specific models for every user.
On the other hand, a speaker-independent system is trained once, and
must model a variety of speaker voices. Due to their increased vari-
ability, speaker-independent systems are typically less accurate than
speaker dependent systems. Multi-speaker systems work well for cer-
tain groups of speakers for which the system has been trained. Gender
and regional accent dependent systems fall into this category. Multi-
speaker and speaker-independent systems can also be constructed to
adapt to the current user.

e Spontaneous speech

For a system to be useful in a real life application it has to accept spon-
taneous speech. Most current ASR systems, however deal with read
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speech only. The practical difference is a host of disfluencies that peo-
ple produce, for instance, filled pauses (“um” or “er”) or false starts.
Additionally, in natural speech, talkers will almost certainly use some
words that are outside of the recognizer lexicon. Spontaneous speech
is often ungrammatical and ill-structured.

Vocabulary size

The vocabulary size varies inversely with the system accuracy and
efficiency — more words introduce more confusion and require more
time to process. For large vocabularies, it is also not generally feasible
to work with the whole word models, since this would require not
only a prohibitive amount of training data but a large amount of
parameters, particularly for a speaker-independent system. Instead,
one must turn to smaller sub-word units (phoneme, syllables), which
may be more ambiguous and harder to detect and to recognize. In
order to realize a large vocabulary system, it is essential to look for
a compact presentation such as sub-word units.

Task and language constraints

In most cases, the task of continuous speech recognition is simplified
by restricting the possible utterances. This is usually done by using
syntactic and semantic information to reduce the complexity of the
task and the ambiguity between words. However, this is still a very
active research area since it is not known how to properly interface
general grammars and natural speech constraints with acoustic rec-
ognizers. The use of semantic information is still an open issue. Since
the degree to which these non-acoustic knowledge sources limit the
possible utterances can vary, vocabulary size is not a good measure
of a speech recognition task’s difficulty. The constraining power of
a language model is usually measured by its complexity—roughly the
geometric mean of the number of words that can occur at any decision
point. High complexity generally implies a high level of difficulty for
a task, as many word candidates must be examined by the acoustic
recognizer.

Acoustic ambiguity, confusability

While some recognizers may achieve respectable performance over
relatively unambiguous words (e.g., 10 digits), such systems may not
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necessarily deliver acceptable recognition rate to some words, e.g., the
words for the E-set alphabetic letters, B,D,E,P,T,C,Z,V,G. A confus-
able vocabulary requires detailed high-performance acoustic pattern
analysis.

o Adwverse conditions

Several adverse conditions that can alter the performance of ASR
systems have been identified:

— environmental noise, i.e., stationary or non-stationary additive
noise (e.g., factory floor, car, cockpit, door slams);

— distorted acoustics and speech correlated noise (e.g., reverberant
room acoustics, non-linear distortions);

— different microphones (e.g., telephone receiver, headset micro-
phones, table microphones) and different filter characteristics,
which usually lead to convolutional noise;

— limited frequency bandwidth (e.g., telephone channels where the
transmitted frequencies are limited between approximately 330
Hz and 3,300 Hz);

— altered speaking manner, (e.g., Lombard effect, differing speak-
ing rate, speaker stress, breath and lip noise, pitch, uncoopera-
tive talker, etc.);

— a combination of the previous issues (which is, unfortunately,
the most frequent case).

e Isolated, connected, and continuous speech

Isolated Word Recognition (IWR), involves the recognition of single
words. The speaker may pronounce these words in isolation, or in
an utterance consisting of several discrete words separated by dis-
tinct pauses. Connected speech recognition, in which each word is
clearly articulated and there are no pauses between words in the ut-
terance, is a more difficult problem. Because there are no discernible
pauses, and coarticulation effects may be present, difficulties arise
when attempting to determine word boundaries. Continuous Speech
Recognition (CSR) is the most difficult ASR problem. There are
no pauses between words and the words in the utterance are not al-
ways articulated clearly. The demand for CSR systems range from
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Isolated word | Connected speech | Continuous speech
Speaker small vocab. 1 | small vocab. 4 small vocab. 5
dependent large vocab. 4 | large vocab. 5 large vocab. 6
Multi- small vocab. 2 | small vocab. 4 small vocab. 6
speaker large vocab. 4 | large vocab. 5 large vocab. 7
Speaker digits 3 | digits 4 digits 5
independent | large vocab. 5 | large vocab. 8 large vocab. 10

Table 1.1: The complexity of the ASR problem expressed as a function of

operating mode and speaking rate

small vocabulary recognition systems (< 100 words), to moderately
sized (around 1000 words) domain-specific vocabularies, to large-
vocabulary (> 5000 words) systems targeted for the office environ-
ment. In many large-vocabulary systems, continuous speech recog-
nition implies the recognition of natural speech, where the speaker
is not constrained by vocabulary size, speaking rate, or grammatical
usage. Another problem that is neither isolated word recognition nor
connected speech recognition (but which is as difficult as CSR) is of-
ten referred to as Keyword Spotting (KWS). In this case, one wants
to detect “keywords” from unconstrained speech, while ignoring all
other words or non-speech sounds. This is a kind of generalization
of an isolated word recognition system in which the user is not con-
strained to pronounce words in isolation. The challenging problem of
rejecting utterances with no keywords is the focus in a KWS system.

Table 1.1 illustrates a typical partitioning of the ASR problem with

respect to its modes of operation and speaking rate (which may be accom-
modated). Problem difficulty is assessed on a scale of 1 to 10, with 10
being the most difficult, and a 5 representing the current state-of-the-art
in commercially available systems. Each of these dimensions of difficulties
embodies some aspect of speech variability, which is the central problem of
speech recognition.
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1.2.2 The State of the Art
Speech Recognition Technology

The current best performing speech recognition algorithms use Hidden
Markov Model (HMM) techniques in the commercial market. The HMM
approach provides a framework which includes an efficient decoding al-
gorithm for use in recognition (the Viterbi algorithm) and an automatic
supervised training algorithm (the forward-backward algorithm ). HMM,
however, has its own performance limitations. These include poor low-level
and high-level modeling. Poor low-level acoustic-phonetic modeling leads
to confusions among acoustically similar words while poor high-level speech
understanding or semantic modeling restricts applications to simple situ-
ations where finite state or probabilistic grammars are acceptable. In ad-
dition, the first-order Markov assumption makes it difficult to model coar-
ticulation directly and HMM training algorithms can not currently learn
the topological structure of word and sub-word models. Finally, HMM
theory does not specify the structure of implementation hardware. It is
likely that the high computation and memory demand of the current HMM
algorithms may require parallel hardware design to produce a compact,
large-vocabulary, continuous-speech recognizer.

Table 1.1 also provides the information on the current state-of-the-art
of speech recognition technology. The first ASR system which appeared in
the commercial marketplace perform very constrained speech recognition
tasks and filled several “niches” in terms of user needs. These systems
gradually progressed so that large vocabulary “multi-speaker” discrete ut-
terance recognition, speaker-independent continuous digit recognition, and
“moderate-sized” vocabulary speaker-dependent connected speech recogni-
tion and large vocabulary speaker-independent continuous speech recogni-
tion have become available.

Recognition Accuracy

Speech recognizers naturally have a wide range of accuracies. Accuracy for
a difficult 997-word speaker-independent high-quality continuous speech
task using a strong language model (an average of only 20 different words
possible after any other word ) can be as high as 96% (Lee and Hon 1989
[44]). This word accuracy score translates to an unacceptable sentence
accuracy of roughly 50%. In addition, the word accuracy of this high-
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performance recognizer is typically below 70% correct when tested with
no grammar model. Results such as these have illustrated the poor low-
level acoustic phonetic matching provided by the current speech recognizers.
These recognizers depend heavily on constraining grammars to achieve good
performance. There is a very high accuracy demand for digit recognition.
An accuracy of 99.9% has been reached for recognition of high-quality,
microphone, read, legal credit-card numbers. For low-quality speech such
as telephone speech, some commercial products have obtained an accuracy
of 99.5% (Ma 1997 [51]). In spite of the promising progress over the past
few years, speech recognition by machines still has a long way to go to reach
a generally applicable real system.

Real World Speech Application

Most speech recognition applications are constructed to perform data entry,
command-and-control, information access and dictation. The voice input
devices, microphone and telephone, divide the speech applications into two
directions: PC multimedia and computer telephony. In the same level
application, speech recognition is more difficult when using telephone than
when using microphone. In a large vocabulary dictation system, a user
has to train the system first in order to reach a high recognition accuracy.
However, this method is not applicable to telephone applications because
of speaker-independent requirement.

Computer Telephony The ability to use speech recognition over the
telephone has been an industry goal for forty years, but it was not viable
until the mid-80’s. Commercial success did not come until the beginning of
the 90’s. Speech recognizers are required to handle telephone quality speech
in real time. Some vendors such as Lernout & Hauspie Speech Products,
Nuance Communication and Purespeech have exported their recognizer to
Dialogic Antares DSP cards in order to gain speed and to handle multiple
calling instances. A long-established interaction paradigm, the prompt-
and-response pattern in IVR (Interactive Voice Response) systems, has
been imported to speech recognition. The use of grammars limits the ac-
tive vocabulary and improves recognition performance. Well-crafted dialog
sequences can significantly increase overall recognition performance, as they
steer the speaker to utter words within the recognizer’s vocabulary. The
following guidelines are used in the design of a dialog.
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Figure 1.2: Dialog design with error-recovery

e Use simple and less ambiguous grammars for the recognizer.

e Prompt and convey the user to speak words or sentences within the
grammar.

e Provide an elegant error recovery.

Figure 1.2 illustrates the appropriate error handling scheme, in which
the confidence level for the recognition result is the basis to control the
dialog flow. Herb Clark says that “speaking and listening are two parts of
a collective activity”[18]. A major design challenge in creating speech ap-
plications, therefore, is to simulate the role of speaker/listener convincingly
enough to produce successful communication with the human collaborator.
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1.3 Neural Networks in Speech Recognition

1.3.1 Artificial Neural Networks

Artificial neural networks consist of multiple processing units or nodes,
which are analogous to nerve cells in the brain that receive and transmit
electrochemical signals. Each neuron is connected to many others through
“synapses” of various strengths, like the connections between neurons in the
brain. Unlike conventional computers and expert systems, which rely on a
single central processing unit and very meticulously programmed instruc-
tions, neural networks rely on many nodes and synapses acting in concert
and a very simple “instruction set” for each node. By changing the strength
of synapses, neural networks can be trained by examples to perform desired
input-output transformations.

The complex operation of neural networks resulting from abundant feed-
back loops, which together with non-linearities of the processing elements
and adaptive changes of their parameters, can define very complicated dy-
namic behavior.

Hence, the central and crucial problem in neural network is the devel-
opment of training and learning strategies and algorithms, i.e., methods of
programming a neural network adaptively, so that it performs the desired
interaction with a changing or unknown and fuzzy environment such as
speech processing and recognition.

1.3.2 Benefits of Neural Networks

The performance of current speech recognizers is far below that of humans.
Neural networks offer the potential for providing massive parallelism, adap-
tation and new algorithmic approaches to speech recognition problems.
Neural networks for speech recognition have been explored as part of the
recent resurgence of interest in this area. Research has focused on eval-
uating new neural network pattern classification and training algorithms
using real speech data, and on determining whether parallel neural net-
work architectures can be designed to perform the computation required
by important speech recognition algorithms. The neural network has been
given serious consideration for speech recognition for several reasons. They
include the following;:



12 CHAPTER 1. INTRODUCTION

e ANNSs can readily implement a massive degree of parallel computa-
tion. Because neural networks are highly parallel structures of sim-
ple, identical, computational elements, it should be clear that they
are prime candidates for massively parallel (analog or digital) com-
putation.

e They intrinsically possess a great deal of robustness or fault tolerance.
Since the information embedded in the neural network is propagated
to every computational element within the network, this structure is
inherently among the least sensitive of networks to noise or defects
within the structure.

e The connection weights of the network need not be constrained to be
fixed; they can be adapted in real time to improve performance. This
is the basis of the concept of adaptive learning, which is inherent in
the neural network structure.

e Because of the non-linearity within each computational element, a
sufficiently large neural network can approximate any nonlinearity or
nonlinear dynamic system. Hence neural networks provide a conve-
nient way of implementing nonlinear transformations between arbi-
trary inputs and outputs and are often more efficient than alternative
physical implementations of nonlinearity. Nonlinearity is a highly im-
portant property of speech signals.

1.3.3 Using Neural Networks for Speech Processing and
Recognition

Speech recognition, like most difficult problems, can be divided into a num-
ber of challenging sub-problems. Examples of these problems include a
proper spectral and temporal representation of speech, the definition of the
fundamental units of speech, the degree of sensitivity of speech units to
context, and the syntax and semantics of language. Problems such as am-
bient noise rejection and sound location are also important factors in our
perception of speech.

The only system that completely and effectively solves all of these prob-
lems is the human auditory system, which implements a biological neural
network. The auditory system is a highly structured apparatus charac-
terized by rich anatomical and physiological diversity. Instead of a single
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continuous network, the auditory system consists of a complex linkage of
specialized sub-networks, each of which adds, processes, or extracts infor-
mation for speech recognition.

While ANNs have already proved useful in recognizing isolated speech
units by using some of the techniques described below, they have only
recently begun to make serious inroads into large vocabulary ASR systems.
Indeed, nearly all ANN systems for ASR are just static pattern classifiers
— given labeled and segmented training data, a network can be trained to
recognize isolated speech segments. However, the most general form of ASR
should accept continuous speech as input. Any such ASR system, whether
it uses ANNSs or not, must perform a dynamic recognition process, in which
the input speech is segmented (perhaps implicitly) as well as classified,
so that the output is a succession of words which explain the acoustical
input. Furthermore, linguistic constraints (both syntactic and semantic)
are a component of most ASR systems. Because of these considerations,
as well as the inherent difficulty of robust ASR, applying ANN methods to
ASR is a challenging research area.

Many new neural network models have been proposed for recognizing
temporal pattern sequences. Some are based on physiological data and
attempt to model the behavior of biological networks (Dehaene et al. 1987
[20], Cohen et al. 1987 [19]), while others attempt to extend existing auto-
associative networks to temporal problems (Amit 1988 [1], Buhmann and
Schilten 1988 [14], Kleinfield 1986 [35]). However, new learning algorithms
and network architectures will be required to provide real-time response
and automatic learning of internal word and phrase models required for
high-performance continuous speech recognition. This is still an important
open problem in the field of neural speech recognition. The current research
focuses on the following field:

e New physiological-based front ends;
e Neural network classifiers for static speech input patterns;

e Neural networks designed specifically to classify temporal pattern se-
quences;

e Hybrid systems that integrate neural network and conventional speech
recognition approaches;

e Neural network architectures that implement conventional algorithms;
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e VLSI hardware neural networks that implement both neural network
and conventional algorithms.

1.4 The Goal of This Dissertation and the Main
Results of the Work

The main contributions of our work to neural networks in speech recognition
are:

e We propose a weight updating strategy to speed up the convergence
during network training. The training data is balanced phonetically
such that the network treats all phonemes equally. We introduce
a random database generator to reach a robust training. From the
network point of view, we find optimal speech features and remove
the redundant information for speech recognition.

e We design a Multi-Layer Perceptron (MLP) network. As it has much
less hidden nodes and has no restrictions to converge to a global min-
imum, the network is more stable and takes less time to train, com-
pared with using MLPs as probability generators for HMMs. During
training, we use newly random generated data for each iteration and
make connectionnist weight adaptation on the average of the accu-
mulated weight changes. We use less training data to obtain a robust
network.

o We give the MLP a fuzzy interpretation and utilize the overlapped
Hamming window as the fuzzy membership function for the MLP
output.

e We propose using MLP as a labeler for HMMs (Hidden Markov
Model). Instead of using the conventional Vector Quantization(VQ),
which is obtained by using K-means clustering, we implement an
MLP/HMM system using MLP-VQ. As MLP has a free input pattern
selection and a unique non-linear mapping capability, it overcomes
the disadvantage of conventional linear V@ and the input pattern re-
strictions in HMMs. Standard vector quantization has been replaced
by an MLP labeler giving phone like labels. Compared to Euclidean
labeling, our method has the advantages of needing fewer HMM pa-
rameters per state and obtaining a higher recognition accuracy.



1.5. OUTLINE OF THE DISSERTATION 15

e Several improvements of the above baseline MLP labeling are inves-
tigated. We introduce Top-N VQ and fuzzy VQ methods to improve
the baseline winner-take-all method. Our purpose is to decode all
the information on each node and each connectionist weight, espe-
cially the output nodes. In Top-N VQ, we consider the Top-N labels
instead of the Top-one label as the output vector. We expand our
approach to multi-code book HMMs. In MLP fuzzy VQ, we interpret
each MLP output value as the closeness measurement to each output
label. We modify the semi-continuous HMM and make an MLP fuzzy
VQ HMM.

e We investigate the MLP labeler systematically and also present sev-
eral other hybrid MLP/HMM models which include the MLP multi-
labeling, the multi-MLP multi-labeling and the multi-MLP fuzzy-
labeling.

1.5 Outline of the Dissertation

This dissertation consists of two main parts. In the first part we introduce
the conceptual and theoretical background of a wide range of techniques
investigated in this work, including speech signal processing, speech recog-
nition and artificial neural networks. In the course of the introduction
we attempt to address some of the major limitations associated with the
conventional approach to speech recognition, and we discuss the possibil-
ity and development of incorporating artificial neural network to overcome
these limitations. In the second part, we focus on the implementation of
the speech recognition system using neural networks.

Presented in chapter 2 is an introduction to the fundamentals of the
conventional approach to speech recognition. We start with the physical
speech production mechanism and proceed to describe the information en-
coded in the acoustic signal. A general speech recognition model provides
the framework for our discussion on speech recognition algorithms. Within
this framework, several speech processing and speech recognition algorithms
are presented, most of which have been implemented during the work of
this dissertation.

In chapter 3, we introduce the mathematical model of the Multi-Layer
Perceptron(MLP). We give a detailed description about MLP neural net-
works from network structure to network training. We present the ap-
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plications using MLPs: MLP phonetic frame recognition and Time Delay
Neural Network (TDNN) phoneme recognition. We give a fuzzy interpreta-
tion to the MLP neural network based on the fuzzy set theory with which
we analyze the MLP training process and its output.

Based on our interdisciplinary study of the subjects presented in the
previous chapters, we proceed to present our concrete work in the develop-
ment of automatic speech recognition tailored to Vector Quantization(VQ).
In chapter 4 we describe in detail various methods we have investigated
or used in accordance with the conventional paradigm of vector quantiza-
tion. We present a series of hybrid MLP/HMM models. These models are
MLP-labeling, MLP fuzzy-labeling, MLP multi-dimensional labeling, MLP
multi-labeling, multi-MLP multi-labeling and multi-MLP fuzzy-labeling.

We present our experimental results in chapter 5. The proposed data
weighing, random data selection, MLP training, MLP-VQ, MLP fuzzy VQ
and MLP-HMM hybrid system are discussed here. We first build our train-
ing and test speech database from the existing audio database, construct
our own MLP, then feed those data to the MLP to train and test our
MLP/HMM system. Finally, we evaluate our experimental results, com-
paring them with different techniques.

Chapter 6 concludes the dissertation and presents a perspective for
future developments in the research of artificial neural networks and auto-
matic speech recognition.



Chapter 2

Speech Processing and
Speech Recognition

2.1 Introduction

This chapter describes the speech recognition problem, which is essentially
the focus of the entire text. In addition, later chapters introduce ANNs,
which are based upon conventional recognition techniques described in this
chapter. We begin by reviewing the physical speech production mechanism
and proceed to describe the information encoded in the acoustic signal. A
general speech recognition model provides the framework for our discussion
of speech recognition algorithms. Within this framework, several speech
processing and speech recognition algorithms are presented, most of which
were implemented during the work of this dissertation.

2.2 Human Speech Production and Perception

2.2.1 Human Speech Production and Perception

Figure 2.1 illustrates the process of speech production and perception in
human beings. The production process begins when a speaker formulates
a message in the brain. The next step in the process is the conversion of
the message into a language code. Once the language code is chosen, the
speaker executes a series of neuromuscular commands to cause the vocal
cord to vibrate when appropriate, and to shape the vocal tract such that
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the proper sequence of speech sounds is created and spoken by the speaker,
thereby producing an acoustic signal as the final output.

When the speech signal is generated and propagated to the listener, the
speech perception process begins. First, the listener processes the acous-
tic signal along the basilar membrane in the inner era, which provides a
spectrum analysis of the incoming signal. A neural transduction process
converts the spectral signal at the output of the basilar membrane into
activity signals on the auditory nerve, corresponding roughly to a feature
extraction process. In a manner that is not well understood, the neural
activity along the auditory nerve is converted into a language code at the
higher centers of processing within the brain, and finally message compre-
hension (understanding of meaning) is achieved.

Considering all of the variables in the physiological structure of the vocal
tract, and the discernible fact that virtually all individuals sound different,
it is remarkable that humans can understand one another. This leads one to
believe that there is a significant amount of phonetic information encoded
in the acoustic speech signal which is not affected by speaker-dependent
characteristics. In addition to the specific sounds generated, this informa-
tion includes the syntax, or rules, one uses to construct the language.

To understand how particular sounds can be classified, and how to
decode the speech signal for automatic speech recognition, it is important
to understand how the acoustic signal is produced first. Figure 2.2 is a
simplified model of the speech production system. This model shows that
the vocal tract is excited by unvoiced components of the breath noise and/or
an impulse train from the glottis. The periodicity of the glottal pauses is
called the fundamental frequency, or pitch, of the speech signal. A glottal
pulse is generated from the accumulation and sudden release of pressure
behind the glottis. The other excitation source, breath noise (which is for
all practical purposes white noise), can be obtained simply by exhaling.

2.2.2 Information in the Speech Signal
Formants

Figure 2.3 illustrates the 8kHz sampled time-domain speech signal from
Dutch digit three and its corresponding frequency domain representation-
spectrum. The voiced speech in the time-domain signal is characterized
by high-energy periodic peaks which correspond to the glottal pulse. The
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Figure 2.1: Speech production and perception process

periodicity of these peaks is the fundamental frequency. The spectrum is
a two-dimensional display of the energy of the frequency components of a
signal over time. The dark bands in the spectrum correspond to frequencies
with high energy, which are resonant frequencies because they are indica-
tive of the location of the poles in the transfer function. Those resonant
frequencies of the vocal tract transfer function are called formants.

There are typically about three resonances of significance below 3500
Hz. The first formant, f1, is the lowest resonant frequency. The lowest two
formants (and sometimes the lowest three formants) are usually sufficient
to identify specific phonemes, while the location of the higher formants is
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Figure 2.2: A module of the speech production system.

generally speaker dependent. The major problem, however, is the difficulty
of reliably estimating the formants for low-level voiced sounds, and the
difficulty of defining the formants for unvoiced or silence regions. Notice
the movement and energy variation of these poles in the spectrum over
time. From the time and frequency domain information typical of Figure
2.3, auditory processing mechanisms are apparently able to identify the
acoustic cues in the signal and extract the necessary information for speech
understanding.

Phonemes

Phonemes are the fundamental units used to pronounce a word. For this
reason, some ASR systems perform recognition at the phoneme level. How-
ever, the actual pronunciation of a phoneme can vary appreciably between
speakers, given both physical effects and effects due to regional accents.
Phonemes are constructed from permutations of voice, tongue, mouth, jaw
and lip positions. A large number of phonemes can be created from these
permutations, and many of those occur in other languages.

American English phonemes are organized into four major groups: vow-
els, consonants, diphthongs and semi-vowels. These groups are further
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Figure 2.3: Time-domain representation of the speech signal (top), its
narrow-band (middle) and its wide-band spectrograms (bottom).

subdivided into type and place of articulation. The vowels, semi-vowels,
nasals, fricatives and whispers are composed of steady-state sound. The
other diphthong, stops and affricates are sounds created during changing
vocal tract configurations.

The ultimate goal of speech recognition is to uniquely and automatically
provide a segmentation and labeling of speech into constituent sounds or
sound groups such as syllables, words, then sentences. The highest energy
in the signal usually indicates a vowel because the speech is voiced and the
mouth is open. As the mouth is closed, the signal is increasingly attenu-
ated. This exercise provides general information concerning the differences
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between phonetic classes. However, as one might expect, it is very difficult
to distinguish among class members. One of the reasons is coarticulation.

Coarticulation

Speech production involves a sequence of articulator gestures timed so that
certain key aspects of vocal tract shape occur in an order corresponding to
the intended phoneme sequence. Gestures for successive phonemes over-
lap in time so that the vocal tract shapes during a phoneme are highly
dependent on the phoneme’s context.

There are two phenomena that coarticulation involves. One is the ar-
ticulation of one phoneme while the vocal tract is to configure itself for the
articulation of the next phoneme. When this transition occurs in continu-
ously spoken speech, the transeme effect can resemble a diphthong. Another
phenomenon invokes coarticulation, which occurs when the phoneme at the
end of one word and at the beginning of the next, is shared. These phenom-
ena are just a few of the problems associated with recognizing continuously
spoken speech.

While coarticulation causes significant problems for automatic speech
recognition, its effects aid speech perception. Most phonemes can be iden-
tified by portions of the speech signal from the middle (i.e., steady-state
portions) of their phonemes.

2.3 A General Speech Recognition System

The study of speech recognition is based on three principles. First, the in-
formation in the speech signal can be accurately represented by the short-
term amplitude spectrum of the speech waveform. This allows us to extract
features based on the short-term amplitude spectrum from speech and to
confidently use these features as the basis for pattern matching. Second,
the contents of the speech signal can be expressed in written form. Further-
more, the meaning of speech can be written as a sequence of a few dozen
symbols selected from the characters in an alphabet or from the phonetic
symbols in a lexicon. This principle gives us confidence that the mean-
ing of an utterance is preserved as we transcribe a sequence of acoustic
features to a sequence of phonetic symbols. Third, speech recognition is
a cognitive process. In human speech understanding, it is impossible to
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separate perception of sounds from the grammatical, semantic, and prag-
matic structures of language. Because spoken language is meaningful, both
semantic and pragmatic information can be valuable guides to speech recog-
nition when acoustic information alone is ambiguous. Unfortunately, cur-
rent speech recognizers, in their simplicity, have taken little advantage of
semantic and grammatic structures except in small, constrained tasks, such
as the grammar-based speech recognition.

A block diagram of a general speech recognition system is shown in
Figure 2.4. A speech signal is input to the recognition system and a classi-
fication decision is obtained from the system output. Four major operations
are required.

e asignal processing module for obtaining a representation of the speech
signal,

e a feature extraction module for identifying the key components of this
representation and eliminating redundant information,

e time alignment and pattern matching modules for performing phoneme
and word detection, and

e language processing module for selecting a final word string.

This structure of the system makes ANNs applicable to ASR, since
one can select an appropriate ANN for a specific problem and insert it
into a conventional recognition system. It also makes ANNs comparable
with conventional recognition systems as we can freely select a convenient
signal representation (for signal processing), feature presentation (for fea-
ture extraction), or symbolic representation (for language processing). A
description of each part in the structure is given below.

2.4 Signal Processing and Feature Extraction

The purpose of signal processing is to derive a set of parameters to represent
speech signals in a form which is convenient for subsequent processing and
to process the sampled speech signal and produce a representation which is
independent of amplitude variations, speaker stress, and noise which is in-
troduced from the transmission medium. Both time domain and frequency
domain approaches can be used. Time domain approaches, such as param-
eters of energy and zero crossing rate, directly dealing with the waveform
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of the speech signal, are usually simple to implement. Frequency domain
approaches involve some form of spectral analysis that are not directly ev-
ident in the time domain. The latter approaches are more widely used in
speech recognition.

2.4.1 Recording, First Order Pre-emphasis, Windowing and
Buffering

Recording

Encoding speech from sound is by no means a simple task. First, the spoken
word must be sampled, digitized, and filtered to remove the background
noise added by the speaker’s environment and the listening apparatus. The
quality of speech varies widely, from a conversation in a relatively quiet,
controlled condition such as an office, to a telephone conversation in a train
station. Digital anti-aliasing filtering is used to emphasize frequencies that
most likely contain key speech energy, and to compensate for nonlinearities
in the recording process. As the telephone channel bandwidth is limited
to 300-3000 Hz, the most popular sampling frequency is 8kHz in digital
telephony.

Pre-emphasis

The digitized speech signal, s(n), is put through a first-order FIR filter.
It is common to apply pre-emphasis to speech signals before any further
analysis. This operation compensates for the slope in the natural speech
spectrum of about -6 dB/Oct [48], as hearing is more sensitive above the 1
kHz region of the spectrum. In the time domain, it is presented as:

s(n)=s(n) —as(n—1) 0.95<a<1.0 (2.1)
« is always close to 1.0, typically 0.95. In the frequency domain, it looks
like:

H(z)=1-—az! (2.2)

Buffering

In this step the preemphasized speech signal, s (n), is blocked into frame
buffers of N samples with an adjacent frame separated by M samples.
Speech is typically analyzed in overlapping short frames of about 30 msec
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long with a 10 msec frame shift. If the sampling frequency is 8 kHz, then
N = 240 and M = 80. Let z;(m) represent the i-th short-time signal
buffer, then:

zi(m)=s(m+iM) m=0,....N—1 (2.3)

Windowing

The next step in the process is to window each individual frame so as to
minimize the signal discontinuities at the beginning and end of each frame.
If we define the window as w(m), then the result of windowing is the signal

/

z;(m) = z;(m)w(m) m=0,...,N—1 (2.4)

A widely used window in speech recognition is the Hamming window,
which has the form:

2
wlm| = 0.54 — 0.46 cos <7r—m) m=0,...,N—1 (2.5)
N-1
In energy and spectral estimation, it is often required to have spectra
independent on the window length N and the window type. We calculate

the normalization factor v as:

N
y=3 wlm) (2.6)
m=1
Thus,
ai(m) = "”Z(m)yw(m) m=0,...,N—1 (2.7)

2.4.2 Spectral Analysis

Mathematical techniques such as Fourier transforms and linear prediction
on coefficients are used to quantify the power and the fundamental fre-
quency of the samples, which are then concatenated to a single parameter
vector for each frame. A speech recognition system can improve its speed
and accuracy by restricting its analysis to those combinations of frequencies
which are perceptually meaningful to the human auditory system (ear and
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brain). The following spectral analysis algorithms have been implemented
and used in our speech recognition systems.

Auditory Spectral Analysis

The auditory filter bank is one of the most fundamental concepts in speech
processing (O’Shaughnessy [63]). An auditory filter bank can be regarded
as a crude model of the initial stage of transduction in the human auditory
system based upon the theory of the critical bandwidth and logarithmic
scale in frequency. A perceptual measure, called the Bark scale or critical-
band rate, relates acoustical frequency to perceptual frequency resolution.
A mapping of acoustic frequency f to a perceptual frequency scale b is
defined as follows (O’Shaughnessy [63]):

b = 13atan(0.76f/1000) + 3.5atan ((f/7500)?) (2.8)

A more popular approximation to this type of mapping in speech recog-
nition is known as the Mel scale (O’Shaughnessy [63]):

m = Tarcsinh (af() (2.9)

m is the Mel scale perceptual frequency. Both Mel scale and Bark scale
are displayed in Figure 2.5. They are approximated as a linear scale from
0 to 1 kHz, and a logarithmic scale beyond 1 kHz. The Mapping from the
perceptual frequency to the real frequency is presented as:

f = 650sinh <%> (2.10)
b

f ~ 1315.8tan (E) b< 5.5 (2.11)

= 1000.0 x 10722 b> 5.5 (2.12)

The main application of auditory frequency scales is in the design of
filter banks. In speech recognition applications, the very low frequency
range (< 200H z) is beyond the capacity of the A/D converter and the data
collected in this frequency range are extremely noisy. The critical bands
with center frequencies below 250 Hz (bands 1-2) are discarded. In order to
cover the telephone bandwidth, it can be seen that 15 channels are required
here.
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Fourier Transform Filter Bank

We have previously discussed the advantages of using non-uniformly spaced
frequency samples. One of the easiest and more efficient ways to compute
a non-uniformly spaced filter bank model of the signal is to simply perform
a Fourier transform on the signal, and sample the transform output at the
desired frequencies.

We compute the auditory spectrum with our FFT (Fast Fourier Trans-
form) (Oppenheim [62], Van Compernolle [87]). The auditory filter bank
is implemented by the following:

k'mam(l)
Sl=101og10( > @zx[k]) (2.13)

k=kymin (1)
oy Sit i
bnin(l) = 75 (2.14)
it fin
kmax (1) = 2+ T, (2.15)

Where S is the output spectrum for the Ith auditory spectral band, ®,,[k]
is the FFT power spectrum of the kth FFT frequency band, f; is the fre-
quency for the [th auditory band and F§ is the sampling frequency.
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LPC Analysis

Linear Predictive Coding (LPC) is a very important spectral estimation
technique because it can provide an estimate of the poles (hence the for-
mants) of the vocal tract transfer function. The LPC algorithm is a P
order linear predictor which attempts to predict the value of any point in
a time-various linear system based on the values of the previous P samples
[48]. The all-pole representation of the vocal tract transfer function, H(z),
can be represented by the following equation:

G G

H = =
(2) A(z) T14az7'+az=2+...4+apz~F

(2.16)

The values a(i) are called the prediction coefficients while G represents the
amplitude or gain associated with the vocal tract excitation. The poles
of the transfer function in Equation 2.16 are determined by the roots of
the polynomial in the denominator. Because the LPC model is an all-
pole model, it can capture the resonant frequencies, or formants, but not
the zeros, which are important for nasalized sounds. In addition, LPC does
not adequately estimate signals which have no poles, such as some unvoiced
speech and noise.

For the speech signal s(n) produced by a linear system, the predicted
speech sample §(n) is a function of a(i) and prior speech samples according
to:

P
s(n) =3 a(j)s(n — 1) (2.17)
=1

LPC analysis involves solving for the a(i) terms according to a least error
criterion. If the error is defined as:

e(n) = s(n)—3(n) (2.18)
P

= s(n) =Y a(i)s(n — 1) (2.19)
i=1

then taking the derivative of the square error with respect to the coefficients
a(j) and setting it equal to zero gives:

—~(s(n) — Z a(i)s(n —i))> =0 (2.20)
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Thus,

P
s(n)s(n — j) :Za s(n—1i)s(n—j) forj=1,...,P (2.21)

There are two principal methods for solving Equation 2.21 for the pre-
diction coefficients a(i). The first is an autocorrelation method, which
multiplies the speech signal by a Hamming window or similar time window,
assuming that the speech signal is stationary within, and zero outside, the
analysis window. The autocorrelation solution to Equation 2.21 can be
expressed as

M*u

a()R(li —j])) j7=1,...,P (2.22)
=1

where R(j) is an even function (R(j) = R(—7j)) and is computed from:

N—-1—j
RQ):% > s(m)s(m+j) j=1,...,P (2.23)
m=0

Where ~ is a normalization factor as we mentioned before. Once the auto-
correlation terms R(j) have been calculated, a recursive algorithm, named
Levinson-Durbin Algorithm [48], is used to determine the values of a(7).

Given that the vocal tract does not produce a purely linear speech sig-
nal, the solution for a(j) is optimal, but not exact. In fact, the most difficult
part of the speech signal to predict is the glottal pulse because it contains
a large amount of energy which instantaneously appears in the signal. In
addition, a nonlinearity is introduced into R(j) due to the discontinuities
imposed by the use of a window function which forces the values outside
the analysis window to zero. An alternative method for determining the
LPC coefficients, called the covariance method, is a direct Cholesky decom-
position solution of the following equation

R(j) = a(i)R(|i = jl) (2.24)

This equation can be expressed in matrix form. Unlike the autocorrelation
method, it does not use a window to force the samples outside the analysis
interval to zero. Thus, the limits on the computation of R(j) extend from
—P <n<N-—1-P. A more detailed discussion can be found in [65] and
[48]. The principal disadvantage with this approach is that if a nonlinearity
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corresponding to some segments in each phonetic segment.

such as a glottal pulse occurs between samples s(n — P) and s(n), then the
matrix array may not be invertible and a suitable solution for a(7) will not
be obtained. Figure 2.6 shows the speech feature analysis step by step. The
speech signal is digitized at 8 kHz, framed by a Hamming window, then
processed by LPC or FFT.

Cepstral Analysis

Almost all speech recognizers use cepstral analysis techniques because it
operates in a domain in which the excitation function and vocal tract filter
function are separable. This indicates that the characteristics of vocal tract
and excitation are well represented separately in the cepstral coefficients.
There are two types of cepstral approaches: FFT cepstrum and LPC
cepstrum. In the FFT cepstral analysis, the real cepstrum c¢(n) is defined
as the inverse FFT transform of the logarithm of the speech magnitude
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spectrum.
c(n) = FFT7Y(10log1o|®4[n]]) 1<n <N (2.25)

Where ¢(n) is the cepstral coefficient, ®,,[n] is the FFT power coefficient.
To investigate properties of the LPC cepstrum, we take a z-transform in
Equation 2.16. The excitation E(z) and vocal tract filter H(z), and a
speech spectrum X (z), are linearly separated by a complex logarithm op-
eration applied to Equation 2.19. Then

logX (z) = logH(z) + logE(2) (2.26)

The LPC cepstral coefficients ¢(n) are defined as the inverse z-transform
of the above log-spectrum logX (z). The cepstral coefficients, ¢(n), of the
spectra obtained from LPC analysis can be computed recursively from the
LPC coefficients, a(i) [65][48],

.a(i)c(n —i)n>1 (2.27)

where a(i) = 0 when ¢ > n ( n is the order of LPC analysis). A distinctive
advantage of cepstral analysis is that correlation between coefficients is
extremely small so that simplified modeling assumptions can be applied.

Other Speech Features and Analysis Methods

FFT spectra and LPC coefficients are the fundamental speech features.
Other features used in speech recognition, such as cepstrum, are calculated
and derived from those fundamentals. Some parameters such as energy
parameters can be obtained during the speech analysis.

Derivatives The time derivatives on frames reveal the sequential trend
of a speech signal. Those parameters are essential for speech recognition.
Most of times the first derivatives and the second derivatives of the feature
parameters have been combined with the original features. Delta-cepstra
and delta-delta cepstra are calculated in the following Equations:

=k
Aci(t) = Y jei(t+4) (2.28)
j=—k

Ac(t) = Aci(t 4+ 1) — Aci(t — 1) (2.29)
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Spectral Smoothing For speaker independent speech recognition and
in noisy environments, spectral smoothing is commonly used to reduce the
speaker dependent information and noise. Several efforts have been made
in this area. Perceptual Linear Prediction (PLP) (Hermansky [26]) analysis
takes into account some specific differences between the classical spectral
analysis and the auditory system. It focuses on a different equal-loudness
matching than pre-emphasis and on a distinction between intensity and
loudness. PLP analysis filters out a lot of speaker dependent details. Spec-
tral subtraction (Van Compernolle [86]) and Cepstral-Mean (Clues [17])
have been used to get rid of additive noise and Rasta PLP is used to re-
duce the convolutional noise in the telephone channel (Hermansky [27]).

2.4.3 Vector Quantization

Vector Quantization(VQ) is used to compare the representation obtained
in the current analysis frame to a lookup table, called a codebook. The
function of the codebook is to determine the closest match in the codebook.
The index to the codebook entry, rather than the initial presentation, is
then used to simplify subsequent processing phases. We will give a more
detailed description of vector quantization in chapter 4.

2.5 Time Alignment and Pattern Matching

The above two steps convert the speech samples into observation vectors
representing events in a probability space. The next step is to perform
a statistical analysis on the vectors to determine if they might be part
of a spoken word or phrase or whether they are merely noise. Speech
sounds such as the /a:/ sound in march exhibit several resonances in the
spectrum that typically extend for 120 ms. Transitional sounds, such as
the b in boy exist for a brief interval of approximately 20 ms. Encoding
the temporal behavior of these sounds is a challenging task in statistical
modeling. We address two popular techniques: Dynamic Time Warping
(DTW) and Hidden Markov Modeling (HMM).

2.5.1 Dynamic Time Warping

Dynamic Time Warping (DTW) uses a distortion metric, for example, Eu-
clidean distance, to compare feature vectors from the stored reference tem-
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plate and the input utterance, and then determines the overall score of the
alignment. The underlying assumption of DTW is that the global varia-
tions in speaking rate for a speaker uttering the same word on different
occasions can be handled by linear time normalization.
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Figure 2.7: An illustration of a DTW with optimal paths, accumulated
scores for a test utterance of Dutch digit eight and three reference templates
of Dutch digits: one, three and eight.

Figure 2.7 is an example in which the test utterance: Dutch digit eight
on the y-axis is compared to three templates on the x-axis: Dutch digits
one, three and eight, from left to right. The cumulative scores are shown,
along with the optimal path for each reference. The cumulative scores are
calculated by cumulating the Euclidean distances between the input frames
and its reference frames. Because the length of the reference template is
fixed, and warping only occurs along the axis of the utterance, the average
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score permits candidate words to be compared. The reference with the
lowest average score indicates the utterance recognized, the one on the left
in this example.

DTW begins and ends at/near the endpoints of each utterance. A
begin/end point detection is crucial for the DTW performance. For con-
nected or continuous speech recognition systems, a new path is started at
each begin/end-point time interval.

Although the DTW algorithm adequately accounts for warping in the
time domain, it has a number of defects. One of them is heavy computa-
tional load. Multiple word templates are commonly used in DTW systems.
The templates are usually selected using a clustering algorithm, such as VQ.
The computational complexity of a DTW solution may be acceptable in
speaker-dependent ASR, but may not be practical for speaker-independent
systems. That is especially true for large-vocabulary systems.

2.5.2 Hidden Markov Models

The dominant technique today for modeling the time course of a speech sig-
nal is Hidden Markov Modeling. The HMM was introduced in a landmark
paper by Baum [6], where the model was proposed as a statistical method
for estimating the probabilistic function of a Markov chain. Essentially,
HMDMs are a method for modeling a system with discrete, time dependent
behavior characterized by common, short-time processes and transitions
between them. An HMM can be considered as a finite state machine where
the transitions between the states are dependent upon the occurrence of
some symbols. Associated with each state transition is an output prob-
ability distribution which describes the probability with which a symbol
will occur during the transition, and a transition probability indicating the
likelihood of this transition.

First-order, left to right HMMs are commonly used in ASR products.
There are two assumptions behind them. The first is the Markov assump-
tion, i.e., at each observation time t, a new state is entered based on the
transition probability, which only depends on the previous state. The tran-
sition may allow the process to remain in the previous state. The second
assumption is the output-independence assumption, i.e., the output prob-
ability depends only on the state at that time regardless of when and how
the state is entered. These two assumptions make calculation very effi-
cient. A straightforward left-to-right model is shown in Figure 2.8, where
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Figure 2.8: An illustration of a left-to-right hidden Markov model. This
architecture is well suited to speech application because its inherent se-
quential structure models the temporal flow of speech.

gi (1 <i<4)is the HMM state.

The key parameters to be determined in an HMM-based ASR system
are the number of states per unit, and the state transition and observation
probabilities. The unit can be a word (the word model) or a phoneme (the
phoneme model). Below, we will examine the HMM word model. The
results of the word model will apply directly to the phoneme model. Large
amounts of training data are needed to obtain robust estimates of these
probabilities so that the HMM algorithm is more powerful than the DTW
algorithm, which uses a finite number of templates. An HMM-based ASR
will generally have a number of HMMs. For instance 10 digit HMM word
models correspond to 10 digits.

Training HMMs

The selection of the optimal number of states which properly describe the
observed sequence of events for a given word is a somewhat empirical pro-
cess. For discrete words, one might select a number of states which roughly
correspond to the number of phonemes in the word to be modeled, with
additional states corresponding to beginning an ending silences. An exam-
ple structure of an HMM for Dutch digit een is shown in Figure 2.9. HMM
training for isolated words can be implemented directly using an iterative
procedure, known as the forward and backward algorithm or Baum-Welch



2.5. TIME ALIGNMENT AND PATTERN MATCHING 37

Figure 2.9: The word model for Dutch digit een.

algorithm (Baum[6]), which is a computationally efficient method for de-
termining the model parameters. This iterative procedure uses the forward
probability and backward probability to update the observation probabil-
ity and the transition probability. An alternative is to use the Viterbi
algorithm, which offers a recursive optimal solution to estimate the state
sequence. The Viterbi alignment is essentially a dynamic programming pro-
cedure, like the one used in the DTW algorithm except that the probability
between the test and reference model is computed in the HMM rather than
the distance measure between speech frames in the DTW system. The de-
tailed implementation is described in Van Compernolle [86]. Training can
accomplish speaker adaptation for existing models and cross-validation for
discriminative training.

Testing HMMs

During recognition, the input symbols generate a particular sequence of
states which are visited by the HMM in producing the observation se-
quence. The state sequence essentially represents the segmentation of the
word modeled by the HMM. However, to ensure that the optimal state
sequence with the highest a posteriori probability is selected, the Viterbi
algorithm is employed.

A trellis is used to demonstrate the two dimensional representation be-
tween states observations. From the trellis we can observe probability com-
putations in HMMs efficiently. Figure 2.10 (b) illustrates the computation
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of Viterbi probability calculation through a trellis using the HMM in Figure
2.10 (a) and the observation sequence AAB. To simplify our calculation, we
assume the transition probabilities are equal, i.e. they are all equal to 1/2.
We can omit these terms. Each cell indicates the cumulative probability
at a particular state and time. The computation begins by assigning 1.0
to the initial state and 0.0 to all other states at time ¢ = 0. The cells are
computed time-synchronously from left to right at ¢ > 0. Each column of
states for time ¢ is completely computed before going to time ¢+ 1, the next
column. The last cell in the final column contains the probability of gen-
erating the observation sequence. The solid arrowed lines indicate Viterbi
calculation paths and the dash arrowed lines backtrack the Viterbi path.

2.6 Natural Language Processing

The final stage of the recognition process consists of a Natural Language
Processing(NLP) module which attempts to resolve the possible word selec-
tions using language specific constraints or knowledge. In ASR applications
the input to the NLP is often an N-Best list of potential words to be eval-
uated. For small vocabulary recognizers, a set of phonetically dissimilar
words can be selected to reduce the need for a language processing mod-
ule. However, large vocabulary systems have many phonetically close words
e.g., vat and fat, which become more acoustically similar when spoken in
context: his vat, the fat. In this example, coarticulation of the unvoiced
/s/ influences the /v/ to become unvoiced, and similarly, the voiced /e/
influences the unvoiced /f/ to become voiced. Language processing is a cru-
cial element in any text generating system with a large vocabulary. Lexical
knowledge (i.e. vocabulary definition) is required as is the syntax and se-
mantics of the language. Syntactic models attempt to capture the structure
of the language by using language construct rules and statistical observa-
tions of word occurrences within the language. Semantic models attempt to
represent the meaning or understand the relationships which the language
encodes. Semantic analysis gives answers to the questions such as who,
what, where, and when, etc. Many Internet search engines utilize semantic
analysis to understand what the user is searching. In current speech recog-
nition, semantic information is often embedded within the structure of a
syntactic model. The primary objectives of syntax are to
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Figure 2.10: (a) An HMM with two states and two output symbols, A and

B. (b) The Viterbi computation using the HMM.

e Reduce perplexity and increase speed and accuracy. The recognition

process involves searching the application vocabulary to locate the
best match for the input utterance. The term perplexity is the total
number of searching branches in the entire application. The recog-
nizer does not have to search the entire vocabulary for each input
utterance, but only a subset of it. An application consisting only
of yes and no, for instance, has a perplexity of two. As the recog-
nizer has fewer choices, the recognition accuracy is improved and the
searching time is automatically reduced.
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e Enhance vocabulary flexibility. The careful design of active vocabu-
laries enhances accuracy when the words within each active vocab-
ulary is acoustically distinct. Confusable words, such as mine and
nine, and homo-phones such as to, too, and two can still be included
in a single application, but the recognition errors they often produce
are minimized by placing them in different active vocabulary sets.

Finite-State Grammars

A finite-state grammar reduces perplexity by delineating the words that
are allowable at any point in the input. Some automatic speech recogniz-
ers are constrained by a finite-state grammar, in which the vocabulary is
divided into subsets. The number of well-formed sentences in a human
language is theoretically infinite. But the rules of sentence construction
are finite. Finite-states grammars are generally represented using finite
state networks. Like hidden Markov models, finite-state grammars con-
sist of states linked by left-to-right, directional transitions, and recursive
transitions as illustrated in Figure 2.11. Unlike hidden Markov models,
finite-state grammars are not characterized by probabilities because of their
deterministic nature. Generally, a grammar is defined and coded by the
application developer. Some graphical application interfaces such as the
Unisys Speech Assistant Tool offer a solution for developers [76].

Statistical Models

Instead of using the syntactic rules of the language, statistical models, such
as bigrams and trigrams, use probabilities estimated over a large training
sample of the language. For instance, a word-pair bigram for word transi-
tions is expressed as

P(transition) = P(words|wordy) (2.30)

where the transition occurs from words to word;. Given that bigrams are
dependent on the previous word, trigrams are dependent on the previous
two words, and N-grams on the previous N-1 words. The drawback with
N-grams is that they must be trained with a large, statistically significant
data set.
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Figure 2.11: A finite-state grammar

Context-Free Grammar

Like finite-state grammars, context-free grammars are deterministic: they
define allowable structures. Part of the flexibility of context-free grammars
is that they can represent a variety of linguistic approaches [96]. The appli-
cation of context-free grammar rules is commonly represented by a parser,
as shown in Figure 2.12. For real-time recognition which takes place as
the talker speaks, ASR parsing is performed bottom-up, in a left-to-right
manner. Therefore, the potential words in the parser are combined in a
hierarchy to form a phrase or sentence.

Of these three models, statistical N-grams are most often employed in
ASR system. However, context-free grammar parsers and finite-state gram-
mars are attractive because they can be constructed without the burden of
gathering training data to present the relationships between different parts
of speech in the language. Although parsers and grammars model sen-
tence syntax and scale up well to large-vocabulary recognition tasks, they
may be too rigid for conversational speech. On the other hand, statistical
models are more suitable for conversational speech because they are not so
restrictive as to permit only valid language constructs.
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sentence
/\
noun phrase verb phrase
/\
proper noun verb noun phrase
/\
determiner noun
Tom has a computer

Figure 2.12: A parse tree for the sentence “Tom has a computer”

2.7 Summary

In this chapter we have addressed the fundamentals of speech processing
and speech recognition. The general speech recognition model has been
introduced and each of its components has been discussed. These compo-
nents together serve as the framework for our future discussion. We have
presented the algorithms which are used in our system implementation. We
have focused on LPC and auditory analysis in signal processing and feature
extraction. We have discussed DTW and HMM in pattern matching and
time alignment. Additional discussion of vector quantization and HMM
will be provided in chapter 4, where we integrate neural networks into the
speech recognition system.



Chapter 3

Multi-Layer Perceptron for
Speech Recognition

3.1 Introduction

In this chapter, we introduce the mathematical model of the Multi-Layer
Perceptron(MLP). We give a detailed description about MLP neural net-
works from network structure to network training. We present the ap-
plications using MLPs: MLP phonetic frame recognition and Time Delay
Neural Network (TDNN) phoneme recognition. We give a fuzzy interpreta-
tion to the MLP neural network based on the fuzzy set theory with which
we analyze the MLP training process and its output.

3.1.1 Multilayer Perception

In connectionist models, knowledge or constraints are not encoded in in-
dividual units, rules or procedures, but distributed across many simple
computing units. Uncertainty is modeled not as likelihoods or probabil-
ity density functions of a single unit, but by the pattern of activities in
many units. Therefore, knowledge is not programmed into any individual
unit’s function; rather, it lies in the connections and interactions between
linked processing elements. The Multi-Layer Perceptron is one of the most
popular connectionist models.

The Multi-Layer Perceptron architecture is a hierarchical design con-
sisting of fully interconnected layers of computing units. It belongs to the
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Figure 3.1: The structure of a Multi-Layer Perceptron

class of mapping neural network architectures. The structure is shown in

Figure 3.1. A Multi-Layer Perceptron consists of an input layer, an output
layer and at least one hidden layer which contains hidden units that are

not directly connected to both the input and output units.

The Multi-Layer Perceptron overcomes limitations of single layer per-
ceptrons, but were not used in the past because effective training algorithms

This has changed with the development of a training

algorithm — the Back Propagation algorithm which will be discussed below.
Although it cannot be proven that this algorithm converges as a single layer
perceptron (using LMS algorithm), it has been shown to be successful for
many speech and image processing problems.

were not available.

Considering its simple architecture, MLP offers a remarkably wide range

of computational functions. Depending on the weights, the bias, and the

input, a unit in a network can act as a simple linear summer

a boolean op-

)
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erator, or a non-linear analog processing element. The processing capacities
of multi-layer perceptrons stem from the non-linearity used within units.
If units were linear elements, then a single layer network with appropri-
ately chosen weights could exactly duplicate these calculations performed
by multi-layer networks.

Lippman [46] has demonstrated that networks with two hidden lay-
ers are capable of performing any deterministic transformation requiring
binary outputs and analog inputs. Hornik et al [28] have rigorously estab-
lished that MLPs with two hidden layers are capable of approximating any
measurable functions from one Euclidean space to another, to any desired
degree of accuracy, provided sufficient hidden units are available. In this
sense, the MLP is a class of universal approximators. Multi-Layer Percep-
tron classifiers have been applied to speech problems more often than any
other neural network classifiers (Waibel et al [90], Bourlard et al [10], Ma
and Van Compernolle [54], Robinson et al [71]).

3.2 Back Propagation Algorithm

The Back Propagation (BP) algorithm is powerful enough to construct ap-
propriate internal representations. Without question, the Back Propaga-
tion algorithm is currently the most widely applied MLP training algorithm.
This popularity primarily revolves around the ability of back propagation
networks to learn complicated multi-dimensional mapping. The basic al-
gorithm was first described by Werbos in his Ph.D. thesis in 1974 [91] and
rediscovered and applied to neural computation by Rumelhart, Hinton and
Williams in 1986 [73].

The Back Propagation algorithm, like other algorithms in neural net-
work research, is a supervised learning procedure which involves the repre-
sentation of a set of pairs of input and output patterns. The system first
uses the input vector to produce its own output vector and then compares
this with the desired output or the target vector. If there is no difference,
then no learning takes place. Otherwise the weights are changed to reduce
the difference. If the input units are directly connected to the output units,
it is relatively easy to find learning rules that iteratively adjust the relative
strengths of the connections, so as to progressively reduce the difference
between the actual and desired output vector. The learning becomes more
interesting but more difficult when we introduce hidden units whose ac-
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tual or desired states are not specified by the task (input and output units
can be). The learning procedure must decide under what circumstances
the hidden units should be active in order to help achieving the desired
input-output behavior.

The Back Propagation algorithm is a remarkably simple extension of
Widrow and Hofl’s delta rule [93], and is also called the “generalized delta
rule”. It uses a gradient search technique to minimize a cost function
equal to the mean square difference between the desired and the actual
network output. It requires a continuous differentiable non-linearity in the
computational element. It consists of two passes of computation: the feed
forward pass from bottom to top and the feed backward pass from top to
bottom.

3.2.1 Feed Forward Process

In the forward pass, the synaptic weights remain unchanged throughout the
network, and the function signals of the network are computed on a neuron-
by-neuron basis. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each layer are
determined by applying Equation 3.1 to Equation 3.3 to the connections
coming from lower layers. All units within a layer have their states set in
parallel, but different layers have their states set sequentially, starting at
the bottom and working upwards until the states of the output units are
determined. A diagram of a unit is shown in Figure 3.2.

For the input pattern p, the total input z,; to unit j is a linear function
of the input x,; of the units that are connected to j, the bias b;, and the
weights w;;, i.e.

ij = Z wijxm- — b]' (31)
7

The biases can be given by introducing an extra input to each unit which
always has the value of 1. The weight on this extra input is equivalent to a
threshold of the opposite sign. It can be treated just like the other weights,
and the above formula becomes

Zpj = ) WijTpi (3-2)
A

A unit has a real-valued output y,;, which is a non-linear function of its
total input

Ypj = F(ij) (3.3)
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Figure 3.2: The block diagram of a unit

where F'is a semi-linear function which is differentiable and non-decreasing.
Here the activation function is the sigmoid function which is a continuous
and nonlinear function shown in Figure 3.3.

1

o =1

(3.4)

The derivative of F(x) is
F'(z) = F(z)(1 - F()) (3.5)

It is not necessary to use exactly the function given in Equation 3.2,
but the use of a linear function for combining the input to a unit before
applying the non-linearity greatly simplifies the learning procedure.

The aim is to find a set of weights that ensures that for each input vector
the output vector produced by the network is the same as (or sufficiently
close to) the desired output vector. If there is a fixed, finite set of input-
output cases, the total error in the performance of the network with a
particular set of weights can be computed by comparing the actual and
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desired output vectors for every case. Let

1 2
Ep=3 > (dpj — ypj) (3.6)
i
be our measure of the error E, on input/output pattern p where j is an
index over the output units, y,; and d,; are the actual output value of an
output unit and its desired output value respectively. Then

E=)YE, (3.7)

where p is an index over all the cases (input-output pairs) and E is our
overall measure of the error. To minimize E by gradient descent, it is

necessary to compute the partial derivatives of E with respect to each
weight in the network.

3.2.2 Standard Delta Learning Rule

The learning procedure involves the presentation of a set of pairs of input
and output patterns. The system first uses the input vector to produce
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its own output vector and then compares this with the desired output
or the target vector. If there is no difference, no learning takes place.
Otherwise, the weights are changed to reduce the difference. In the case
without hidden units, the standard delta rule for changing weights following
the presentation of each input/output pattern pair p is given by

Apwiz = n(dpj — Ypj)Tpi (3.8)

Apwij = NbpiTpi (3.9)

where d,; is the target output value for the jth component of the output
pattern, y,; is the jth element of the actual output value produced by the
presentation of the input pattern p, ,; is the value of the ith element of the
input pattern, d,; is the error of jth element between the desired output
and the actual output, Ajw;; is the change to be made to the weight from
the ith to the jth unit following presentation of pattern p, and 7 is the
learning rate.

The standard delta rule implements a gradient descent in E when all
units are linear. There are many ways of deriving this rule. For our purpose
here, it is useful to see that for linear units it minimizes the squares of the
differences between the actual and desired output values summed over the
output units and all pairs of input/output vectors. One way to observe
this is to show that the derivative of the error measure with respect to each
weight is proportional to the weight change dictated by the delta rule, with
a negative constant of proportionality.

OE,
8w2-j

prij = —-nN (310)
This corresponds to performing a steepest descent on a surface in weight
space. From this standard delta rule, the generalized delta rule can be
derived.

3.2.3 Generalized Delta Rule and Backward Process

We apply the standard delta rule to the non-linear case. The problem of
how to calculate the change of weights is equivalent to the problem of how
to calculate the derivative OF,/Ow;;. This is simply the sum of the partial
derivatives for each of the input-output cases. For a given case, the partial
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derivatives of the error with respect to each weight are computed in two
passes. We have already described the forward pass in which the units in
each layer have their output values determined by the inputs received from
units in the lower layers using Equations 3.1 and 3.3. The backward pass
which propagates derivatives from the top layer back to the bottom one is
more complicated.

We use the chain rule to write the derivative as the product of two parts:
the derivative of the error with respect to the output of the unit times the
derivative of the output with respect to the weight:

8Ep o 8Ep 8ij

= 3.11
8wij 8ij 8wij ( )
By Equation 3.2, we see that the second factor is
azpj 0
- , =T, 3.12
Ow;; ow;; zk:wijpk o (3.12)
Comparing with Equation 3.9, we define
OF
Opj = — = 3.13
p. azpj ( )
Equation 3.12 thus has the equivalent form
OF
aw?" = —0pjTpi (3.14)
i

This says that to implement gradient descent in E, we should make our
weights change according to

prij = ndpjxpi (3.15)

just as in the standard delta rule. The trick is to figure out what 4,; should
be for each unit j in the network. There is a simple recursive computation of
these § ’s which can be implemented by propagating error signals backward
through the network.

To compute Equation 3.13, we apply the chain rule to write this partial
derivative as the product of two factors, one factor reflecting the change
in error as a function of changes in the unit output and one reflecting the
change in the output as a function of changes in the input. Thus, we have

0E,  0E, Oyp,

8= — - _
P Ozp; Oyp;j Ozpj

(3.16)
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Let us compute the second factor. By Equation 3.3 we observe that
aypj /
—= = F'(zp,; 3.17
5 = F'(zy) (3.17)

which is simply the derivative of the squashing function F', evaluated at the
network input z,; for the jth unit. To compute the first factor, we consider
two cases. First, assume that unit j is a unit in the network output layer.
In this case, it follows from the definition of the error function £, that

8EP —

— = —(dp; — Yp; 3.18
(9ypj ( PJ ypj) ( )

which is the same result as we obtained with the standard delta rule. Sub-
stituting for the two factors in Equation 3.16, we get

Opj = (dpj — Ypj) F' (2p5) (3.19)

for any unit j in the output layer. If unit j is not a unit in the output layer,
we use the chain rule to write

OB, _ 5~ 08, O
OYpj - Ozpk OYp;
S O, 0

& szk 8ypj

OE,
= —W,; 3.20
Zk: azpk ik ( )

= — Z 5pkwjk
k

Z WikYpi

1

In this case, substituting for the two factors in Equation 3.16 yields

Opj = F'(2p;) Zépkwjk (3.21)
k

whenever unit j is not a unit in the output layer. Equation 3.19 and
Equation 3.21 give a recursive procedure for computing the §’s for all units
in the networks, which are used then to compute the weight changes in the
network according to Equation 3.15.
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3.2.4 Back Propagation Algorithm

To summarize the above discussion, the six steps of the Back Propagation
learning procedure are given below.

1. Initialization of weights and offsets

Start with a reasonable network configuration and set all synaptic
weights and unit offsets to small random values that are uniformly
distributed.

2. Input and output representation

The input vector and the specified desired outputs are presented.
In speech recognition, we use MLP as a classifier, then all desired
outputs are typically set to zero except the one corresponding to the
class the input comes from. In this case the desired output is one.
The input are samples from a training set which can be presented
cyclically or randomly.

3. Forward pass

During the forward pass, the input is presented and propagated for-
ward through the network to compute the output value y,; for each
unit:

Ypj = F(Z WijTp;) (3.22)

where xp; is the output of unit ¢ in the current layer, y,; is the output
of unit j in the layer above the current layer, and w;; is the weight
from unit ¢ to unit j. F() is the sigmoid function.

This output is then compared with the target (the desired output [0
or 1]), resulting in an error signal J,; for each output unit. This is
simply the difference between the actual and desired output values
times the derivative of the sigmoid function.

Opi = Ypj (1 — Upj ) (dpj — Ypj) (3.23)
4. Backward pass

During the backward pass, the error signal is passed from the output
layer to each unit of the input layer and the hidden layer:

Opj = Tpj(1 — zp;) Z Opk Wik (3.24)
k
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where j is the unit in the current layer and k is the unit in the layer
above the current layer. This propagates errors back one layer each
time; the same process can be repeated for every internal layer.

5. Adaptation of weights and offsets

After § is calculated, we can compute weight changes for all the con-
nections that feed into the final layer:

Awij = ndpjacm- (3.25)
where 7 is the learning rate 0 < n < 1.

6. Repetition by going to step 2

The learning procedure is repeated again and again until a stop cri-
terion is satisfied. The stop criterion can be a preset threshold of
the average error in the output layer or some other strategies we will
discuss in section 3.3.

3.3 BP Implementation

So far we have obtained the theoretical foundation of the Back Propagation
algorithm. As in the HMM, the same HMM theory has been utilized by
almost all speech industries; however, the speech recognition performance
is still different from one to another. When we have a sound algorithm, the
most important thing is how to implement it and how to tune its parameters
to maximize its performance. However the algorithm itself does not tell us
how to do so at all. Here we focus on the practical implementation issues.

3.3.1 Network Initialization

Without any prior knowledge, the connection weights of the network are
often randomly initialized according to the minimum entropy criterion
(Rumelhart et al [73] [74] and Thimm et al [80]). Since the transition
region of the sigmoid function is relatively narrow while the saturation re-
gions are relatively wide, randomly initializing with very small values of
random numbers and a uniform distribution between [—0.3, +0.3] will de-
crease the possibility that the basic units operate in the saturation regions
of the sigmoid function.
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3.3.2 Momentum Term and Learning Rate

Our learning procedure requires only that the change in weight be pro-
portional to the derivative 0E,/0w;;. True gradient descent requires that
infinitesimal steps be taken. The constant of proportionality 7 is the learn-
ing rate in our procedure. The larger this constant, the larger the changes in
the weights. This easily leads to oscillation but offers the most rapid learn-
ing. One way to increase the learning rate without leading to oscillation
is to modify the generalized delta learning rule to include a “momentum”
term. This can be accomplished by the following equation:

Awij(n) = ndpjzi + alwij(n —1) (3.26)

where the index n shows the presentation number, 7 is the learning rate,
and « is a constant which determines the effect of past weight changes on
the current direction of movement in weight space. This provides a kind
of momentum in weight space that effectively filters out high-frequency
variations of the error-surface in the weight space. This is useful in space
containing long ravines that are characterized by sharp curvature across
the ravine and a gently slopping floor. The sharp curvature tends to cause
divergent oscillations across the ravine. To prevent these it is necessary to
take very small steps, but this causes very slow progress along the ravine.
The momentum filters out the high curvature and thus allows the effective
weight steps to be bigger.

3.3.3 Weight Adaptation

There are two ways to change weights. One way is to change weights after
each input-output case. This has the advantage that no separated memory
is required for the derivatives, but it takes a long time to converge. It
is suitable for a small training database and few patterns classified. An
alternative scheme is to accumulate the partial derivative of the error E
with respect to the weight w;; over all the input-output cases and compute
the average before changing the weights. Any conflicting and correlating
patterns can be identified at this stage. However, if the number of training
patterns is large, this updating scheme may not be feasible. To overcome
this problem, we propose to divide the training data into subsets such
that the distribution of each subset is similar to the distribution of all
training patterns. In this case the error energy space of each subset can be
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approximated to the global error energy space. Each subset is trained in
the alternative cycle. The convergence speed is compromised. The main
advantage of this strategy is that the created network has more flexibility
and it may give better testing results.

3.3.4 Learning Time, Cross Validation and Stop Criterion

The essence of back-propagation learning is to encode an input-output re-
lation, represented by synaptic weights. In practice, learning time is a big
problem for the Back Propagation algorithm, especially with large training
databases as in speech recognition. Training the connectionist models can
be very time consuming with improper network control coeflicients such as
initial weights, learning rate n and momentum term «. It needs several
adjustments to have the network go to the converging direction.

It is difficult to say when the network is ready as the convergence goes
very slow after some iterations. Normally, the network is useable when
the average error energy on each unit in the output layer is less than 0.1
empirically. However, this is not enough for speech recognition in which
data for training and the data for testing are always quite different. The
smaller the average error energy, the better classification for the training
data, however, the performance for test data may decrease. When the
network is over-trained with the speech training data, the network could
learn some database-dependent information from the training data. This
kind of information degrades the network classification ability for test data.
The network performance vs. the number of iterations is shown in Figure
3.4.

A standard tool in statistics, known as cross walidation, provides an
appealing guiding principle [34]. The available training data set is randomly
partitioned into a training set and a test set. The training set is further
partitioned into two subsets: one subset used for MLP training and the
other used for evaluation of the performance of the trained MLP model.
When the performance goes down for the evaluation set, the training should
be stopped. This method is also used to decide upon the MLP structure:
the number of units in each layer.
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Figure 3.4: The MLP performance vs. the number of iterations

3.3.5 Modified Weight Adaptation and Weighted Training
Data

In speech recognition, the training database is very large and might con-
tain a lot of frames in which parameters have very little differences; for
instance, speech parameters have little changes between two consecutive
frames in the middle part of vowels (Bridle et al. [12] [11]). Here we use
the cumulating weight change method to update the weights. The reason
is that the same input patterns will cause the same corresponding weight
changes in the neural network and the summation can be done after all in-
put patterns forward pass through the network. It is not necessary to pass
the same pattern a lot of times. The equivalent results can be obtained
by multiplying the weight changes of each input pattern by a factor. The
average of cumulating weight changes is given by

1 N
Awi]‘(n) = mﬁ;’yp Awpij + aAwij(n — 1) (327)

where 7, is the weighting factor for the pattern p, N is the number of
patterns. In this way, a small subset of the training database can be selected
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to replace the large training database, and consequently, the training time
will decrease.

Feature Emphasis

This method not only can speed up the training process but also emphasize
the important input patterns. If the input pattern is important, a large
weighting factor is assigned to it, otherwise a small factor is assigned. The
network will be more robust to the important features. If the training
patterns are contextually independent phoneme tokens, for instance, a large
weighting factor 7, should be applied to the frames in the middle part of
the phoneme frame sequence and a small one to the boundary frames. The
weighting function can simply be a Hamming window. Figure 3.5 illustrates
the use of Hamming weighting functions on a phonetically segmented speech
signal: Dutch digit een. Large weighting factors are assigned for nasal
consonant n. As the vowel ee has more frames than the phoneme n, smaller
values are applied to it. The noise is the least important, and the smallest
values are used for those noise frames.

Training Data Balance

Moreover, the weighting method can also be used to balance the training
database. In the training database, some patterns have much more samples
than others. For instance, Dutch digit een contains phonemes ee and n.
However, the vowel phoneme ee has more frames than the nasal phoneme
n. We often expect the network to have the same classifying capability with
respect to the different sizes of the training patterns. This can be done by
assigning small weighting factors to the patterns with the large number
of samples or wvice versa, in order to avoid over-training the pattern with
more input samples or under-training the pattern with fewer input samples
caused by unbalanced training database. Further discussions on this issue
will be presented in section 3.6.

3.4 Scaling the Network

Encouraged by the good performance and the desirable properties of the
MLP model, we try to extend MLPs to large scale connectionist speech
recognition systems. Some simple preliminary considerations, however,
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Figure 3.5: Hamming weighting functions on Dutch digit een

raise serious questions about the extendibility of connectionist design: Is
it feasible to build and train ever larger neural networks within limited re-
sources and time? Is it possible to add new knowledge to existing networks?

With speech being one of the most complex and all-encompassing human

cognitive abilities, questions of scaling must be addressed.

The structure of a scaled MLP is shown in Figure 3.6. The change of the
network size only happens in the input layer. We build up a small network
indicated by the dashed lines at the bottom input layer. We start training
the small network based on the random initial connectionist weights. After

a number of iterations, we add a frame on both sides of the input layer.
Because of the contextual properties of speech, the new frames are not
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Figure 3.6: A scaled network superimposed on the original one

much different from their neighbor frames. From this we suspect that the
weights of new frames might have the same values as their neighbor frames.
The weights in upper layers might not be influenced by adding new frames
in the input layer if we adjust the weights between the input layer and
the first hidden layer in the network. For instance, this can be done by
setting the weights in newly added frame i,¢, and its adjacent frame ¢ in
the enlarged network equal to half of the corresponding weight values in the
frame ¢ from the original network and keeping the weight values unchanged
in the other frames of the input layer. That is

. . 1

Wipeyj = Wij = 5Wij (3.28)

2

Where ;,,,,; and w;; are the connectionist weights in the new network,
and w;; is the weight in the original one.

The augmented network is trained by starting from the inherited weights
from the original network. This process can be repeated several times. A
large connectionist network may be established based on a small network
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rather than random initial data. The training time may be saved in this
way.
Our proposed strategy is based on three observations:

e Networks trained to perform a smaller task may not produce outputs
that are useful for solving a more complex task, but the knowledge
and internal abstractions developed in the process may indeed be
valuable.

e Learning complex concepts in (developmental) stages based on previ-
ously learned knowledge is a plausible model of human learning and
should be applied in connectionist systems.

e To increase competence, connectionist learning strategies should be
built on existing distributed knowledge rather than trying to undo,
ignore or re-learn such knowledge.

To avoid the convergence problem, the network size is increased before the
network is trained to reach the global (or local) minimum. The difficulty for
the network to converge increases as the size of the network grows. From
what we have experienced, this method works only on a small scale (less
than 10 frames in the input layer).

3.5 Time Delay Neural Networks for Phoneme
Recognition

We have discussed the MLP and its BP algorithm. The next step is how to
use them in speech recognition. Here we provide two basic schemes which
have been investigated during this work: TDNN for phoneme recognition
and MLP for frame recognition. The former will be described in this section.
The latter will be addressed in the next section.

3.5.1 Structure of a TDNN

We were inspired by the benchmark of Time Delay Neural Networks for
Phoneme Recognition (TDNN) done by Waibel et al [90]. A Time Delay
Neural Network is an implementation of Multilayer Perceptrons. The basic
unit used in many neural networks computes the weighted sum of its inputs
and then passes this sum through a nonlinear function. The TDNN-unit
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Figure 3.7: A unit in a Time Delay Neural Network

not only computes the weighted sum of their current input features, but
also considers the history of these features. This is done by introducing
various delays D; through Dy as shown in Figure 3.7 on each of the inputs
and by processing (weighting) each of these delayed versions of a feature
with a weight. In this fashion each unit can learn the dynamic properties of
a set of moving inputs. A TDNN unit has the ability to relate and compare
current input to the past history of events.

To achieve the desired learning behavior, we need to ensure that the
network is exposed to sequences of patterns and that it is allowed (or en-
couraged) to learn about the most powerful cues and sequences of cues
among them. We first apply the regular back propagation forward and
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Figure 3.8: TDNN output with input CV syllables [da, ba, ga/

backward pass to all time-shifted copies as if they were separate events.
This yields different error derivatives for corresponding (time shifted) con-
nections. Rather than changing the weights on time-shifted connections
separately, however, we actually update each weight on corresponding con-
nections by the same value, namely by the average of all corresponding
time-delayed weight changes.

Compared with the regular static MLP, the procedure described here
is computationally rather expensive, due to the many iterations necessary
for learning a very complex multidimensional weight space.

Figure 3.8 and Figure 3.9 show the TDNN used for voiced stop conso-
nants /b, d, g/ recognition. The darkness of the dots stands for the absolute
output value on each unit. The output values are positive in all layers ex-
cept the input layer where there are nearly half of negative values as the
normalization is done to speed up the training process.

In Figure 3.8, those three voice stop consonants are recognized with the
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Figure 3.9: TDNN output with input CV syllables [ba, bo/

same vowel. Figure 3.9 shows the recognition of the same consonant with
different vowels. Comparing the outputs on second hidden layers in Figure
3.8 with those in Figure 3.9, we have found that the outputs on the second
hidden layers are almost the same in Figure 3.9 but quite different in Figure
3.8.

Our results are different from what has been presented by Waibel et al
[90]. They claim that

Each TDNN unit outlined has the ability to encode temporal
relationships within the range of the delays. Higher layers can
attend to larger time spans, so local short duration features will
be formed at the lower layers and more complex longer duration
features at the higher layers.

According to their theory, the second hidden layers should be the same
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and the first layer should be different in Figure 3.8, since we have the same
vowels but different consonants and vice versa in Figure 3.9.

From what we have observed, we have the following conclusions for the
Time Delay Neural Network.

e The TDNN has time invariant ability. Each collection of TDNN units
described above is duplicated for a frame shift in time. In this way,
the whole history of activities is available at once.

e The higher hidden layer carries more distinctive pattern classifica-
tion information than the lower hidden layer. The stable and non-
discriminative information is stored in the lower hidden layer.

e Training the TDNN is very time consuming and it is difficult to con-
verge to a global minimum for a large training database.

e Two hidden layers may be too complicated for speech recognition
tasks.

3.6 MLP for Speech Frame Recognition

As we have described in Chapter 2, speech features are frame based and
acoustic speech signals can be phonetically segmented. Here we simply use
the MLP for frame phoneme classification.

3.6.1 MLP Structure

From the previous section about the TDNN for phoneme recognition, we
have observed that two hidden layer networks are very complex, somehow
redundant, and difficult to train. It is possible to use one hidden layer with
more units instead of two hidden layers. Our experiments have shown that a
perceptron with one hidden layer is good enough for the frame classification
task. Here we use a very simple MLP structure shown in Figure 3.10.

The great advantage of the MLP is that it is able to gather all kinds
of pattern classification information together to precisely present a pattern
without any limitations. By taking this advantage, it is possible to use
the parameters and their derivatives calculated in Chapter 2. Here we use
auditory Mel spectra as input speech parameters features to present our
method. The inputs are one or multiple adjacent frames of those speech
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Figure 3.10: The structure of an MLP for frame recognition

parameters. We choose five frames according to our experience with the
calculation of first derivatives and second derivatives, which are an effective
means of describing the speech dynamics [94]. The use of context frames
can increase frame recognition scores substantially.

Each unit corresponds to a phonetic label in the output layer. The
target value on that unit corresponding to the current phoneme is set to
one. The target values on the other units in the output layer are set to
zero. Next step is how to form the training data.

3.6.2 Random Frame Selection

Let us look at the phonetic segments of the Dutch digit een shown in Figure
3.11. It is obvious that phoneme een has more frames than phoneme n.
In our experimental Dutch digit database, the hand labeled training data
contains 16,300 frames. Among them, there are only 103 frames for the
voiced stop d and there are 1562 frames for the vowel ee. However, the noise
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Figure 3.11: The phonetic segments of Dutch digit een and its weighting
windows.

xx has 6337 frames occupying more than one third of the training database.
Training based on such a database not only takes an extremely long time
but results in a phonetically biased network as well. The network is more
sensitive to noise and to vowels than to consonants. This is obviously
unacceptable.

We propose the random frame selection strategy to solve this problem.
First, we group all frames for each phoneme from the entire database.
Then we randomly select the same number of frames for each phoneme
from the corresponding group. Finally we obtain the training data by
putting the selected data together. We do this for each iteration of the
MLP training. We use the whole database and we have a small balanced
training database. The result is a robust MLP produced in a short period of
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training time. (It also implies that the MLP is trained with equal prior class
distributions, which can be used to overcome the probability mismatching
problem between MLP and HMM in using MLP as a probability estimator

[8])-

Whether for Viterbi segmentation or hand segmentation, the boundary
between two phonemes in a word is always difficult to determine. The
frames in the middle part of each phoneme are more stable than those
around the boundaries. Our purpose is to emphasize the middle frames
and to de-emphasize the boundary frames. The network will be robust for
the middle part of each phoneme vs. the boundary part. This is done by
applying a window function, which has large values in the middle and small
values near the phonetic boundaries as we have described in Section 3.3.
Here we give an example how to apply weighting factors to phonetically
labeled frames shown in Table 3.1.

We integrate the random frame selection with the training database
weighting together. After being processed by those two methods, the re-
ceived training data set is phoneme balanced, feature balanced and much
smaller than the original training database. Here 4 frames for each phoneme
are randomly selected from Table 3.1. The balanced and weighted training
data is illustrated in Table 3.2.

The network is further trained by the above modified Back Propagation
algorithm. The disadvantage of using this weighting method is that it may
result in a biased NN (the prior probability changes when using the trained
MLP as a probability estimator) and the summation of weights are different
from phoneme to phoneme. There is a simple way to avoid this problem by
using the weighting function to steer frame selection towards the middle of a
phoneme, i.e., the window function provides a threshold for frame selection
and the unmodified Back Propagation is applied for MLP training.

Although the MLP has shown great promises for static frame recogni-
tion, it has not reached the level for the whole word recognition as the MLP
itself lacks some of the most important HMM features such as dynamic time
warping. Our main task in the next chapter is using the MLP non-linear
mapping and multiple feature input capabilities to develop MLP/HMM
hybrid speech recognition systems.



68 CHAPTER 3. MULTI-LAYER PERCEPTRON FOR SPEECH RECOG.

HHHHHHHHHFHHAHHHHFAH A HH
labels — weights

xx — 0.2
XX -04
xx — 0.8
XX - 0.5
xx —- 0.2
ee 0.2
ee -0.3
ee - 0.5
ee - 0.7
ee - 0.8
ee -0.9
ee - 0.8
ee 0.7
ee - 0.5
ee 0.2
ee - 0.2
n - 0.2
n——- 0.7
n - 0.9
n - 0.7
n——-0.2
XX 0.3
xx —— 0.4
XX - 0.8
xx —— 0.4
XX - 0.2

i A A A A A A i

Table 3.1: An example of applying weighting factors to phonetically labeled
frames
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HHHAHHHHHHFHHFHHHHHHHHHH#
labels — weights

xx —- 0.2
XX 0.4
xx —— 0.6
XX - 04
ee - 0.8
ee 0.5
ee - 0.8
ee - 0.2
n——- 0.2
n -0.7
n - 0.9
n——-0.2

A A A A A i A i

Table 3.2: Training data generated by random frame selection
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3.7 Analysis of the MLP Output

The winner-take-all labeling strategy takes into account only the highest
scoring output of the MLP. However, the other outputs can also yield im-
portant information. Especially at phoneme boundaries, it often occurs
that several outputs have high values.

We use statistical histograms to analyze the MLP output. Histograms
for 200 utterances of the Dutch digit een are illustrated in Figure 3.12.
The histogram provides an estimation of the probability of occurrence of
the MLP output values. The names labeled on the small histogram windows
correspond to the labels on the MLP output units.

If the input pattern corresponds to the label on the output unit, the
MLP output on that unit typically has a large value with a high probability,
for instance, the histogram of ee in histogram window NNWEE, n in NNWN
and xx in NNWXX. When the input pattern is totally unrelated to the label
on the output unit, the MLP output on that unit has a small value very
close to zero with a high probability and its histogram looks approximately
Gaussian, for instance, the histograms xx, ee, n in NNWR, NNWW, NNWA
(the output values are less than 0.2 or 0.3). When the input pattern is
related to the label on the output unit, the MLP output typically has
a large value with a higher probability than when the input pattern is
unrelated and the shape of the histogram is uncertain, for instance, the
histogram xx in NNWT, ee in NNWIE and n in NNWEH.

It is clear from these observations that not only the unit with the highest
output value holds important information but the other units do as well.
As in the conventional K-means VQ, the distortion measure reflects the
closeness between the input pattern and each codeword. The MLP output
value contains the closeness measure between the input speech pattern and
each output phoneme in a non-linear (probabilistic or fuzzy) fashion.

3.8 Fuzzy Multi-Layer Perceptron

Here we attempt to build a fuzzy version of the multi-layer perceptron
using the gradient-descent-based back-propagation algorithm as we have
described in the previous sections, by incorporating concepts of the fuzzy
set theory at various stages.



3.8. FUZZY MULTI-LAYER PERCEPTRON 71

NHWXX HHUA NHWCH NHWD HNHWE
} . |
P. n|| ﬂl Ij,

H . L z & | 5\
LA AN AN L
NHWEE HHWEH NHWEI NHWF HHY
|
/I ‘ \ A W
.|| ! | } I", i
| s L I\ A /i
NHWIE NHWJ NHWLL NHUN HHUR
\ | "
.

‘I}

(R

NHWS NHUT NHWU NHWY NHUW
1 [
| h | |

! N ‘

!ﬁ, | A I N I
‘l\‘f";x_ l.-f/ \\.. / D ) .Af\_ 81 '[\
NHWZ HHWEU
A i XX e
\‘ i L
. .

Figure 3.12: Histograms for 200 utterances of Dutch digit een. The dark
lines represent the output histograms on the phonetically labeled MLP
output units with the input data segmented to the noise xx. The grey lines
stand for those corresponding to the part of ee. The light lines are for n.
The horizontal axes are the MLP output values between [0,1] on each unit
in the output layer. The vertical axes are the probabilities of occurrences.
The peaks indicate the conresponding values occur most frequently. For
example, the majority output values of output units xx and ee, are around
0.1 and 0.2 when the output unit label is N in window NNWN.
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Figure 3.13: The phonetic segments for Dutch digit negen. The regions
between two dotted lines around the solid segment lines are confusing for
phonetic segmentation.

3.8.1 Fuzzy Set Theory in Speech Recognition

A human speech signal is produced by moving the articulators towards tar-
get positions that characterize a particular sound. Since these articulatory
motions are subject to physical constraints, they commonly don’t reach
clean identifiable phonetic targets. The utility of fuzzy sets lies in their
ability to model those uncertain or ambiguous speech data. Fuzzy set the-
ory was introduced by Zadeh in 1965 (Zadeh[97]). Since then, the theory
has been heavily used by researchers to enhance the algorithms. As we
know, logic deals with true and false. However, a proposition can be true
on one occasion and false on another. Fuzzy logic deals with propositions
that can be true to a certain degree. Phonetic segmentation of the speech
signal is such a proposition. Because of coarticulation, the segments are
very ambiguous. In Figure 3.13, we show the phonetic segments for a Dutch
digit negen. It is very difficult to decide the boundary in the congruous
frames between two phonemes, e.g., e and g. We may be saying that the
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two adjacent phonemes are fuzzy. The overlapping windowed speech fea-
tures as we have described in Chapter 2 emphasizes the sequential property
of speech but also enhances the degree of “belongingness” to other features.

Fuzziness in Neural Networks

Hence, to enable a system to tackle real-life situations in a manner more
like humans, one may incorporate the concept of fuzzy sets into neural
networks. It is to be noted that although fuzzy logic is a natural mechanism
for propagating uncertainty, it may involve in some cases an increase in the
amount of computation required (compared with a system using classical
binary logic). This can be suitably offset by using fuzzy neural network
models having the potential for parallel computation with high flexibility.

This fuzzy neural network model is capable of handling input features
presented in quantitative and/or linguistic form. The components of the
input vector consist of the membership values to the overlapping partitions
of linguistic properties low, medium, and high corresponding to each in-
put feature. The fuzzy neural network provides a scope for incorporating
linguistic information in both the training and the testing phases of the
model and increases its robustness in tackling imprecise or uncertain input
specifications.

The conventional two-state neural network models generally deal with
the ideal condition, where an input feature is either present or absent and
each pattern belongs to either one class or another. They do not consider
cases where an input feature may posses a property with a certain degree
of confidence, or where a speech pattern may belong to more than one
class with a finite degree of “belongingness”. The MLP we describe here
incorporates these concepts and is capable of classifying fuzzy patterns.

3.8.2 Fuzzy Multilayer Perceptron

As we have discussed in Section 3.2, the network passes through two phases,
viz., forward pass and backward pass in the training process.

During the forward pass, the supervised learning is used to assign output
membership values lying in the range [0, 1] to the training vectors. Hence
each output unit in the output layer may be assigned a non zero membership
value instead of choosing the single unit with the highest activation. This
allows modeling of fuzzy data when the feature space involves overlapping
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pattern classes such that a pattern point may belong to more than one class
with nonzero membership value.

During the backward pass, each error in membership assignment is fed
back and the connection weights of the network are appropriately updated.
The back-propagation error is computed with respect to each desired out-
put, which is a membership value denoting the degree of belongingness of
the input vector to that class. Hence the error (which is back-propagated
for weight updating) has inherently more weight in case of units with higher
membership values. The contribution of ambiguous or uncertain vectors to
the weight correction is automatically reduced. This is natural as vectors
that are more typical of their class should have more influence in determin-
ing the position and the shape of the decision surface. The learning rate
and the momentum coeflicient are gradually decreased until the network
hopefully converges to a minimum error solution. This heuristic helps to
avoid spurious local minima and usually prevents oscillations of the mean
square error in the weight error surface. The network sweeps through ran-
domly selected training data on each iteration. The utility of this approach
for the modeling of output values can be further appreciated by consider-
ing a point lying in a region of overlapping classes in the feature space. In
such cases, its membership in each of these classes may be nearly equal.
Then there is no reason why we should follow the crisp approach of clas-
sifying this pattern as belonging to the class corresponding to that output
neuron with a slightly higher activation, thereby neglecting the smaller yet
significant responses obtained for the other overlapping classes.

We set the number of output units to correspond to the number of
phonemes present. As speech spectra have overlapping or fuzzy class bound-
aries, each pattern used in training possesses nonzero belongingness to more
than one class. To model such data, we clamp the desired membership val-
ues, lying in the range [0, 1], at the output units during training. Then, the
network back-propagates the error with respect to the desired membership
values at the output.

This procedure of assigning fuzzy output membership values, instead of
the more conventional binary output values, enables the MLP neural net-
work to more efficiently classify fuzzy data with overlapping class bound-
aries.
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Figure 3.14: The overlapped Hamming windows as the fuzzy membership
function
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3.8.3 Fuzzy Output and Weighted Input

In the previous section, we have proposed the modified weight adaptation
and the weighted training input. In fact, we have taken into account the
degree of belongingness of the speech input pattern contributing to the crisp
output. The fuzzy MLP, on the other hand, focuses on the MLP output.
It uses the nature of belongingness or fuzziness from input speech patterns
and propagates them to the network output.

There are several ways to decide upon the output fuzzy membership
functions ([75]). Those calculations seem very complicated. Here we pro-
pose a very simple and efficient approach. We simply use the overlapped
Hamming window as the fuzzy membership function to decide upon the
output analog values in the output layer. The target values on the unit
corresponding to the current phoneme and its adjacent phoneme are set
to the values calculated from the Hamming window. The target values on
the other units in the output layer are set to zero. The computation is
illustrated in Figure 3.14.

3.9 Summary

In this chapter, we have discussed the Multi-Layer Perceptron and its
Back Propagation learning algorithm. The MLP super pattern classifi-
cation properties lie in its discriminative power, its capability to deal with
non-explicit knowledge and its freedom to take all kinds of information into
account.

We have proposed modified weight adaptation, network scaling, ran-
dom data selection and training data weighting strategies aiming at speech
recognition tasks.

The MLP has developed alternate internal representations that can link
quite different acoustic realizations to the higher level phonetic concept. We
have presented two methods for simple phoneme based frame classification
using MLPs and the voiced stop consonant recognition using Time Delay
Neural Networks respectively.

We have also given the neural network a fuzzy interpretation with the
fuzzy set theory. The overlapping speech input, the connectionist weights
and fuzzy membership output provide a sound fuzzy MLP classification for
speech recognition. We proposed to use the overlapped Hamming window
as the fuzzy membership function.
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More detailed discussions on how to use MLPs for speech recognition
will be presented in the next chapter. The experiments concerning the
MLP issues discussed in this chapter will be presented in chapter 5.
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Chapter 4

Vector Quantization and
Connectionist Vector
Quantization

4.1 Introduction

Quantization, the process of approximating continuous amplitude signals
by discrete signals, is an important aspect of data compression or coding,
the field concerned with the reduction of the number of bits necessary to
transmit or store analogue data, subject to a distortion or fidelity crite-
rion. The independent quantization of each single value or parameter is
termed scalar quantization. In contrast, the joint quantization of a block
of parameters is termed Vector Quantization (VQ).

In HMM-based speech recognition, vector quantization serves an impor-
tant role in describing discrete acoustic prototypes of speech signals for the
discrete HMM. This chapter will first review the principles of conventional
vector quantization, hybrid VQ/HMM modeling, and several related algo-
rithms which have been implemented in our speech recognition system. In
Section 4.6, we address the most important issues in this dissertation: using
the Multi-Layer Perceptron neural network as a labeler for Hidden Markov
Modeling. Using the fuzzy theory described in the previous chapter, we
address another approach: the Multi-Layer Perceptron fuzzy labeler. We
end with a summary of this chapter.
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Figure 4.1: A schematic diagram of vector quantization techniques

4.2 Vector Quantization

The basic concept of vector quantization as applied to speech recognition
is schematically depicted in Figure 4.1. A training speech sequence is first
used to generate the codebook. As we have described in chapter 2, the
speech signal is segmented (windowed) into successive short frames and
each frame of speech is represented by a vector of finite dimensionality. In
our case, the vector is the result of either the filter-bank analysis or the
LPC analysis which captures the time-various spectral characteristics of
the speech signal.

If we compare the information rate of the vector representation to that
of the raw (uncoded) speech waveform, we see that the spectral analysis has
significantly reduced the required information rate. Consider, for example,
10-kHz sampled speech with 16-bit speech amplitudes. A raw signal infor-
mation rate of 160 kbps is required to store the speech samples in PCM
format. For the spectral analysis, consider vectors of dimension p = 10
using a 10 ms frame rate. If we again represent each spectral component
to 16-bit precision, the required storage is about 16 kbps. It is a 10-to-1
reduction over the uncompressed signal. Such compressions in storage rate
is very impressive.

Based on the concept of ultimately needing only a single spectral rep-
resentation for each basic speech unit, it may be possible to further reduce
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the raw spectral representation of speech to those drawn from a small, finite
number of unique spectral vectors, each corresponding to one of the basic
speech units (i.e., the phonemes). Before the neural network was invented,
especially the MLP neural network (Ma and Van Compernolle[53]), this
ideal representation was, of course, impractical, because there is so much
variability in the spectral properties of each of the basic speech units. How-
ever, the concept of building a codebook of distinct analysis vectors, al-
though with significantly more code words than the basic set of phonemes,
remains an attractive idea and is the basis behind a set of techniques com-
monly called vector quantization methods.

Assume that we require a codebook with about 1024 unique spectral
vectors (i.e., about 25 variants for each of the 40 basic speech phonetic
units in American English). Then to present an arbitrary spectral vector
all we need is a 10 bit number which is the index of the codebook vector
that best matches the input vector. A total bit rate of about 1 kbps is
required to present the spectral vectors of a speech signal. This rate is
about 1/16 the rate required by the continuous spectral vectors. Hence the
VQ representation is potentially an extremely efficient presentation of the
spectral information in the speech signal. This is one of the main reasons
for the interest in VQ methods.

Before discussing the concepts involved in designing and implementing
a practical VQ system, we first discuss the advantages and disadvantages
of this type of representation for speech recognition. The key advantages
of the VQ representation are

e reducing storage for spectral analysis information. We have already
shown that the VQ representation is potentially very efficient. This
efficiency can be exploited in a number of ways in practical VQ-based
speech-recognition systems.

e reducing computation for determining similarity of spectral analysis
vectors. In speech recognition a major component of the computation
is the determination of spectral similarity between a pair of vectors.
Based on the VQ representation, this spectral similarity computation
is often reduced to a table lookup of similarities between pairs of
codebook vectors.

e discrete representation of speech sounds. By associating a phonetic
label (or possibly a set of phonetic labels or a phonetic class) with
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each codebook vector, the process of choosing a best codebook vector
to represent a given spectral vector becomes equivalent to assigning a
phonetic label to each spectral frame of speech. A range of recognition
systems exists that exploit these labels so as to efficiently recognize
speech.

The disadvantages of the use of a VQ codebook to present spectral vectors
are

e an inherent spectral distortion in representing the actual analysis vec-
tor. Since there is only a finite number of codebook vectors, the pro-
cess of choosing the “best” representation of a given spectral vector is
inherently equivalent to quantizing the vector and leads, by definition,
to a certain level of quantization error. As the size of the codebook
increases, the size of the quantization error decreases. However, with
any finite codebook there will always be some nonzero level of quan-
tization error.

e the storage required for codebook vectors is often nontrivial. The
larger we make the codebook (so as to reduce quantization error),
the more processing time is needed for the codebook vector search-
ing, the more storage is required for the codebook entries. Hence
an inherent trade-off among quantization error, processing for choos-
ing the codebook vector, and storage of codebook vectors exists, and
practical designs need to balance each of these three factors.

4.3 Conventional Vector Quantization

Vector quantization(VQ) reduces the data redundancy to be transmitted.
This inevitably causes distortion between original data and transmitted
data as we have discussed above. A key point of VQ is to minimize the
distortion. A set of parameters is quantized as a whole, minimizing the
global distortion. The finite set of possible quantized vectors is stored in
a codebook. After quantization, the input parameter vector is represented
by the corresponding label of the codebook entry that shows the smallest
distortion. In HMM-based speech recognition, the goal of VQ is to gener-
ate a number of acoustic prototype vectors ( VQ codewords ) from a large
sample of training vectors such that the codewords can represent the dis-
tribution of the training vectors; and minimize the total distortion over all
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training vectors. The V(Q partitions the acoustic feature space into separate
regions according to some distortion measure regardless of the probability
distributions of the original data. This introduces errors in the partition
operations which may destroy the original signal structure.

4.3.1 Vector Quantization

In vector quantization, the real-valued, continuous-amplitude d-dimensional
vector & is mapped to another real-valued, discrete(or continuous)-amplitude
d-dimensional vector z. It is then said that x is quantized to z.

2 = q(=) (4.1)
Where

e ¢() is the quantization operator.

o x = (x1,79,...,7q) € R? is a d-dimensional vector whose compo-

nents {zy, 1 < k < d} are real-valued, continuous-amplitude random
variables.

o z = (21,22,...,29)" z typically takes one of a finite set of values Z =
{ZZ', 1 < ) < L}, where zZ; = (Zil,ZiQ, ...,Zid)t.

The set Z is referred to as the codebook, L is the size of the codebook, and
{zi} is the set of codewords. The size L of the codebook is also called the
number of levels in the codebook. To design a codebook, the d-dimensional
space of the original random vector & can be partitioned into L regions or
cells {C;,1 < i < L} and each cell C; is associated with a vector z;. The
quantizer assigns the codeword z; if x lies in C;.

q(x) =2z if xeC; (4.2)

This codebook design process is also known as training or populating the
codebook. An example of partitioning a two-dimensional space (d = 2)
for the purpose of vector quantization is shown in Figure 4.2. The shaded
region enclosed by the bold lines is the cell C;. Any input vector a that
lies in the cell C; is quantized as z;. The shapes of the various cells can be
different, and the positions of the codewords corresponding to the cells are
determined by minimizing the average distortion D; associated with the
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Zi2

Figure 4.2: Partitioning of two-dimensional space into 18 cells. All input
vectors in cell C; will be quantized as the code vector z;. The shapes of the
various cells can be very different.
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corresponding cells. The positions of the codewords within each cell are
shown by dots in Figure 4.2.

When « is quantized as z, a distortion measure d(x,z) can be de-
fined between & and z to measure the quantization quality. The distor-
tion measure between x and z is also known as a distance measure in
the speech recognition context. The measure must be tractable in order
to be computed and analyzed, and also must be subjectively relevant so
that differences in distortion values can be used to indicate differences in
speech signals. The most commonly used measure is the Fuclidean distor-
tion measure which assumes that the distortions contributed by quantizing
the different parameters are equal.

4.3.2 Clustering

To design an L-level codebook, it is necessary to partition d-dimensional
space into L cells and associate with each cell a quantized vector. When the
overall average distortion D is used as a criterion in codebook design, we
say a quantizer is optimal if the overall average distortion D is minimized
over all L-levels of the quantizer. There are two necessary conditions for
optimality.

The first condition is that the optimal quantizer is realized by using a
nearest neighbor selection rule:

Q(w) = Zi, Zf d(m?zi) < d($7zj) ] 7& ivl S] <L (43)

The quantizer must choose the code word that results in minimizing dis-
tortion with respect to x, i.e. x is selected for the corresponding cell C;.

The second condition for optimality is that each codeword z; is chosen
to minimize the average distortion D; in cells C;. Since the overall average
distortion D is a linear combination of all average distortions D; in cell
C;, z; can be independently computed after classification of . Given the
average distortion of cluster C;, the minimization of D with respect to z;
is given by setting the derivative of D; to zero. We reach a solution where
z; is simply the sample mean of all the training vectors, @, contained in
cluster C;[47].

Good codebook construction is rarely possible by rule. Most often they
are constructed in an iterative way on the basis of a lot of data. An optimal
codebook will be the one that minimizes VQ distortion on the global train-
ing database. No globally optimum techniques for codebook construction
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are known, most reach a local optimum. The following K-means algorithm
has been used in our codebook design.

K-means Clustering

In K-means clustering, the basic idea is to divide the set of training vectors
into L clusters z; 1 <4 < L in such a way that the two necessary condi-
tions for optimality described above are satisfied. An existing codebook is
optimized in an iterative way so that the global distortion is guaranteed to
decrease (at worst stay the same) with every iteration.

In the process of minimizing the average distortion measure, the K-
means procedure actually breaks the minimization process into two steps.
Assuming that the centroid z; (or mean) for each cluster center C; has
been found, then the minimization process is found simply by partitioning
all the training vectors into their corresponding closest cluster according to
the distortion measure. On the other hand, if all of the partitions are ob-
tained, the minimization process involves its corresponding within-cluster
average distortion. By iterating over those two steps, a new value of overall
distortion which is smaller than that of the previous step can be obtained.
However, the K-means clustering can only converge to a local optimum.
Global optimality may be approximated by repeating the K-means algo-
rithm for several sets of codebook initialization values and then choosing
the codebook that produces the minimum overall distortion. However, such
a criterion may not necessarily lead to optimal speech recognition accuracy
(Huang [29]).

An extend K-means algorithm, the LBG algorithm proposed by Linde,
Buzo and Gray, is also commonly used [45]. The LBG algorithm iteratively
splits the training data into 2,4, ..., 2™ partitions, with a centroid for each
partition. The centroid is determined by iterative refinement as for the
K-means clustering. The procedure of the generalized Lloyd algorithm or
the K-means clustering algorithm consists of the following steps:

1. Initialization. Set L (number of partitions or clusters ) = 1. Find the
centroid of all the training frames.

2. Splitting. Split L into 2L partitions. Set L= 2L.

3. Classification. Classify the set of training data xjp into one of the
clusters C; according to the minimum distance classifier.



4.3. CONVENTIONAL VECTOR QUANTIZATION 87

4. Codebook updating. Update the codeword of every cluster by com-
puting the centroid in each cluster.

5. Iteration. If the reduction in the overall distortion D at each iteration
relative to the value D at the previous iteration is below a selected
threshold, go to step 6, otherwise go to step 3.

6. Termination. If L equals the VQ codebook size required, stop clus-
tering, otherwise go to step 2.

4.3.3 Labeling

After receiving the codebook by the K-means cluster, we need to quantize
the input spectrum with the codebook. This process is called labeling.
The classification procedure for arbitrary spectral vectors is basically a full
search through the codebook to find the best match.

Thus if we denote the codebook vectors of an L-vector codebook as z;,
1 < i < L, and we denote the spectral vector to be classified as @, the
index, i*, of the best codebook entry is

i = arg min d(xz, z;) (4.4)

The above equation can be interpreted as
d d
Z ‘l’j — Zi*j|2 S Z |IL‘j — Zz'j|2 Vi 1 § ) S L (4.5)
Jj=1 Jj=1

For codebooks with large values of L (e.g., L > 1024), the computation
of Equation 4.4 or Equation 4.5 could be excessive, depending on the exact
details of the distance measure; hence, alternative procedures for the design
of VQ codebooks have been investigated, among which MLP-VQ is one of
the most successful methods. We will discuss such methods in the later
sections of this chapter.

To receive a generalized codebook, we also need to have a generalized
training database. Our database provides more than enough speech data
to guarantee the generalized codebook. At this stage, we have finished the
basic VQ preparation for a discrete HMM system.



88 CHAPTER 4. VECTOR QUANTIZATION AND CONNECTIONIST VQ

4.4 Hidden Markov Modeling

4.4.1 Discrete HMMs

The normal discrete HMM is usually defined as a 5-tuple (Q, Z, 7, A, B).
Q is a set of N states ¢1,¢2,...,qn. Z is the codebook, a set of L labels
z1,292,..., 21, corresponding to prototypical spectra, m is a vector which
specifies the initial distribution, (71,72, ..., 7n), where m; = Prob(q; = ).
Denote the sequence of normal observations by O = (01,09, ..., 07), where
each o; for 1 < ¢t < T is some z; € Z. A is a matrix of state transition
probabilities, A = [a;;], 1 <14,j < L, where a;; = Prob(qi+1 =j | ¢ =i). B
is a matrix of observation probabilities, B = [bj(k)], 1 <j < N, 1<k <L
where b;(k) = Prob(o; = 2z, | ¢t = j). The following HMM algorithms are
used for HMM training and test.

4.4.2 Conventional HMM Algorithms

The Viterbi algorithm is often used to save on computations and to obtain
the state sequence at the same time. The implementation procedure is
described as follows:

e Initialization

61(1) = mbi(o1) 1<i< N (4.6)
¢1(i) = 0 (4.7)
e Recursion
0(7) = max [1(i)aijlbj(or) 2<t<T1<j<N (4.8)
0(j) = arg max [0 (fay] 2<t<T1<j< N (49)

e Termination Star * indicates the optimised results.

Prob(0)* = 1%%)1(\[[5T(i)] (4.10)
gr = arg max [o7(i)] (4.11)

1<i<N
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e Path backtracting

& = 1(gr) T—1>2t>1 (4.12)

Where 6;(j) is the highest probability along a single path ending at state
J, at time t. ¢(j) is the Viterbi path array.

4.4.3 Modified Observation Probability

Provided that each codeword of the VQ codebook Z is represented by a
probability density function f(x|q), for a given state ¢ of the HMM, the

probability density function that produces a vector & can then be written
as (Huang [29]).

L
we, (@) = > flxlg) (4.13)
7=1
L
= D f(zlzj,a)Prob(z;la) (4.14)
7j=1

where L denotes the VQ codebook level. For simplicity, the probability den-
sity function f(x|z;,q:) can be assumed to be independent of the Markov
states ¢;. Thus, for a given state i, Equation 4.14 can be written as (using
codebook index j to represent z;):

wi(@) = 3 flalz;)Prob(zlg = i) (4.15)

M=

1

<.
Il

f(=]3)bi(5) (4.16)

1
1M

In practice, Equation 4.16 can be simplified by using the M most significant
values of f(x|j) for each & without affecting the performance. Experience
has shown that values in the range of 2 — 8 are adequate. This can be
conveniently obtained during the VQ operations by sorting the VQ output
and keeping the M most significant values. Let n(a) denote the codeword
entries j of the set of VQ codewords, z;, for those most significant values
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of f(zx|j) of . Equation 4.16 can be rewritten as

wi(x) = Y flx]5)bi(j) (4.17)

JjeEn(T)

Since the number of VQ codeword entries in n(z) is of lower order than the
VQ level L, Equation 4.17 can significantly reduce the amount of compu-
tational load for subsequent modeling compared with Equation 4.16. The
computational complexity of the hybrid HMM mainly depends on the VQ
level L and the size of n(x).

4.4.4 Modified HMMs

From the definition in Equation 4.17, we can compute the modified Viterbi
algorithm. The modified Viterbi algorithm then becomes:

(51(2) = wiwi(ol) 1 S ) S N (4.18)
on(j) = 1r§niz%}§v[5t,1(i)aij]wj(ot) 2<t<T,1<j<N (4.19)

and the result is
Prob(0)* = max [07(7)] (4.20)

1<i<N

as usual.

4.5 VQ/HMM Hybrid Modeling

Given the VQ codebook index j, the probability density function f(x|j)
can be estimated with the parametric Gaussian probability distribution, or
by non-parametric or heuristic methods, such as multi-labeling and Fuzzy
VQ. The estimation of f(x|j) is crucial in the VQ/HMM system design.
The models we describe here will provide the classic approaches compared
with the neural network MLP approaches presented in the next section. We
first discuss the baseline discrete VQ/HMM, which is the basis for other
VQ/HMM hybrid models.

4.5.1 Discrete VQ/HMM

In a discrete HMM, the discrete labels obtained by vector quantization are
the observations for the HMM. A discrete HMM system is shown in Figure
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Figure 4.3: A simple VQ/HMM speech recognition system



92 CHAPTER 4. VECTOR QUANTIZATION AND CONNECTIONIST VQ

4.3. Clustering is only used in VQ codebook generation, which is indicated
by the dashed lines. The advantage of this approach is that each HMM
state must model a finite number of discrete labels. This typically results in
faster HMM computation. However, this mapping from continuous acoustic
space to quantized discrete space can cause serious quantization errors for
subsequent hidden Markov modeling. The following smoothing techniques
(Section 4.5.2 through 4.5.6) focus on reducing the vector quantization
errors.

4.5.2 Mixture Density HMM

Another disadvantage of the discrete HMM is that the VQ codebook and
the discrete HMM are separately modeled, which may not be an optimal
combination for pattern classification (Huang et al [30]).

The VQ codebook can be modeled as a family of Gaussian probability
density functions (pdfs) as shown in Figure 4.4, where solid lines show con-
ventional VQ partitions, dotted lines show mixture densities and dashed
lines indicate the fuzzy observations (in our later discussion). We observe
that the probability density functions can overlap, rather than be parti-
tioned, to present the acoustic feature space. The centroid obtained via
such a representation may be quite different from that obtained using the
conventional K-means algorithm, since the distribution property of signals
can be taken into consideration. The use of a parametric family of finite
mixture densities (a mixture density VQ) can be closely combined with
the HMM methodology. The observation probability is calculated by the
following Equation:

wi(x) = Y N(x,puj,%))bi (4.21)
jen(x)

The Gaussian density function N(z, 1j,%;) can be estimated with the EM
algorithm [31], or simple estimates of the covariance matrices based on the
conventional VQ codebook [31].

In this approach the V(Q problems and HMM modeling problems can be
combined under the same probabilistic frame work to obtain an optimized
VQ/HMM combination. We are not going to use this model in our MLP
approaches as both the phonetic MLP output labels and their corresponding
output values are not in the Gaussian parametric distribution, as shown in
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Figure 4.4: Comparison of three different VQ techniques: Mixture density,
VQ and Fuzzy VQ
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the histograms described in Section 3.7 (Only the irrelevant output values
there seem in Gaussian distribution).

4.5.3 Multi-Labeling

Multi-labeling, which generates multiple labels at each frame, was intro-
duced by Nishimura et al [59]. Let d(«, z;) be a vector quantization error
between vector & and the codeword z; 1 < j < L. L is the number of code-
book levels. By using the vector quantization error at each frame, f(x|j)
is obtained in the following normalization manner.

1. Initialization: Set iteration number j = 1 and find the minimum
distortion

dmin = 1§mji£L dx,z;) 1<j<L (4.22)

2. Normalization: Use the minimum distortion to normalize the other
distortion

dnorm(j) = d(x, 2;)/dmin foreach j 1<j<L (4.23)

3. Comparison: Decide the value of f(x|j)
flxlj) =a if dporm(j) <m, else f(x]j) =0 (4.24)

Where n is a preselected threshold. It is greater than 1.0; « is a constant
value and Y f(x|j) is constant at every frame; dyorm(j) is a normalized
distance which indicates the similarity to the top candidate. An example
of a multi-labeled sequence is generated as shown in Figure 4.5.b.

Apparently, this multi-labeled sequence is applicable to both training
and decoding of an HMM. For estimating the parameters of an HMM, the
conventional Baum-Welch algorithm is still available. All labels generated
at each frame are equally used for parameter estimation. Thus the HMM
with multi-labeling requires as much memory as the HMM with conven-
tional labeling. In the decoding process, the maximum output probability
among labels at each frame is used by the Viterbi algorithm. When this
method is applied to the training, it seems that it gives an effect similar to
the parameter smoothing method (Sugawara, et al [79]), which smoothes
the trained parameters by using a distance between label-prototypes.
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p Time frame

21| z4|z4 |22 |26 |29 |24 125 |23 |24 |24 | 21 | 21

@

21 (24|24 | 22|26 29| 24| 25|23 |24 |24 |21 | 21

z4 | z2 | 22 | z6 | 22 29| z4 z4

z2 z6 z2

(b)

Figure 4.5: Label sequences by the conventional labeling (a) and the multi-
labeling (b). z; is the codeword and indicates the label number j.
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4.5.4 Multi-Dimensional Labeling (Multiple Codebooks)

A distinctive technique is HMM based upon multiple VQ codebooks, which
has been shown to offer improved speech recognition accuracy (Lee [43]).

— Time frame

a3 | a6 | a7 |a7|a2|al |a4 | a8 |a7|a8|al a3 |al

v1v3v5v5v3v2v9v8v3v6v6v1v1

z1 |24 (24|22 |26 29|24} 25 23124124121 | 21

Figure 4.6: Frame sequences labeled by the multi-dimensional VQ.

It is well known that parameter velocity (first derivatives) and param-
eter acceleration (second derivatives) are an effective means of describing
the speech dynamics [94]. Because these 3 parameter sets (the spectral pa-
rameters, their first and second derivatives) can be assumed independent,
it is possible to make quantization separately, and then those codes are
unified into a single label. On the basis of this labeling, multiple features
are simultaneously evaluated in an HMM with a conventional formulation.
Since these features are appreciably independent of each other, VQ dis-
tortion can be significantly minimized by partitioning the parameters into
separate codebooks. The observation probability is computed in the fol-
lowing way:

wi(x) = wi(z)w;(v)wi(a) (4.25)
= bl(z)bz(v)bz(a) (4.26)

Where vectors z, v and a are the speech parameter vector, its first deriva-
tives and its second derivative respectively, and f(x|j) = 1. This method
is effective at reducing both memory space and processing time for labeling
compared with a method which quantizes a vector of multi-features as a
whole. On the other hand, the HMM with a labeling of multi-features may
require much memory space to save the output probabilities compared with
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the HMM with labeling based on only spectral features alone (Lee [43]).
The multi-dimensional vector quantization is shown in Figure 4.6.

4.5.5 Multi-Dimensional Multi-Labeling

Combining the multi-dimensional labeling and the multi-labeling, we ob-
tain a multi-dimensional multi-labeling VQ HMM system (Nishimura et al
[59]). Figure 4.7 shows an example of the multi-dimensional multi-labeling
method applied to HMMs. Here multi-labeling is done within each parame-

————————— Time frame

a3 |ab | a7 |a7|a2|al |a4 | a8 | a7 |{a8 | atl | a3 | a3

a6 | a3 | a3 a7 al | a7 al

vi|v3|VvE{vES|v3 | V2 {vO|vB|VvB|vEe|ve|vl|w

v3 | ve |v3|v2|w v8 v3 v6

v8 v4 vi

21 |24 |24 |22 |26 |29 (24 |25 {23 |24 |24 | 21 | 21

24 |22 1 22| 26| 22 29 | 24 24

22 26 z2

Figure 4.7: Frame sequences labeled by the multi-dimensional multi-
labeling VQ.

ter set (spectral parameters, their first and second derivatives). Considering
the size of each codebook, the number of code books and the number of
labels for each parameter, this method may need more computation and
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more memory, compared with the multi-dimensional labeling and the multi-
labeling.

4.5.6 Fuzzy Vector Quantization

The Fuzzy Vector Quantization (FV(Q) was proposed by Tseng et al [81]
in 1987. Fuzzy vector quantization is based on the fuzzy logic theory, the
K-means classification method and the VQ/HMM hybrid modeling. The
dashed lines indicate the fuzzy observations in Figure 4.4. The fuzzy VQ
introduces the closeness measure using the quantization error and smoothes
the hard decision boundary generated by the K-mean clustering.

Let d(x;, z;) represent the Euclidean distortion between input vector
x; and codeword z; as we have described in Section 4.2. The FVQ maps
an input vector x; into an output vector o; (Tseng [81]):

0; = (Mi1, Mi2, ..., ML) (4.27)

Vector o; is chosen in the following way according to the fuzzy c-means rule

(Dezdek [7]),

L
mij = [ [d(wi, z;) fd(w;, zp,)] D) (4.28)
k=1

in order to minimize the fuzzy objective function ( Dezdek [7]):

T L
D = Z Z mf;d(a:i, zj) (4.29)
i=1j=1
Where F' > 1 is a constant called the degree of fuzziness. It should be
noticed that as F tends to infinity, each component of o; tends to 1/M; as
F tends to 1, then the component corresponding to the minimum value of
d(x;i, z;) tends to 1, and all other components tend to 0. In our implemen-
tation, we use F' = 2 for fuzziness and simplicity. D is the overall average
distortion. Note that the components of o; are positive and sum to 1.

L
S my =1 (4.30)
j=1

The largest component is the one corresponding to the smallest value of
d(x;i, z;). Thus o; can be interpreted as a probability mass vector describing
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the probability that input vector x; is represented by the codebook Z. Then
the observation probability w;(o;) is calculated using the equation

N
wi(or) =y meibi(3) (4.31)
i=1

This method, however, has the disadvantage of requiring much more train-
ing and recognition time compared to the normal Viterbi algorithm.
There is a common disadvantage for above approaches: they are all
based on K-means clustering which can only provide linear solutions. In
the following section, we will provide novel non-linear approaches by taking
advantage of non-linear properties of the MLP neural networks.

4.6 Multi-Layer Perceptron Vector Quantization

4.6.1 Introduction

In recent years, there has been considerable interest in the use of Artificial
Neural Networks for speech recognition. Because Multi-Layer Perceptrons
(MLPs) have excellent pattern recognition properties and Hidden Markov
Models (HMMs) have powerful dynamic time warping capabilities, many re-
searchers have tried to combine MLPs with HMM in a hybrid fashion. The
benchmark work was done by Bourlard and Wellekens [10] in 1990. They
proved that MLPs trained for phonetic classification on the frame level can
be regarded as probability estimators for being in the corresponding pho-
netic HMM state, provided that the network contains enough parameters
and has converged to a global minimum. Most research on hybrid neural
network/HMM systems up till now has therefore concentrated on the use
of MLPs or other types of networks (Recurrent Neural Networks, Radial
Basis Functions (RBFs), ...) as probability estimators ([69], [71], [70], [77]).

Here we focus on another approach for combining MLPs and HMMs.
Instead of using MLPs as probability estimators, we propose to use MLPs
as labelers for discrete parameter HMMs.

There are other connectionist classification systems which can be also
used as a labeler. One of them is the popular unsupervised Kohonen Learn-
ing Vector Quantization (Kohonen [36] [37], Iwamida et al. [33], Utela et
al.[82]). However, in this work, we focus ourselves on exploring the MLP
algorithm and its classification capabilities for speech recognition, i.e., the
supervised learning vector quantization.
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4.6.2 MLP Labeling

The MLP labeler extents the phonetic frame classification in Chapter 3 to
the real speech recognition. Here we use the same MLP which is designed
in chapter 3 for the phonetic frame classification. There are three reasons
in selecting this structure. First, the TDNN described in section 3.5 is very
complicated and not easy to be trained with a large database. Secondly,
the Hidden Markov Models will provide time warping to the MLP output,
so it is not necessary to keep the TDNN'’s translation invariant property.
And thirdly, the advantages of MLPs, such as high discriminative power,
exposing non-explicit knowledge, and including contextual information, can
be encouraged by using a large number of frames in the input layer, e.g.,
five frames or more.

The inputs of the MLP are one or multiple adjacent frames of speech
parameters. Each output unit corresponds to a phonetic label. The target
value of the output unit corresponding to the current phoneme is set to
one, the target values of the other output units are set to zero. Training
is done by the error back-propagation algorithm. The training database is
obtained by using both random data selection and training data weighting.

Once the MLP is fully trained, the weights are kept fixed. For each
frame, the label corresponding to the highest scoring output of the MLP is
passed on to the discrete parameter HMM system. Thus we have achieved
a supervised VQ which contains phonetic information [53]. The HMMs
are then trained using a classical algorithm like the Viterbi algorithm. A
graphical representation of the system is shown in Figure 4.8.

In classical HMM training algorithms the models are trained to max-
imize the likelihood of producing their training examples, but no train-
ing is done to minimize some form of probability that other examples
are produced by the model. Several researchers have therefore investi-
gated discriminative training methods for HMMs, most notably the Maz-
imum Mutual Information Criterion [13], [3] and Corrective Training [4]
[2]. MLPs, however, incorporate automatically discrimination. In the con-
ventional MLP, used for pattern classification, the number of output units
corresponds to the number of pattern classes present. During training, the
output unit corresponding to the class of a pattern vector is kept clamped
at state 1 while the others are clamped to state 0. Hence the components
of the desired output vector take on two crisp state values. During test, a
winner-take-all mechanism caused the test pattern to be classified as be-
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Figure 4.8: A baseline MLP/HMM hybrid speech recognition system
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longing to that class corresponding to the output unit with the highest
activation. When an MLP is trained for frame classification, it is explicitly
demanded that one output is maximal and the other outputs are zero. This
provides a discriminating effect.

Our novel labeling approach and its extensions described in the next
following sections have several advantages compared to both the classical
Euclidean labeling mechanisms and to MLPs used as probability estimators.

4.6.3 Comparison of the MLP Labeler with the Conventional-
vaQ

When codebooks for an Euclidean distance Vector Quantization (VQ) are
designed, the goal is normally the minimization of some distortion measure,
e.g., the minimization of a squared error distortion measure [23]. This is a
good criterion for speech compression purposes, but for speech recognition
purposes it is somewhat overdone. Speech is perceived as a sequence of
phonemes, therefore it suffices to know to which phoneme a certain frame
corresponds. Indeed, if two frames correspond to the same phoneme then
they may be allowed the same label, no matter how close or far they are in
the parameter space. MLPs can be trained for phonetic classification and
are therefore appropriate labelers for speech recognition systems.

It has been shown that use of multiple features (such as static and dy-
namic information) can significantly improve speech recognition accuracy
(Lee 1989 [43]). Omne way to incorporate different features into a speech
recognition system is to model these multiple features as one vector. Con-
tinuous or semi-continuous hidden Markov modeling accommodate different
feature representations, but discrete hidden Markov modeling has the in-
dependence assumption for the different feature combinations. The MLP
non-linear mapping is able to map different features, which may have dif-
ferent physical meanings, or even be strongly correlated, to a domain where
the independence assumption is valid.

Figure 4.9 illustrates the frame recognition progress with two cepstral
coefficients with the MLP Labeler vs. the conventional VQ for the Dutch
digit negen. On the left side in Figure 4.9, the frames are for the beginning
and the end of speech. The phonetic Euclidean VQ incorrectly labels some
of those frames with phoneme d, which is not in the negen phoneme list.
However, the MLP Labeler labels those frames with either xx or n, which
are the phonemes to represent negen.
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Figure 4.9: The time progress of two cepstral coefficients with the MLP
labeler vs. the phonetic Euclidean VQ for Dutch digit negen
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4.6.4 Comparison of the MLP Labeler with the MLP Prob-
ability Estimator

When the MLP works as a probability estimator, it provides estimates of
the conditional probability distribution P(j|x,), the a posteriori probability
of state j given the input vector x,. Let y,; denote the actual value of the
jth output unit produced by the input x,. The target value of the jth
output unit is set to one and the target values of the other output units
are set to zero.

Using the relative entropy [9] between the a posteriori target distribu-
tion and the a posteriori output distribution as the training criterion, and
assuming that the network has enough hidden units and enough training
data, and that the training does not get stuck in a local minimum, then the
MLP output value y,; approximates the a posteriori probability P(j|x,),
as shown by

Ypj = P(ilzp) (4.32)

Using Bayes’ rule, we may then compute the required HMM probabili-

ties as follows: ‘
P(]‘wp)P(wp)

P(my|j) = P0) (4.33)

The probability P(j) is the a priori probability of state j. It can be esti-
mated by counting the state (class) occurrences in the training data. In the
case of class (phoneme) balanced training database, for instance, using our
random frame selection method described in Section 3.6, for each training
pass an equal number of frames is chosen randomly out of each class. This
means that the MLP is trained with equal a priori class probability.

The probability P(x,) is common to all the classes (phonemes) for any
given time frame, and may therefore be ignored.

The scaled likelihoods so computed are then used to define an acous-
tic model for the discriminative HMM. The discriminative training of the
HMM involves maximizing the likelihood of the correct state sequence gen-
erating the acoustic data, and minimizing the probability of the data being
generated by all incorrect state sequences. This requires the update of the
initial phonetic segments in the training data.

The challenge of using MLPs as probability estimators is the demand
for training a large network towards a global minimum. The hybrid MLP-
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HMM systems in SRI — DECIPHER™ need more than 150,000 weights!
[69] (Our baseline MLP labeling/HMM system only needs less than 3,000
weights.) Training this kind of network clearly exceeds the capabilities of
most current digital computers. Huge amounts of training data are needed
to have a generalized distribution. Moreover, MLPs are most often trained
for phonetic classification. This implies a restriction to HMMs of which
every state corresponds to a phoneme (phonetic HMMs). Although for large
vocabulary speech recognition phonetic models are the only alternative,
many small vocabulary applications use word models instead of phonetic
models. The reason is that word models have the advantage of modeling
directly whole words, as the word model is able to overcome coarticulation
problems. Hence, word models have better recognition performance than
phonetic models.

Based upon the above comparisons, our MLP labeling approaches have
shown many advantages over the other approaches in constructing hybrid
discrete HMM systems.

4.7 Hybrid MLP VQ/HMM Systems

We have presented a baseline MLP VQ/HMM system in Figure 4.8. From
the baseline system, we develop several MLP /HMM hybrid systems in par-
allel with the conventional vector quantization. The new systems are able
to adopt the modified forward and backward algorithm and the modified
Viterbi algorithm for HMM training and test used for hybrid VQ/HMM
systems in Section 4.3.

4.7.1 MLP Multi-Dimensional Labeling

We are motivated by the histograms of MLP output values and are seeking
different ways to use output information. At first, a simple way to incor-
porate the information of other output units into the system is to use not
only the top scoring output, but the N top scoring outputs as labels. For
instance, if N = 2, then 2 labels are passed on to the HMM system. These
labels correspond to the highest and the second highest output of the MLP.
This method is called the Top-N method (Ma and Van Compernolle [54]).
It has the advantage of using information from N output units instead of
one. There are now N label streams from the MLP to the HMM instead
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of one. This way the MLP input parameter space is much more finely de-
scribed. The HMM can then use these labels as independent observation
variables, just as labels from multiple codebooks [24].

But there is a disadvantage of the top-N method: the assumption that
the labels are independent is invalid. It is clear, for example, that the
first and second label can never be the same. Although our experimental
results will show some improvements when using the top-N method, this
theoretical disadvantage led us to investigate another method which uses
information from other than the top scoring outputs.

Then we proposed our second top-N method (Ma and Van Compernolle
[54]). The idea was to give every combination of highest and the second
highest scoring MLP output a separate label. This means that the num-
ber of possible labels would now be equal to the square of the number of
phonemes. For a vocabulary with 22 phonemes, for example, this means
that the number of possible labels would be 484. Normally, this is too
much, and the label probabilities need large amounts of training data to
be estimated properly. In their work, Le Cerf and Van Compernolle [41]
described a modified Top-N method. It reduced the number of possible
labels by taking the most occurring second choices since in practice only a
few MLP outputs other than the highest scoring output have values signif-
icantly different from zero. The equivalent result was produced. However,
theoretically, the independent assumption is still invalid for both methods
as using different labels does not change the parameter dependency. We
still need to seek other strategies to take advantage of the rich information
present in the neural network output. We group all three methods into one
category: the MLP multi-dimensional labeling as they all need the HMM
with multiple codebooks. The recognition system is shown in Figure 4.10.

4.7.2 MLP Multi-Labeling

We are inspired by the multi-labeling method in the conventional K-means
VQ we have described in the previous section. Here we propose the fourth
approach: the MLP multi-labeling, in which the HMM independence as-
sumption is met as we only need one codebook instead of forming multiple
codebooks as in the above three efforts.

We calculate the statistics from the MLP outputs as follows. As we
know, the MLP output values are between [0, 1]. We can omit the normal-
ization step used in the conventional K-means multi-labeling.
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Figure 4.10: An MLP multi-dimensional labeling/HMM system
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Figure 4.11: An MLP multi-labeling/HMM system
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Let y,, denote the MLP output for the input speech parameter vector
).
Yp = (Upl Up2, - YpL) (4.34)
Where L is the number of units in the MLP output layer. Then the obser-
vation probability is calculated as follows:

L
wilwy) = 3 Flpli)bil)) (4.35)
j=1
fxplg) =a ifyp; >n, else f(x,]j) =0 (4.36)

Where 7 (0 < n < 1) is a preset threshold, a is a constant value and
E]L f(xp|j) = 1 is constant for every frame. The system configuration is
illustrated in Figure 4.11. Although this Top-N method has better theoret-
ical support than the other Top-N methods, it still does not fully use the
MLP output information because it treats each selected output equally. To
solve this problem, we propose the fuzzy labeling in the later section.

4.7.3 Multi-MLP Labeling

This scheme was proposed by Le Cerf and Van Compernolle [41] based on
the method we have described in section 4.5.4.

Instead of training one MLP for phonetic classification with an input
of all parameter sets (Ma et al[53]), three independent MLPs are trained
for phonetic classification. The first has one frame of basic parameters as
input, the second the corresponding set of derivative parameters, and the
third the set of second derivatives. Typically, LPC based cepstra were used
as MLP input parameters. In that case, a fourth MLP can be trained with
energy related parameters (the first and second derivative of energy den and
d2en). So instead of using multiple frames as inputs of an MLP, derivative
information is represented more directly by several MLPs.

During recognition, the MLPs work in parallel. For each network, the la-
bel corresponding to the highest scoring output provides one label (winner-
take-all). Because the parameters of only one frame are used as input
for each MLP, the outputs of the networks can be assumed independent.
Therefore, the probabilities associated with the labels from the different
MLPs can be multiplied in the same way as in Equation 4.26. This corre-
sponds to using multiple codebooks based on different parameter sets [24].
The system configuration is shown in Figure 4.12.
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Figure 4.12: A multi-MLPs/HMM hybrid system



4.7. HYBRID MLP VQ/HMM SYSTEMS 111

4.7.4 Multi-MLP Multi-Labeling

Following the conventional K-means multi-dimensional multi-labeling, here
we propose the multi-MLP multi labeling method. Each MLP has a multiple
labeling output and the computation is in parallel. Because the number of
MLP output units is very small (less than 30 in our case) compared with
the total size of K-mean codebooks (more than 400), multi-MLP multi-
labelers significantly reduce the amount of computational load for HMM
modeling compared with the K-means counter part. Figure 4.13 illustrates
the system configuration.

4.7.5 MLP Fuzzy Labeling

In chapter 3, we have described the relations between the MLP input and
its target output for the MLP training. Here we group them into three
categories.

e the normal input and the crisp output;
e the weighted input and the crisp output;
e the normal input and the fuzzy output (weighted output).

Figure 4.14 illustrates the MLP output values for Dutch digit een using
those three kinds of input-output combinations. The MLP output values
are between zero and one but not even close to the binary values for all
three categories. This implies that the MLP itself is able to learn the
fuzzy nature of the speech signal and the information is encoded among
the various connection weights in a distributed manner even in the case of
the crisp target output. Our goal is to use the MLP output value as the
fuzzy score to measure the closeness between the input pattern and each
of output classes (phoneme). For this reason, we use the Fuzzy MLP to
present our method. Hence, the method we propose here also applies to
the other two cases.

We still use our 3-layered baseline MLP structure shown in Figure 3.10.
In a Fuzzy MLP, the speech input parameter vector consists of membership
values to linguistic properties while the output vector is defined in terms
of fuzzy class membership values at the corresponding outputs. During
training, the input spectra are over-lapped in time and randomly selected;
the Hamming window function provides the fuzzy membership function to
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Figure 4.13: A multi-MLP multi-labeling/HMM system
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Figure 4.14: The MLP output for Dutch digit een: (a) the normal input
and the crisp output, (b) the weighted input and the crisp output, (c) the
normal input and the fuzzy output.
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generate the MLP target output. During MLP labeling, the analog output
values between [0,1] are produced from the MLP output layer.

Those analog MLP outputs are interpreted as mass probability. When
the observation is fuzzy, the observed sequence is a sequence of prob-
ability mass vectors. Denote this fuzzy observation sequence by Y =
(Y1, Y2 -+, Yp), where each y,, is now a probability mass vector of the form
Yp = (Yp1,Yp2,--,Ypr) as described before. An MLP Fuzzy VQ/HMM
speech recognition system is shown in Figure 4.15. The modified Viterbi
algorithm is used for HMM modeling during both training and test.

MLP Output Normalization

For the MLP network, the value of each output will in any case remain
between zero and one because of the sigmoidal function which is typically
used in speech processing and recognition. Network outputs should sum
to one for each input value if the output accurately estimates posterior
probabilities (Bourlard et al [10]). However, if the network converges to
a local minimum, it is no longer guaranteed that the network outputs es-
timate Bayesian probabilities. In practice, this is always true. Besides, if
the target output is calculated from the fuzzy membership function dur-
ing the supervised learning, the network outputs have very little chance of
summing to one.

However, for the normalization purpose and the mass probability con-
straints, we need to normalize MLP outputs. For each input pattern x, we
rescale the top-N MLP output values and sum them to one and reset the
rest of the output values to zero. We then obtain an output vector which
can be interpreted as a probability mass vector y,; = (Yp1,Yp2; -+ YpL)s
with only those y,;’s corresponding to the top-N outputs nonzero. The
mass probability is computed as follows:

) UYpi
f(wpli) = =— (4.37)
i=1 Ypi

4.7.6 Multi-MLP Fuzzy Labeling

Finally we propose our last hybrid VQ/HMM model, the multi-MLP fuzzy
labeling. It combines the multi-MLP labeling and MLP fuzzy labeling to-
gether. The layout of the system is illustrated in Figure 4.16.
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Figure 4.15: An MLP Fuzzy Labeling/HMM system
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Figure 4.16: A multi-MLP fuzzy labeling/HMM system
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Figure 4.17: Summary of hybrid VQ/HMM techniques
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This method is applicable to both training and decoding of an HMM.
However, it has the disadvantage of requiring much more training and recog-
nition time, and more memory, compared to any other MLP method. An
efficient compromise is to use the multi-MLP fuzzy labeler during training
and to use the multi-MLP labeler during recognition.

4.8 Summary

Figure 4.17 illustrates the relations between different hybrid VQ/HMM
techniques investigated during this work. We have discussed a novel com-
bination of Multilayer Perceptrons (MLPs) and Hidden Markov Models
(HMMs). From the conventional K-means VQ to the MLP labeler, we
have presented MLP/HMM hybrid models corresponding to each K-means
hybrid VQ/HMM model, and even more.

A comparison has been made between the standard VQ and the Multi-
Layer Perceptron labeler. Our MLP labelers have the advantage of need-
ing fewer HMM parameters per state and of obtaining a higher recogni-
tion accuracy. Compared to the probabilistic interpretation of MLPs, our
MLP approaches need fewer hidden units and less training time, and have
flexibility in system design (e.g., use HMM word models instead of HMM
phonetic models). We first proposed the baseline MLP labeling, then we
developed several improved MLP/HMM models from the baseline model.
We designed several multi-dimensional Top-N labeling, multi-labeling and
fuzzy HMM hybrid models with a single MLP. Using multiple MLPs, we
developed the multi-MLP multi-labeler and the multi-MLP fuzzy labeler
for HMM systems.

The experimental results and the detailed system design will be pre-
sented in the next chapter.



Chapter 5

Implementation and
Experimental Results

5.1 Introduction

In this chapter, we describe the experiments we performed to investigate
neural networks for small vocabulary speech recognition. The experiments
were carried out on our speech processing system with SUN/UNIX Sparc
workstations.

This chapter is structured as follows: Time Delay Neural Networks are
described in the next section; in Section 5.3, we discuss the experimental
environment, which includes vocabulary, database, signal processing, and
hidden Markov modeling; the MLP labeler implementation is discussed in
Section 5.4, where we also discuss the MLP implementation issues such as
MLP structure, the back-propagation training and test; the MLP multi-
dimensional labeler is discussed in Section 5.5; in Section 5.6, we present
the MLP fuzzy labeling/HMM system; Section 5.7 contains our summary
of this chapter.

5.2 Time Delay Neural Networks

Our first experiment is done based on the milestone paper written by Waibel
et al [90]. This is our first experiment using neural networks. The purpose
of this experiment is to see how neural networks can be used for speech
recognition.
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Figure 5.1: TDNN output with input CV syllables [da,ba,gal

5.2.1 Vocabulary and Database

Using the three voiced stops [b, d, g], speaker-dependent data was estab-
lished with six CV syllables: [ba, bo, da, do, ga, go|, in English. It was
sampled at 20 kHz. Each syllable was recorded 10 times. Half of the data
is used for training and the other half for testing. Speech signal prepro-
cessing is based on Mel-spectral filter bands. The Mel-spectrum is further
normalized by the data normalization method described in the next section.
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Figure 5.2: TDNN output with input CV syllables [ba,bo]

5.2.2 TDNN for Phoneme Recognition

Figure 5.1 illustrates a TDNN trained to perform the discrimination task
between the voiced consonants [b, d, g]. A four-layered network is con-
structed with Waibel’s weight-tying method. Eight hidden units in the
first hidden layer are fully interconnected with a set of 16 spectral coeffi-
cients. Each of these eight units in the first hidden layer produces patterns
of activation as the window moves through input speech. A five-frame
window scans these activation patterns over time then activates each of
three units in the second hidden layer. These activations in turn are then
integrated into one single output decision. The final decision is based on
the combined acoustic evidence, independently of where in the given input
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interval (15 frames or 150 msecs) the [b, d, ¢] actually occurred.

The inputs, 16 x 15 mel-spectra, are normalized between [-1,+1]. No
pre-selection of tokens was performed. All tokens labeled as one of the
three voiced stops are included. The consonant tokens are extracted from
the entire set of utterances. A significant amount of acoustic variability
is introduced by the phonetic context and the token’s position within the
utterances. The darkness of the dots stands for the absolute output values
of each unit in the following figures. These output values are positive in
all layers except the input layer where nearly half of values are negative
because of the normalization.

5.2.3 Results and Discussion

In this preliminary experiment, the phoneme recognition rate is 98.5% for
training data and about 97% for test data. In Figure 5.1, the three voice
stop consonants are recognized with the same vowel. Figure 5.2 shows the
same consonant with different vowels. Comparing the second hidden layers
in Figure 5.1 and Figure 5.2, we found that the second layers are almost
the same in Figure 5.2 but quite different in Figure 5.1. This means that
the higher layer can extract more important features of speech than the
lower layer since the consonants are more important than vowels here for
consonant recognition. However, these figures also illustrate that it is pos-
sible to use one hidden layer instead of two because significant information
is carried from the second hidden layer to the output layer, while the first
hidden layer does not extract as much speech features as the second hidden
layer.

Because of the weight-tying strategy, Waibel’s TDNNs have time invari-
ant capability. However, this time invariant capability is valid only within
the length of time delayed period. Since the window length of the input
speech signal is fixed, the TDNN has its own limit to handle the uncertain
length of speech signals. In the following experiments, we introduce the
MLP/HMM hybrid system to solve this problem.
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Table 5.1: The Dutch digit phonetic transcription

Digit Transcription

nul xxnulxx
een XX ee N XX
twee XX t w ee xx
drie xx d r ie xx
vier xx v (i) ie r xx
vijf xx v el f xx
zes XX Z € S XX

zeven | xx z ee veh n xx
acht xx a ch t xx
negen | xx n ee g eh n xx

5.3 Experimental Environment

5.3.1 Vocabulary

We use the 10 Dutch digits in our experiments. The phonetic transcription
is shown in Table 5.1. Although digits are a small set of words, they contain
20 Dutch phonemes out of a total of about 40. Thus, there are 21 phonetic
classes used in our experiments, including noise, which we represent by zz.
The most confused words among Dutch digits are vijf and zes, as both
words start and end with fricative consonants and, moreover, consist of a
single vowel who is neighbor in the vowel triangle.

Digit recognition has been widely used in speech recognition applica-
tions. Very often, it is used for recognizer accuracy evaluation. The effort
devoted to digit recognition is greater than any other group of words during
recognizer development. Most of successful commercial products have spe-
cial digit recognition models designed to increase the recognition accuracy.

5.3.2 Speech Database

Three sets of databases are used in the following experiments. Our speaker-
independent database is a small vocabulary isolated word telephone database.
It consists of ten Dutch digits uttered by 400 speakers (200 males and 200
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females). The Dutch digit set contains 21 different phonemes. Half of the
data (100 males and 100 females) is used for training the HMM parameters
and the MLP connectionist weights, and the rest for testing. The data was
sampled at 8 kHz because the bandwidth of the telephone filter is about 3.3
kHz. In the following experiments, we refer to this database as the “large
database”.

Within the large database, there is a small set that is phonetically hand-
segmented. This small set includes 40 speakers (20 males and 20 females).
We call this the “small database”.

We also used some locally collected data with multi-speakers during our
initial MLP labeling experiment. We call this “multi-speaker data”. The
multi-speaker data contains 6 speakers (3 males and 3 females).

5.3.3 Speech Signal Preprocessing

The speech signal preprocessing is based on Mel-spectral filter bands. As
we use a single MLP in the following experiments, the Mel spectrum itself is
enough for our speech recognition tasks. The typical sequence of operations
is as follow:

e Sampling at 8 kHz;

e Applying the Hamming window with a window length of 30 msec (240
samples);

e Using a 10 msec (80 samples) frame shift;
e Calculating 256 points FFT;

e Computing the summation of energy values into 15 contiguous bands
spanning the frequency range from 200 Hz to 3125 Hz;

e Converting to log-energy parameters;

5.3.4 Database Initialization

The input Mel-spectra are further normalized between [—1, 1]. This is done
for two reasons. First, removing the variations in the overall magnitudes of
the spectral coefficients may enable the network to focus on the linguistic
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information in the speech signal, such as the formant frequencies. Sec-
ond, Burr (1988) [15] found that the classification performance typically
improves when the mean of the input vector is close to zero. Moreover, the
normalized values are near the transition regions of the sigmoid function,
where learning is faster than it is in the saturation regions. However, the
overall magnitudes of the spectral coefficients can’t be removed, since they
often contain relevant linguistic information.

We propose the following solution to keep the magnitude information.
First, let the set §denote the set of training samples, bm fs = [s1, S2, ...... st
is the mel-spectral vector for a phonetic token. Then, let  denote the set
of normalized training samples, = [z1, z2, .....xT M]t. Furthermore, let

p=2"M 1<j<m (5.1)
D;j

Where D; = maz(sj) —min(s;) and p; is the mean of s; over all training
tokens. D; and p; are constants for the given training tokens and also used
for test data. The normalization is done component by component.

5.3.5 Hidden Markov Models

We use the ESAT HMM software package (Van Compernolle[87]) in our
MLP/HMM hybrid system experiments. The package is developed by the
ESAT speech group. The speech recognition algorithms described in Chap-
ter 2 have been built in the package. Our experiments follow the package
growth from its starting version up to the mature version 4.0. The following
features of our speech recognition system are used in our experiments:

e speaker-dependent/independent or multi-speaker,
e isolated word recognition with phonetic models and word models,

e multiple codebook discrete parameters and semi-continuous parame-
ters,

e Viterbi search for both training and recognition,
e small vocabulary,

e graphic demos with spchlab.
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More detailed information regarding the HMM package is described in Van
Compernolle [87]. We developed a speech interpreter, namely, spchlab dur-
ing this work. spchlab is interactive, X-window based and speech-oriented.
It uses the same principle as the popular matlab does. The detailed de-
scription for spchlab is in Ma [55].

5.4 Multi-Layer Perceptron Basics and MLP La-
beling

The following experiments deal with the techniques to build MLP networks
suitable for speech recognition tasks. We discuss how to choose the number
of hidden units, how to scale the network, how to utilize the speech data to
train the MLP network and how to build the MLP/HMM hybrid system.

5.4.1 Frame Classification

First of all, we need to decide on the network structure. As we have pointed
out in Chapter 3, a three-layered network is good enough for our purposes.
Therefore, we use three layers in our MLP networks. Now we need to
choose the number of units in each layer. As we know, using the difference
of the spectrum at time ¢ + 2 minus the spectrum at time ¢ — 2 is a simple
way to include knowledge about spectral transitions. Hence, we use five
frames in our input layer, i.e., 5 x 15 = 75 units. Our database covered
21 Dutch phonemes (including noise), so the output layer has 21 output
units corresponding to each of the 21 phonemes. Hence, the purpose of
this experiment is to determine the optimal number of units in the hidden
layer. The network’s capability to capture the underlying characteristics of
the input data can be affected by the number of hidden units. The opti-
mal number of units in the hidden layer should optimize the classification
accuracy.

The classification accuracy is a function of both numbers of hidden units
and the amount of training data. With the inclusion of more hidden units,
performance typically improves; however, performance tends to degrade
when there are too many hidden units. As long as the number of hidden
units is reasonably chosen, increasing the size of the training set typically
improves the performance of the network. According to Mirchandani et al
(1989) [58], the number of hidden units in a feed-forward neural network



5.4. MULTI-LAYER PERCEPTRON BASICS AND MLP LABELING 127

100
S0+ [ - a2
80 }
& ol
® J0r HK— e ¥
g /
T
> 50t
D
=
[55) 40-
[ebd
=
S 30f
(.
20t
10+
Oo 20 a0 60 80 100 120 140 160

The Number of units

Figure 5.3: The results of frame classification vs. the number of hidden
units (the dotted line for training and the solid line for testing).

depends on the number of input training patterns T'. It can be chosen from
logy T to (T'—1). This region is too wide to decide upon a suitable number
of hidden units.

The total number of network connectionist weights, including biases is
(n; + V)np + (np, + 1)n, = (n; + no)np, a linear function of ny. Here ny, n,
and n; are the number of units in the hidden layer, the output layer and
the input layer respectively. The network will grow very fast by increasing
the number of units in the hidden layer. Training the large network will
take a long time and need large memory.

In our experiment, the number of hidden units varies from 10 to 150.
The training and test results are illustrated in Figure 5.3. As we use the
small database in this experiment, cross validation is not necessary. Our
experimental results show that the performance on the training data con-
stantly improves as the number of hidden units increases, whereas the per-
formance on the test data improves progressively more slowly as the number
of hidden units increases. When there are too many hidden units, the net-
work will be too flexible and as a result will capture irrelevant information



128 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

from the training data. This will reduce the recognition accuracy for the
test data. Figure 5.3 shows the reasonable size of the hidden layer is 30 — 60
units for the present database. In the following experiments, we fixed the
size of hidden layer at 30 units.

5.5 MLP Labeling/HMM Hybrid System

In this experiment, we use the multi-speaker database. The main reason
to use this data is to describe the Viterbi alignment. The goal of this
experiment is

e providing the step by step implementation of the MLP/HMM hybrid
System,

e presenting the automatic segmentation method by using the Viterbi
alignment,

e giving a primary experiment for scaling the network from a small one
to a large one.

The whole system training consists of three parts:
e the HMM training for phonetic segmentation,
e the MLP training for labeling,

e the second HMM training for speech recognition.

5.5.1 HMM Training for Phonetic Segmentation

Since the connectionist networks require an extremely large labeled training
corpus, and since the training of our system requires that an utterance
be labeled at the frame level (windowed frames), it is necessary to use an
automatic alignment procedure to generate initial labels for supervising the
neural network targets for the training set. The Hidden Markov Models
are trained on this task first, and a forced alignment procedure is used to
generate phoneme or noise (silence) labels for each frame of speech in the
training database.

Of course phonetic labeling with HMMs is far from perfect, but on
its own training database it is quite good indeed. Furthermore no exact



5.5. MLP LABELING/HMM HYBRID SYSTEM 129

phoneme recognition is required as they are used to supervise the MLP
training procedure and any reasonable selection of classes should suffice.

Our hidden Markov model system is a discrete parameter system that
uses a VQ codebook of size 200 and 21 phonetic left-to-right phonetic mod-
els. The Viterbi style training is run over a sufficient number of passes to
obtain full convergence.

5.5.2 Building the MLP Training Database

First, a Viterbi alignment against the computed phonetic models is used to
produce a phonetically labeled database frame by frame. This procedure
produces 8,000 representations of 21 phonemes in total. The frames at the
boundaries of each phonemic segment are deleted in order to avoid labeling
errors around phonemic boundaries. It is considered preferable to exclude
the phonemic transitions from the MLP training. The remaining frames
are used in an overlapping fashion like multiple realizations of a phoneme
in the MLP training database. This procedure reduced the number of rep-
resentations of the 21 phonemes by 5,000, or on average 250 representations
per phoneme.

5.5.3 MLP Training

Our MLP consists of 3 layers (an input layer, a hidden layer, and an output
layer). The input layer has 75 units (5 frames x 15 spectral coefficients).
The hidden layer has 30 units. And the output layer has 21 units corre-
sponding to 21 phonemes as we described in the previous section.

The input data is normalized between [—1,1]. The training algorithm
used is the widely applied back propagation algorithm. The connection
weights are randomly initialized to +£0.3. As we do not use the random
frame technique here, all training samples are presented to make the weight
adaptation. In order to do the network scaling, the training is further
divided into three stages:

e A short training with one representation per phoneme occurrence in
a small network,

e A short training with all training material in the small network,

e A full training with all training material in the scaled network.
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First a small network (3 x 15 units at input layer) is initialized. The
training then starts from the random initial weights with one representation
per phoneme. After 20 iterations, all the training data are applied and the
training goes on. After 50 iterations, the network is rescaled by adding one
frame at both sides of the small network in the input layer and adjusting
weights in the way described in Section 3.4. The training of the enlarged
network starts from those redistributed weights using all training data. The
training stops after 2,000 iterations. The values of connectionist weights
are stored every 100 training iterations for later evaluation.

Here, the network first learns some initial knowledge to find the good
convergence direction to save searching time with small training data in the
initial stage. It is very difficult to converge to scaling the network after the
initial stage because the small network reaches its own local minima which
are quite different from the local (global) minima of the enlarged network.

5.5.4 MLP Labeling

The most straightforward implementation of MLP labeling is to use the
phonetic label corresponding to the highest analog output value as a dis-
crete output, i.e., using a winner-take-all strategy. Because of the sigmoid
function, the analog outputs are in [0,1]. Empirically, the confidence level
is 0.5 for the highest analog output.

5.5.5 Second HMM Training

In the second HMM training, word models or phonetic models are both
applicable. In this experiment, we choose phonetic models. The same
HMM phonetic models and training methods are used as in the original
Viterbi segmentation. However, instead of Euclidean VQ with a codebook
size of 200, we use the MLP labeler of size 21.

5.5.6 Discussion and Results

The purpose of the MLP labeler is to find a way to improve on standard
vector quantization for HMM recognizers. First of all, we have compared
the 21 parameter MLP labeler with an Euclidean VQ with the same code-
book size. Results for the MLP labeler are 93% correct vs. only 90% correct
on the Euclidean VQ. Hence, the intrinsic acoustic phonetic distortion pro-
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vided by the MLP labeling must be significantly smaller than the distortion
provided by Euclidean labeling.

Figure 5.4 shows the MLP outputs, Viterbi segmentation results and
internal activations at frame 20. The size of the black spirals stands for the
output value of the MLP. The largest spiral in each column correspond-
ing to the MLP output label which is indicated by the corresponding row
index. It is obvious that Viterbi alignment provides a very good phonetic
segmentation here as the output phoneme labels of the MLP match the real
speech signal very well, especially for vowels.

The training and test results for each word are shown in Figure 5.5. The
reference models are indicated by the row indexes and the tested words by
the column indexes. Since the test set is smaller than the training set, the
size of the spiral is smaller in the test figure than in the training figure.

5.6 Random Frame Selection and Weighted Train-
ing Data

From the above experiments, we found that the following problems should
be considered:

1. When the training data set is small, it is possible to use the whole
data set to update weight changes each time. However, for the large
training database, it will take an extremely long time to finish a
single iteration. Hence, we need to input to the MLP a small amount
of selected data from the large training data set each time;

2. We also need to have a phonetic balance between short and long
phonemes to avoid over-training on vowels vs. consonants.

In this experiment, weighted training data and random frame selection
are applied to solve the above problems. The network scaling is not applied
here as scaling from 3 frames to 5 frames does not make much difference
in training; besides, scaling may introduce oscillation. Our MLP consists
of three layers (an input layer, a hidden layer, and an output layer). The
input layer has 75 units (5 frames x 15 spectral coefficients from frame ¢t —2
to t + 2), i.e., the input layer covers a speech dynamic range of 70 msec.
There are 30 units in the hidden layer. The output layer contains 21 units
corresponding to 21 phonemes.
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Figure 5.4: The MLP output (top), the Viterbi-labeled speech signal (mid-
dle), and internal activations with scaling (bottom).
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phonetic labels | weights
XX 0.1
XX 0.2
XX 0.1
a 0.4
a 0.6
a 0.6
a 0.4

Table 5.2: Training data transcription with labels and weights for each
frame

In this experiment, we use the small database. As we have the hand-
segmented data already, Viterbi alignment is not applied to this experiment.
We first apply weights to the training data. Because we use the context
independent phonemes, the frames in the middle part of each phoneme are
more important than those on the boundaries. Our purpose is to emphasize
the middle frames and de-emphasize the boundary frames. The network
will be robust to the middle part of each phoneme vs. the boundary part.
This is done by applying a window function, which has large values in the
middle and small values near the ends, for instance, a Hamming window.
An example of how to put the weighting factors in a phonetic label file is
shown in Table 5.2.

The pattern for the third frame is “xx” and the weight factor v = 0.1,
for instance. If the weight factor v has the same value for every frame, the
training data is not weighted. We use Equation 3.28 to adapt connectionist
weights. The deletion of the boundary frame is not necessary, instead, the
small weights were provided to those boundary frames by the Hamming
window.

Then we apply the random data selection to the weighted training data.
The hand-labeled training data contains a total of 16,300 frames. The
shortest time phoneme is d , which has only 103 frames, and the longest one
is ee, which has 1,562 frames. However, the noise, which has 6,337 frames,
occupied more than one third of the training database. We proposed using
random frame selection to generate the phonetically balanced training data.
First, all frames for each phoneme are extracted from the whole data. This
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No. of Without Weighting With Weighting
iterations Training Testing Training Testing
100 80.5 63.5 87.5 64.5
500 96.0 74.5 93.0 75.0
1000 93.0 72.5 94.0 75.5
10000 95.0 68.5 97.0 71.5
20000 96.0 63.5 96.5 71.5

Table 5.3: The recognition results for using data weighting method

produces 21 collections corresponding to each phoneme. Then, 200 frames
are selected randomly from each collection. In this way, we obtain a training
set with 4,200 frames in total. Each phoneme has 200 representations. Our
database has 20 speakers, so there are 10 representations per phoneme for
each speaker on the average.

The modified Back-Propagation algorithm has been applied to train
the MLP. The connectionist weights (including the offsets) are randomly
initialized between [-0.3,4-0.3]. For each iteration, a new training set gener-
ated in the way described above is used to adapt the connectionist weights.
The HMM training is the same as the one in the previous experiment.

5.6.1 Discussion and Results

Table 5.6 shows the results of this experiment. The low recognition rate is
due to our small database. 20 speakers are not enough to train HMMs and
MLP for speaker independent speech recognition. If the Viterbi alignment
is employed, the recognition rate will significantly increase for the test data
which is shown in the experiments in the next section.

The results with weighting or without weighting are illustrated in Table
5.6. There are three cases: First, the number of iterations is small (< 500),
the network is under-trained, the performance on both the training data
and the test data improves as the number of iterations increases. Second,
the network is well-trained, the performance on training data improves
much more than that on the test data as the number of iterations increases.
Third, the number of iterations is too big (> 1000), the network is over-
trained, the performance on the test data degrades, and the performance
on the training data improves very little. Table 5.6 shows that the results
with weighting are better than those without weighting, especially for small
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training data.

We have compared the 21-parameter MLP labeler with an Euclidean
VQ with the same codebook size. Results for the MLP labeler are 75%
correct vs. only 59% correct on the Euclidean VQ.

In our MLP, there are five frames in the input layer, from ¢ — 2 to t + 2,
so there is spectral derivative information in the network. Comparing the
MLP VQ with the spectral derivative VQ with the code-book size 232 (100
cepstra + 100 delta-cepstra + 32 residual energy parameters), we obtained
73.5% correct for spectral derivative VQ based on the same database. The
MLP-VQ with only codebook size 21 received better results than 232 spec-
tral derivative VQ. This proves that the intrinsic acoustic phonetic distor-
tion provided by the MLP labeling must be significantly smaller than the
distortion provided by spectral derivative labeling. The MLP VQ has very
high discriminative power.

Figure 5.6 shows the MLP outputs and manual segmentation results for
training and test data. The size of the black spirals stands for the output
value of MLP. The training and testing results for each word based on the
weighted training database are shown through confusion matrices in Figure
5.7, Figure 5.8 and Figure 5.9. They represent three states of the network:
under-trained, well-trained, and over-trained. The reference models are
indicated by the row indexes, and the tested words by the column indexes.

From the above experiments, we see that the MLP labeler has very high
performance in capturing speech features. Our MLP-VQ HMM recognizer
has a lot of advantages over the normal VQ HMM recognizer such as its
small codebook size and good recognition results. If we do not consider
the long training time and the large amount of supervised training data,
MLP-VQ can do better than normal VQ.

5.7 MLP Multi-Dimensional Labeling

In the following experiment, we focus on analyzing the MLP outputs. The
strongest output represents the input pattern more powerfully than the
others. However, the other outputs are also relevant to the input pattern
as shown in the histogram in Section 3.7. Here we use the MLP multi-
dimensional labeling strategy to handle the MLP output information.
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Figure 5.6: The MLP output and its manually labeled speech signal (top),
and the MLP output and its testing speech signal (bottom)
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Figure 5.7: The recognition results for each digit when the network is
under-trained.



5.7. MLP MULTI-DIMENSIONAL LABELING

139

recognition rate 34

TRAINING: 18608 iterationy
. . ney
. ach
- . L] Tev
- - oS
- [ ] i
. - vie
- . dri
- . - tve
. L4 oen
. nul
nal sen twee drie vior vids ze8 2aven acht negen
TESTING: rocogaition rate 7S5.5)
- - - - . ney
. ach
e hd - n [ z0v
hd . a zes
b ° | s v d
- - - - - vie
[ ] - dri
- a - - - twe
- . [ ] - . con
. a - - - a nal
nul eon tweo drte vier viJf 36z zteven acht negen

Figure 5.8: The recognition results for each digit when the network is well-

trained.



140 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

TRAINING: 190908 {terations recognition rate 97z

- R
u
- u

. dri
- tve

I. nul

nul eon twee drie vier vidf 208 21even acht nesen
TEITING: recognition rate 71.5 4

o . - . new

.' ach

- - - eV

- - - ll ™ zes

[ | . vid

- - - [ ] . - L] vie

. n - det

- [ | - - tve

ll [ ] . a - - - ean

. - - - - - nul
nal ean twoo drie vier viJf zes 16ven acht negeon

Figure 5.9: The recognition results for each digit when the network is over-
trained.



5.7. MLP MULTI-DIMENSIONAL LABELING 141

5.7.1 Building the MLP Training Database

In order to supervise the MLP learning, the automatic phonetic segmen-
tation has been obtained by Viterbi alignment from a HMM-like system
bootstrapped from hand segmentation on 20 speakers.

The phonetically labeled database has been obtained from Viterbi align-
ments. This procedure results in 150,000 frames representing 21 phonemes.
The shortest phoneme d has only 1100 frames and the longest one ee has
17,700 frames. The noise which has 55,000 frames occupies more than one
third of the training database. 600 frames of each phoneme are selected
randomly from the whole training database for each MLP training iteration.
On average, there are 3 representations per phoneme per speaker, since our
training data includes 200 speakers. The random frame selection method
is used for every iteration during the connectionist weight adaptation.

5.7.2 System Training

The MLP training is summarized in the following steps:

1. Give an initial random seed Sjn¢, the number of iterations N, for
stopping the MLP training and the number of iterations Ne,: for
repeating the MLP training data.

2. Set the seed s = Sj,s, the iteration counter ¢ = 0, the repetition
counter r = 0.

3. Randomly generate 600 x 21 frames MLP training data from the
training database.

4. Do the forward and the backward propagation and adapt the weights.
5. Increase the counters by 1.

6. Stop the MLP training if ¢ > Ngop.

7. Set s = Siut and r = 0 if r = N,¢pt, otherwise, generate a new seed.

8. Go to step 3.

The network is more robust in this way compared to using fixed training
data for each iteration. After the network is ready, we take more than one
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output label (the single winner-take-all label) as the HMM input labels.
The HMM system uses multiple codebook linear word models with 15 states
per word (In order to demonstrate the flexibility of MLP labeler over the
MLP probability estimator, word models are applied in this experiment and
the following ones. Therefore, the previous phonetic model experiments
results are not applicable to the following experiments.).

5.7.3 Top-N Labels

We described the top-N labeling method in chapter 4. There we considered
the top-N labels as a label vector in the HMM system. The elements of the
label vector were assumed to be statistically independent.

The 21 labeled outputs (labels) of the neural network are sorted accord-
ing to the values of the real MLP outputs from large to small. From the
histogram shown in the Figure 3.12, we have found that the first three or
four labeled outputs have a high probability of getting large output values
and the rest have very a low probability near zero of getting large output
values, so the suitable number of MLP labeled outputs should be less than
4. From this point of view, we moved from the winner-take-all method
to the Top-N method, by which the top-N labels are used instead of the
top-one label.

We consider the top-N labels as a real observation vector for the HMM
system. If the vector length is equal to 2, there are 21 x 21 = 441 kinds
of output vectors. When the vector length is longer than 2, there are too
many combinations and a lot of them do not occur at all. To avoid this
problem, we strip out all the combinations which do not or seldom occur
to a null observation.

The results for the different number of labels are illustrated in Table
5.4. The best one is printed in bold face. We obtain 3% improvement
compared to the winner-take-all method. The performance improves very
little when the selected number is larger than three, so the optimal number
of labeled outputs is less than four. The system with three output labels
has approximately the same recognition accuracy as with four labels to
twenty one output labels, but has much fewer parameters.
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Nr of Labels | Rec. Rate (%) | Nr of Labels | Rec. Rate (%)
1 86.94 7 89.44
2 88.94 8 89.64
3 89.99 9 89.34
4 89.39 16 90.04
5 89.39 21 90.74
6 89.39 - -

Table 5.4: The recognition results for multi-dimensional labeling

5.7.4 Output Adaptation

In the MLP training method (the back propagation algorithm), the desired
output is one and the others are zeros, so the label corresponding to the
largest output contains the major information of the input patterns. In
the previous methods, the main performance of the largest output value is
omitted since the selected labeled outputs are considered equal. Here the
top-N label vector method with two labels was used. Three selecting rules
are formulated to adjust the label vector using the MLP output values. The
first one is by adapting the second output with the first output according
to the gain factor o shown in Equation 5.2; the second is according to
the threshold 8 which only considers the first element shown in Equation
5.3; and the third is according to the threshold v which only considers the
second element in the output shown in Equation 5.4.

if (aop >o02) vi=pandve =p;

otherwise v1 = p1 and vg = Py (5.2)

Zf (01 >1—ﬁ) V1 :p1and1}2 =D
otherwise v1 = p1 and vy = Po (5.3)

if (02 <7) v1=p1andvy =p
otherwise v1 = p1 and vy = Py (5.4)
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a Recognition rate (%)

¥ Equation 5.2 | Equation 5.3 | Equation 5.4
0.0 88.94 88.94 88.94
0.1 88.94 - 88.94
0.2 88.99 - 87.79
0.3 89.09 89.09 87.39
0.4 88.34 88.69 87.34
0.5 88.49 88.04 87.14
0.6 88.29 88.04 87.09
0.7 87.84 87.14 86.94
0.8 - 86.99 -
1.0 86.94 86.94 86.94

Table 5.5: The word recognition results obtained respectively from Equa-
tion 5.2 with «a various, Equation 5.3 with g changing, and Equation 5.4
with v having the different values. The best result is printed in bold face.

0<a,B8,vy<1

Here 07 and o2 are the MLP analog output value, p; and po are the pho-
netically labeled outputs, v; and ve are the final MLP label outputs. In
Equation 5.2 , all ps are replaced by p; when o = 1, which is the same as in
the one output case, and no replacement takes place when o« = 0, which is
the same as in the previous case of two selected outputs. In Equation 5.3,
for 3 =1 and 8 = 0, and, in Equation 5.4, for v = 1 and v = 0, the results
are the same as the one when o = 1 and « = 0, respectively. The exper-
imental results are shown in Table 5.5. We observe that the performance
is a little bit better with modified two labels than the two labels without
modification.

5.7.5 Discussion

In these experiments, we have described the method to use the Top-N labels
and we further get optimized discrete MLP output with output adaptation.
A better performance with those methods has been achieved. We summa-
rize our conclusions as follows:
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e The MLP top-N labeling is more powerful than the MLP winner-take-
all labeling. We obtain 3% improvement compared to the winner-
take-all. The best performance is obtained by using the top 3 labels
for the top-N labeling.

e The output adaptation, which uses the influence of the MLP analog
output values, does not significantly improve the recognition perfor-
mance. The following MLP fuzzy method, which fully utilizes the
MLP analog output values, will further improve the recognition per-
formance.

5.8 MLP Fuzzy Labeling

An MLP Fuzzy VQ (MLP-FVQ) combines both an MLP as a labeler and
an MLP as a probability generator. The MLP provides the fuzzy cred-
ibility for the vector quantization. We are basically interested in using
the soft decision of MLP-FV(Q to reduce the quantization errors inherent
when using a small code-book. We have analyzed some histograms of the
phonetically labeled continuous MLP outputs that motivated our propos-
als in Section 3.7, and investigated the use of the Multi-Layer Perceptron
(MLP) as a fuzzy credibility estimator in Section 4.7. Here, we provide
some experimental results to prove our theory.

The experimental environment is the same as the one for MLP multi-
dimensional multi-labeling. We use the MLP network generated in the
previous experiment. The fuzzy scores are the MLP analog outputs. The
modified Viterbi algorithm is used for the HMM system training and test-
ing.

5.8.1 Results and Discussion

Two sets of experiments were performed to compare the performance of
MLP-FVQ/HMM with MLP multi-dimensional VQ/HMM. First, training
and recognition were both done using MLP-multi-dimensional-VQ/HMM.
Then both training and recognition were done using MLP-FV(Q and the
modified HMM algorithm.

Table 5.6 shows the results of the recognition experiments based on the
different number of the top-N labels. When N = 1, the fuzzy score is
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NrOfLabels | MLP Multi-Dimensional VQ (%) | MLP VQ (%)
1 86.94 86.94
2 88.94 89.06
3 89.99 91.14
4 89.39 89.22
) 89.39 88.26
6 89.39 87.10

Table 5.6: The recognition results for MLP fuzzy labeling

always equal to one and the MLP-FVQ is just an MLP-VQ (winner-take-
all). When N = 3, we have obtained the best results in all cases. When
N > 3, the improvement seems to level off. We believe this is attributable
to the random labels when N is very large.

In our experiments, the speech recognition rate on a speaker-independent
(400 speakers) database increased by 4 % at least when using MLP fuzzy
VQ compared with the winner-take-all method. It is 1 %better than the
MLP multi-dimensional labeling. The MLP-FV(Q has a smoothing capa-
bility. It reduces the number of labels needed for the parameter estimation
during training and decreases some of the effects of VQ errors, especially
for the small codebook, during recognition.

5.9 Summary

We have devoted most of our efforts in this chapter to exploring some
practical issues concerning the implementation aspects of the MLP/HMM
hybrid system.

We have designed an MLP-V(Q HMM recognizer. The training of the
MLP labeler is supervised by a Viterbi alignment from an HMM using
normal VQ. The Viterbi alignment provides a way to train MLP for a very
large amount of unlabeled training data.

Building the MLP training database is very important. A random frame
selection method has been applied to overcome the huge size of the database
and the various lengths of phonemes. The method of weighting the training
database can emphasize important speech features - e.g., the middle parts of
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phonemes. Our MLP is made more robust for short phonemes (consonants)
by using a random frame selection method. In small scale experiments, we
have observed that by weighting MLP training data, the obtained results
are much better than those obtained without using this method.

The MLP VQ outperformed standard Fuclidean VQ for identical code-
book sizes (21). The MLP V(Q with a small codebook size had higher
performance than the spectral derivative VQ with a very large codebook
size (232).

The MLP multi-dimensional labeling method expands the MLP-VQ
winner-take-all method; the MLP fuzzy labeling produces both labels and
closeness measures for the input speech features. In our experiments, the
speech recognition rate increases 3 % by using the MLP multi-dimensional
labeling compared with the MLP winner-take-all labeling; and the MLP
fuzzy labeling has reached 1 % higher accuracy than the MLP multi-
dimensional labeling.



148 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS




Chapter 6

Conclusions

6.1 Introduction

In this dissertation, we have described the state-of-the-art speech process-
ing technologies and Multi-Layer Perceptron (MLP) neural networks for
speech recognition. We have integrated the Multi-Layer Perceptron with
Hidden Markov Models (HMM) and presented several MLP/HMM hybrid
speech recognition systems, where the MLP works as a labeler or a fuzzy
membership function generator. In this chapter, we summarize our main
findings and contributions, and we discuss further work related to the topic
of this dissertation.

6.2 Contributions and Findings

6.2.1 Multi-Layer Perceptron

We have designed and implemented the Multi-Layer Perceptron to be used
as a labeler for the Hidden Markov Modeling system. We have presented
the Back Propagation theory and the implementation issues in detail.

Modified Back Propagation Algorithm: We have proposed a modi-
fied back-propagation algorithm, which we have implemented based on the
phonetic characteristics of the speech signal. Because the phonemes used
in this work are context-independent, the frames in the middle part of each
phoneme are more important than those on the boundaries. We have used
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the Hamming window to emphasize the frames in the middle of each pho-
netic class in the speech training data and to de-emphasize the boundary
frames. In our small scale experiments, we have obtained better results by
using the weighted training data than we did without using the weighted
training data.

MLP Training: We have proposed and designed the MLP labeler and
MLP-VQ HMM hybrid systems. The training of the MLP labeler is super-
vised by a Viterbi alignment from an HMM using normal VQ. The Viterbi
alignment provides a way to automatically generate phonetic segments for
a very large amount of unlabeled data. The MLP training data directly
influences the MLP classification capability. We have proposed a random
frame selection method for building the MLP training data. This method
has allowed us to overcome the huge size of the database and the vari-
ous lengths of phonemes. Moreover, the MLP network is more robust for
speech recognition when we use random data selection together with the
data weighting method than when these two techniques are not be used.

MLP Output Analysis: We have used histograms to illustrate the MLP
output values for each phonetic class. From the histograms, we have ob-
served the relativity of different phonetic classes. We have further proposed
to use the MLP analog output values and the top-N labels in speech recog-
nition on top of our conventional winner-take-all MLP method.

Fuzzy MLP: We have given the MLP a fuzzy interpretation and have
proposed using the overlapping Hamming windows as the fuzzy membership
function for the MLP output. The fuzzy MLP model is more suitable for
speech recognition in situations where speech features overlap because of
coarticulation, than the conventional crisp MLP models.

6.2.2 Multi-Layer Perceptron Labeling

MLPs have most of the desirable properties needed for robust speech recog-
nition. These properties lie mainly in their discriminative power and their
ability to deal with non-explicit knowledge. Moreover, contextual informa-
tion can easily be taken into account. MLPs have very high performance
for phoneme recognition using multiple frames as inputs. On the other
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hand, Hidden Markov Models have a good dynamic time warping capa-
bility but low discriminative power. The combination of the two systems
can lead to high performance recognizers. We proposed using the MLP
as a labeler for a discrete HMM system. Our approach is different from
Bourlard’s MLP/HMM hybrid system [8], where the MLP works as a prob-
ability estimator. Compared to the probabilistic interpretation of MLPs,
our MLP approaches need fewer hidden units and less training time, and
are more flexible in system design (e.g., use HMM word models instead of
HMM phonetic models).

We also proposed using the MLP as a fuzzy membership generator. The
MLP output measures the closeness between the input pattern and each
output phonetic class.

Our experiments indicate that the MLP VQ outperforms the standard
Euclidean VQ for identical codebook sizes and that the MLP VQ with a
small codebook size has higher accuracy than the spectral derivative VQ
with a very large codebook size.

6.2.3 MLP/HMM Hybrid Models

We have also performed a systematic analysis of the MLP labeling and
compared it with the conventional K-means VQ. The simplest implemen-
tation of MLP labeling consists in using the output of the strongest unit
as a discrete output. The implementation ignores other MLP outputs that
contain a lot of other speech information. We have proposed a series of
MLP/HMM hybrid models to fully use the MLP output information and
to increase the speech recognition performance. The proposed models are:

e MLP Multi-Dimensional Labeling This is our initial method to
use more labels in addition to only the MLP-winner-take-all label.
At first, a simple way to incorporate the information of other output
units into the system is to use not only the top scoring output, but
the N top scoring outputs as labels. This method has the advan-
tage of using information from N output units instead of just one.
There are now N label streams from the MLP to the HMM instead
of one. This way the MLP input parameter space is much more finely
described. The HMM can then use these labels as independent ob-
servation variables, just as labels from multiple codebooks were used.
We have further proposed to apply the output adaptation method to
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the top-N labels based on the output scores instead of treating them
equally. (For results, see Section 5.7.)

MLP Multi-Labeling This model has a stronger theoretical founda-
tion than the above MLP multi-dimensional labeling. Instead of using
multiple codebooks, which violates the HMM independent assump-
tion, the MLP multi-labeling uses the VQ/HMM unification theory
to deal with the multiple labels corresponding to the N highest out-
puts or the outputs above a preset threshold. The modified HMM
algorithm is applied here. (Only a theoretical analysis is made with
this method.)

MLP Fuzzy-Labeling In this model, the MLP analog outputs pro-
vide the fuzzy closeness measure of the input speech pattern to the
output phonetic classes. The HMM observation is a vector consisting
of all MLP analog outputs. Those MLP analog outputs are further
interpreted as mass probabilities. The HMM models are generated
by using the modified HMM algorithm. (For results, see Section 5.8.)

Multi-MLP Multi-Labeling Instead of training only one MLP for
phonetic classification with an input of all parameter sets, multiple in-
dependent MLPs are trained for phonetic classification. The input to
those multiple MLPs are basic spectral parameters, first derivatives,
and second derivatives of the basic spectral parameters, respectively.
LPC based cepstra were used as MLP basic spectral parameters. Pa-
rameters are chosen if they meet the HMM independent assumption.
Therefore, the outputs of the networks can be assumed to be inde-
pendent. Hence, the probabilities associated with the labels from
the different MLPs can be multiplied. During recognition, the MLPs
work in parallel. For each network, the labels corresponding to the N
highest scoring outputs or the outputs larger than a preset threshold
provide top labels to the modified HMM system. (Only a theoretical
analysis is made with this method.)

Multi-MLP Fuzzy Labeling In this model, the MLP fuzzy la-
beling replaces the MLP Multi-Labeling from the previous model.
Because of both multiple MLP labeling computation and the multi-
ple modified HMM calculation, the multi-MLP fuzzy labeling needs
more computation power and memory than the other methods. On
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the other hand, we expect that this method yields the highest recog-
nition rate above all other models. Future experiments are needed
for this model.

The detailed description of each model is presented in chapter 4. The
above models outperform the winner-take-all MLP labeling. The major
drawback of the above models, however, is the amount of extra computation
time needed for calculations involving the modified Viterbi and/or forward-
backward algorithm. From the experiments we have done so far, the extra
computation time is too little to effect the system performance. The system,
on the other hand, has higher recognition accuracy.

6.3 Future Work and Suggestions

6.3.1 MLP/HMM Hybrid Models

We have described MLP Labeling/HMM hybrid systems, and have pre-
sented all their possible models in detail. We have done our experiments
on MLP multi-dimensional labeling and MLP fuzzy labeling. We have not
done experiments on MLP multi-labeling, multi-MLP multi-labeling and
multi-MLP fuzzy-labeling. Although we can predict the results for those
untested models from the experiments we have done so far, it is necessary to
perform further experiments to test all MLP labeling/HMM hybrid models.

6.3.2 Output Feed Forward Multi-Layer Perceptron

We have presented the Multi-Layer Perceptron to deal with the coarticu-
lation problem in speech recognition. For future work, we propose another
structure: the output feed forward Multi-Layer Perceptron neural network.

Figure 4.14 shows the output of the different phoneme classes with input
presenting a Dutch digit een. The curves reveal the obvious coarticulation
phenomenon. When the speech begins, the value for phoneme ee increases
while the value for noise zx decreases; as time goes on, the value for phoneme
ee increases up to the saturation and then decreases. As the value for
phoneme ee decreases, the value for phoneme n increases, and so on for
noise xx.

Speech recognition accuracy may be increased if we can represent this
basic coarticulation characteristic inside a neural network rather than in the
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Figure 6.1: A feed forward neural network

tion into account by connecting the units in the output layer. The initial
structure is shown in Figure 6.1. We consider only the current phoneme
and its adjacent previous phoneme as at those places where the coarticula-

MLP input (by using the weighted training data), or by the MLP output
(as in fuzzy MLP). The feed forward neural network takes the coarticula-

tion happens. There is no connection between the current class output unit
and other units. For example, there is a feed forward connection between

phoneme ee and phoneme n at beginning of phoneme n for Dutch digit een.

The output feed forward Multi-Layer Perceptron can also be considered as

a recurrent neural network at the output layer. We need to further explore

this idea in detail.
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