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 The Physiological Acromegaly of Pregnancy 

 Pregnancy is a mildly acromegalic state. As will be 
outlined below, pregnancy is accompanied by an expo-
nential rise in growth hormone (GH) secretion by the 
placenta, as well as raised insulin-like growth factor-I 
(IGF-I) concentrations and bioavailability. These hor-
monal changes often translate into bothersome symp-
toms in late pregnancy  [1] . Gravidas may exhibit some 
coarsening of their facial features owing to edema, and 
edema of the forearms and hands with or without pares-
thesia (carpal tunnel symptoms). Such symptoms are 
reminiscent of ‘true’ acromegaly – caused by GH-secret-
ing pituitary adenomas – and the side effects incurred by 
recombinant GH  [2]  or IGF-I therapy  [3] ; indeed, IGF-I 
treatment increases forearm blood flow  [4] . 

  One would expect the maternal hypersomatotropism 
to help sustain a somatogenic (growth-promoting) envi-
ronment for the conceptus, i.e. the placenta and fetus(es). 
The objective of this narrative review is to summarize the 
current knowledge on this topic and, in particular, to 
bring together maternal-endocrine and perinatal re-
search findings.  

  The Growth Hormone Family 

 GH, chorionic somatomammotropin (CS) and pro-
lactin (PRL) are structurally related peptide hormones 
with somatogenic and lactogenic properties. In humans, 
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 Abstract 

 Pregnancy is accompanied by notable changes in the secre-
tion of growth hormone (GH) and the insulin-like growth 
factors (IGFs). A GH variant produced by the placenta is dis-
cernible in maternal plasma from early pregnancy, rising ex-
ponentially until 37 weeks. Meanwhile, pituitary GH gradu-
ally drops to near-undetectable levels. While there might be 
a modest reduction in circulating IGF-I in early pregnancy, 
IGF-I increases 2- to 3-fold in the second half, again with a 
peak at around 37 weeks. Thus, placental GH is believed to 
replace pituitary GH as the primary stimulus for IGF-I secre-
tion in pregnancy. Several IGF-binding proteins (IGFBPs) in-
cluding IGFBP-3 are proteolyzed, leading to an elevated free 
(bioavailable) IGF-I fraction. IGF-II concentrations also ap-
pear to show a modest (20–25%) increase in the course of 
pregnancy. The possible clinical manifestations include ede-
ma of face and forearms and carpal tunnel symptoms, remi-
niscent of the symptoms of acromegaly and the side effects 
of GH/IGF-I treatment. Neither placental GH nor the mater-
nal IGFs cross the placental barrier, yet evidence from 
 preclinical models is accumulating that they promote tro-
phoblast invasion, placenta growth and maturation, trans-
placental nutrient transport and, ultimately, fetal growth. 
The ensemble data strongly suggest that ‘gestational acro-
megaly’ develops in order to foster fetoplacental growth. 
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a cluster of five  GH/CS  genes is located on chromosome 
17q22–24 ( fig. 1 ):  GH-N  (N for normal),  CS-L  (like),  CS-
A ,  GH-V  (variant) and  CS-B . These genes share 91–99% 
of their DNA sequences.  GH-N  produces GH which is 
secreted by the somatotrope cells of the anterior pitu-
itary gland, whereas  GH-V  produces a GH variant se-
creted by the placenta. The  CS  genes are also expressed 
in the placenta;  CS-A  and  CS- B produce CS which is bet-

ter known as placental lactogen, while  CS-L  is consid-
ered a pseudogene. The  PRL  gene is located on chromo-
some 6.

  The Placental Growth Hormone Variant 

 The  GH-V  product is a 191 aminoacids (AA)-contain-
ing protein with a molecular weight (MW) of 22.3 kDa. 
This protein differs by 13 AA from pituitary GH, is more 
basic and contains an N-linked glycosylation site at as-
paragine 140 ; a recombinant version has been generated 
 [5] . A second 25-kDa  GH-V  product represents a glycosyl-
ated isoform  [6] . These products are referred to as placen-
tal growth hormone (PGH), because of their exclusive ex-
pression in the multinucleate syncytiotrophoblast  [7] .

  PGH is somatogenic. The placental variant binds to 
the hepatic GH receptor at least as potently as pituitary 
GH does  [8] . Also, GH and PGH comparably stimulate 
tibial growth plate expansion  [8]  and weight gain  [9]  in 
hypophysectomized rats, and have comparable metabol-
ic effects in adipose tissue  [10] . Transgenic mice have 
been generated that express human PGH and show plas-
ma levels comparable to those observed in late pregnan-
cy; these mice weigh 85% more than do normal mice, 
apparently by an increase in their fat-free mass  [11] . By 
contrast, PGH binds poorly to the PRL receptor, and its 
lactogenic bioactivity (assessed in the NB 2  lymphoma cell 
line) is 20-fold lower than that of GH  [8, 9] .

  The introduction of a sensitive monoclonal antibody-
based assay by Hennen’s group (Liège, Belgium) has dis-
closed the dynamics of PGH output  [6] . Unlike the pul-
satile nature of GH secretion, PGH secretion is tonic  [12] . 
PGH is detectable in maternal plasma as early as 5 weeks 
gestational age (GA), and its concentration rises expo-
nentially, attaining peak levels at 35–37 weeks  [13–15]  
( fig. 2 ). But individual PGH values vary considerably at 
any stage, with peak levels ranging between 4.6 and 69.2 
ng/ml in one study  [14] . Circulating PGH is partly bound 
to the GH-binding protein (GHBP), which is secreted by 
the liver and adipose tissue and represents a truncated 
form of the hepatic GH receptor (i.e. its extracellular do-
main). The binding affinities of GH and PGH to GHBP 
are similarly high (affinity constant: 0.91 liters/nmol)  [1] . 
GHBP levels drop gradually in the course of human preg-
nancy, approximately 40% between the first or early sec-
ond trimester and term  [15–17] . Thus, an even larger in-
crement is expected in free compared to total PGH in the 
circulation. But the calculated free fraction also varies 
widely, e.g. 28–82% at delivery in one study  [18] . 
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  Fig. 1.  Organization of the GH/CS gene family on chromosome 
17q22–24. 
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  Fig. 2.  Typical changes in PGH, IGF-I and GH during pregnancy 
[modified from refs.  6, 13–15, 47 ]. In some studies, a modest re-
duction (about 30%) was observed in IGF-I levels in the first half 
of pregnancy  [43, 44] . 
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  As would be predicted for an exclusively placental 
product, plasma PGH concentrations plummet after de-
livery. The elimination of circulating PGH can be de-
scribed as the sum of two exponential curves: a rapid 
elimination phase with a median half-life of 5–6 min, and 
a slower elimination phase (half-life of 63.4 min)  [19] ; 
thus, 65–89% of plasma PGH is cleared by 30 min after 
delivery  [13, 19] .

  Regulation of PGH Secretion 

 PGH is not regulated by the same mechanisms that 
modulate pituitary GH secretion. The administration
of a GH-releasing factor (GRF) analogue to term gravi-
das does not alter circulating PGH  [20] ; neither does 
GRF 1–44  addition alter the secretion of PGH by tropho-
blastic cells in vitro  [21] . We found a normal gestational 
increase in PGH and IGF-I concentrations in a woman 
with absent GH and undetectable IGF-I before pregnan-
cy, owing to deficiency of  Pit-1   [22] ;  Pit-1  is a transcrip-
tion factor necessary for the expression of GH, PRL and 
thyroid-stimulating hormone (TSH) in the anterior pi-
tuitary gland. The same was true in a gravida with iso-
lated childhood-onset GH-deficiency  [13] . Nor does 
PGH appear to be regulated by ghrelin, as will be dis-
cussed below  [15, 18] .

  Rather, the tonic PGH secretion is dependent on the 
placental mass  [23]  and thus on gestational age (GA)  [14, 
24] . PGH concentrations at delivery are reduced by 33% 
in smoking gravidas who typically have smaller placentas 
 [23] . In addition, both the placental expression of PGH 
 [25]  and the circulating levels of PGH  [26–28]  are reduced 
in pregnancies complicated by in utero growth restric-
tion (IUGR) of the fetus and smaller placentas.

  Interestingly, PGH concentrations in late pregnancy 
are inversely related to maternal body weight or BMI  [14, 
24, 29] , but the underlying mechanism is unexplained. Of 
note, nonpregnant obese individuals show lower GH con-
centrations, owing to both reduced pituitary secretory 
bursts and faster metabolic clearance  [30–32] . Because 
overweight women tend to produce larger babies and pla-
centas  [33] , repressed placental PGH output is not a like-
ly explanation. Faster metabolic clearance of PGH might 
be attributed to decreased plasma-binding capacity; how-
ever, overweight or obese gravidas actually show higher 
levels of GHBP than lean gravidas  [17, 19] . A larger dis-
tribution volume is another possibility: preliminary data 
show that plasma volume expands to a higher degree in 
overweight pregnant women  [34] .

  The Somatogenic Effects of the IGFs  

 Briefly, the IGF system consists of: (1) two ligands, 
IGF-I (formerly called somatomedin-C) and IGF-II; (2) 
six IGF-binding proteins (IGFBP-1 to IGFBP-6), mainly 
produced in the liver, which bind the IGFs in the circula-
tion with high affinity; (3) several IGFBP endoproteases 
(proteolytic enzymes) which can break down the IGFBPs; 
(4) two IGF receptors (type 1 and type 2 IGF receptor) in 
target cells.

  IGF-I and IGF-II are peptides of 70 and 67 AA, respec-
tively, and a MW of  � 7.5 kDa. The IGFs are secreted by 
virtually all tissues  [35] , but the liver is the primary source 
of circulating IGF-I postnatally – perhaps, from late in-
trauterine life onward. The postnatal hepatic IGF-I out-
put is stimulated by pituitary GH, insulin, and nutrition-
al factors such as protein intake. Hepatic IGF-I mediates 
part of  somatogenic effects of GH via a classic endocrine 
mode of action; yet, IGF-I produced in other tissues (e.g. 
bone and muscles) also governs postnatal growth, likely 
acting locally  [35, 36] . Unlike GH, IGF-I is essential for in 
utero growth: rare cases of genetic IGF-I deficiency in 
humans and  IGF1  gene deletion in mice are accompanied 
by IUGR [reviewed in  37, 38 ]. Circulating IGF-I concen-
trations in the fetus at birth are determined by both ge-
netic  [39]  and environmental (uteroplacental blood flow, 
oxygenation) factors  [37, 38] . Parental imprinting regu-
lates the expression of IGF-II in the fetus, and deletion of 
the paternal allele in mice causes IUGR; but the postnatal 
role of IGF-II remains unclear. The IGFs are also ex-
pressed in the placenta, although IGF-II far more abun-
dantly than IGF-I  [40] ; IGF-II (but not IGF-I) deficiency 
in mice impairs placental growth. Both IGF-I and IGF-II 
act primarily through the type 1 IGF receptor  [37] . 

  The core function of the IGFBPs is to bind and seques-
ter the IGF ligands, thus modulating their bioavailability 
and metabolic clearance. Only  � 1% of the IGF ligands 
circulates in the free form. Postnatally, IGFBP-3 is by far 
the most abundant IGFBP, binding 80–90% of circulating 
IGF-I in a trimeric high-molecular-weight complex (140 
kDa) that also includes the acid-labile subunit (ALS); 
IGF-I, IGFBP-3 and ALS are all GH-regulated. IGFBP-1, 
by contrast, binds only  � 2% of circulating IGF-I and is 
upregulated by signals such as fasting, hypoinsulinemia 
(diabetes), and hypoxemia. Nonetheless, metabolic sig-
nals allow a minute-to-minute control of the IGF-I bio-
availability: e.g., nighttime fasting turns on IGFBP-1 se-
cretion, thereby reducing the free IGF-I fraction  [41]  and 
abrogating inappropriate somatogenic and metabolic 
(hypoglycemic) effects  [35] . During intrauterine life, 
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IGFBP-1 is probably the most important IGFBP, stimu-
lated by maternal fasting, impaired uteroplacental blood 
flow, fetal hypoxemia and fetal hypoinsulinemia  [38] . In-
creased sequestering of IGF-I by IGFBP-1 may explain 
why IUGR ovine fetuses are partially resistant to the an-
abolic effects of exogenous IGF-I  [42] .   

  PGH and the IGF Axis during Pregnancy 

 A decline of  � 30% between prepregnancy and first- or 
second-trimester IGF-I values has been observed in some 
studies  [43, 44] , which may be related to the upsurge in 
estrogen production  [45] . However, we found the IGF-I 
concentration to be raised as early as 12 weeks in a GH-
deficient gravida  [22] . In the second half of pregnancy 
(from 24–25 weeks onward), IGF-I concentrations rise 
robustly, with a peak at  � 37 weeks  [14, 26, 44, 46, 47]  
( fig. 2 ). The difference between trough and peak values 
during pregnancy is 2- to 3-fold  [14, 26, 43, 44] . A similar 
pattern was observed in gravidas with type 1 diabetes 
 [48] . While the interindividual range is considerable, e.g. 
215–705  � g/l at 37 weeks  [14] , it is smaller than for PGH. 
All studies concur that there is a significant correlation 
between PGH and IGF-I concentrations at any stage of 
pregnancy  [22–24, 26, 27, 47, 48]  as well as between the 
slopes of PGH and IGF-I during pregnancy  [14, 47, 48] . 
IGF-I concentrations drop gradually in the postpartum 
period (by 40% in the first 48 h  [18] ).

  The effect of pregnancy on IGF-II concentrations has 
been less studied, but there appears to be a modest in-
crease between first- and second- or third-trimester val-
ues (25% change between trough and peak values  [44, 
46] ) and again a modest drop postpartum (22% drop be-
tween delivery and 48 h postpartum  [18, 46] ). 

  Whereas IGFBP-3 concentrations are elevated during 
late pregnancy when measured by radioimmunoassay 
 [44, 49] , Western ligand blotting shows consistently that 
the characteristic doublet for IGFBP-3 (39–42 kDa) is un-
detectable in pregnancy serum; this observation is con-
firmed by Western immunoblot. The discrepancy is ex-
plained by the proteolysis of IGFBP-3 into smaller frag-
ments (apparently still captured by immunoassay) by
a pregnancy-induced circulating endoprotease  [44, 50] . 
The protease activity is discernible as early as 6 weeks and 
is trophoblast-derived, perhaps corresponding to a disin-
tegrin-metalloproteinase type enzyme  [51] . Pregnancy 
serum is also proteolytically active against IGFBP-2, 
IGFBP-4 and IGFBP-5 but not IGFBP-1  [50, 51] . Whether 
the robust IGFBP proteolysis results in reduced IGF-

binding capacity (i.e. higher free IGF ligands) and a cor-
responding boost in IGF bioactivity, remains controver-
sial. Experimental arguments supporting  [52]  or refuting 
 [53]  this reasoning are at the center of the debate, yet I 
believe that some supportive arguments merit emphasis. 
Notwithstanding methodological limitations  [54] , the 
measurement of the free form of IGF-I reveals a free 
IGF-I fraction of 1.5–2.4% during pregnancy as com-
pared with 0.9% outside pregnancy  [55] . Also, suggestive 
evidence of increased IGF-I tissue uptake during preg-
nancy was obtained in rats, showing a nearly 5-fold fast-
er clearance of radioactive IGF-I while urinary excretion 
is negligible and placental transport absent  [56] . 

  IGFBP-1 (formerly called placental protein-12) is not 
proteolyzed and is probably the most important IGFBP 
during pregnancy. The liver produces highly phosphory-
lated isoforms that bind IGF-I with high affinity; in addi-
tion, the decidualized endometrium is an abundant source 
of highly phosphorylated but also lesser- and non-phos-
phorylated isoforms  [40, 57, 58] . Decidual IGFBP-1 dif-
fuses into the amniotic fluid  [59, 60] . The plasma concen-
trations of total IGFBP-1 as well as the nonphosphorylated 
isoforms increase 2- to 3-fold between the first and second 
trimester, and remain constant or decrease slightly there-
after  [43, 44, 61–63] . Amniotic fluid concentrations rise 
steeply from 10 weeks onward with peak levels in mid-
pregnancy that are 10 2  to 10 3  times higher than those in 
serum  [61, 64, 65] . The detection of IGFBP-1 constitutes 
one of the biochemical tests (e.g. a rapid strip test for on-
site use) to detect the presence of amniotic fluid in vaginal 
secretions, i.e. to diagnose preterm rupture of the fetal 
membranes  [66, 67] . Plasma IGFBP-1 is not only regulated 
by GA, but there is also the expected diurnal variation 
with higher levels during the night  [68] . IGFBP-1 concen-
trations are predictably higher in gravidas with type 1 di-
abetes  [69]  and lower in overweight gravidas  [24, 70–72] ; 
we confirmed an inverse relationship to insulin and IGF-
I concentrations in normal pregnancies at 24–29 weeks 
 [24] . Theoretically, a higher free IGF-I fraction is expected 
in obese/hyperinsulinemic gravidas  [41] , but this remains 
to be verified; in fact, both total and free IGF-I are lower 
in obese nonpregnant women  [73] . Many studies confirm 
that gravidas who develop preeclampsia show decreased 
plasma IGFBP-1 concentrations before disease onset  [74–
79] , probably reflecting defective decidual function or/
and relative hyperinsulinemia – the latter being an inde-
pendent risk factor for preeclampsia. But gravidas with 
clinical preeclampsia  [76, 80–83]  or the antiphospholip-
id syndrome  [84]  actually demonstrate higher plasma 
IGFBP-1, a paradox which is unexplained at this time.
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  Pituitary GH in Normal and Acromegalic 

Pregnancies 

 Several studies using specific immunoassays have 
demonstrated that pituitary GH concentrations are very 
low or below the detection limit in the second half of 
pregnancy  [6, 15, 26, 47]  ( fig. 2 ). This phenomenon oc-
curs concomitantly with the rise in PGH and IGF-I levels, 
inferring that the raised hepatic IGF-I secretion suppress-
es GH secretion via a negative feedback mechanism 
( fig. 3 ). Thus, PGH replaces GH as the primary IGF-I re-
leasing hormone.

  Our knowledge about the effect of pregnancy on GH 
and IGF-I secretion in acromegalic patients is very lim-
ited and case-based. Cozzi et al.  [85]  reported that GH 
concentrations decreased by 50–90% in the course of 
pregnancy in 3 of 5 women with acromegaly and GH-se-
creting adenomas, despite discontinuing GH-suppressive 
treatment. The IGF-I concentrations appear to be stable 
or to increase during these pregnancies, while any cor-
relation between GH and IGF-I levels in acromegalic 
gravidas is lacking. Suppressed GH and stable IGF-I con-
centrations during pregnancy were also reported in an 
untreated patient with GH hypersecretion caused by the 
McCune-Albright syndrome  [86] . Estrogens likely play a 
role in the apparently spontaneous amelioration of the 
IGF-I hypersecretion  [45, 87] , but further research into 
the interaction of estrogens and PGH on hepatic IGF-I 
and pituitary GH secretion is mandatory. Importantly, 
pregnancies in acromegalic patients appear to proceed 
normally and produce healthy infants  [85] .

  Ghrelin is a 28 AA-containing peptide which is se-
creted in the stomach and acts as a GH-releasing factor; 
yet ghrelin is also expressed at a low level in the placenta 
 [88] . Fasting ghrelin concentrations do not vary substan-
tially in the course of pregnancy  [15]  nor in the first 2 days 
postpartum  [18] . Therefore, it is unlikely that ghrelin 
drives the gestational downturn or the postpartum res-
toration of GH secretion.

  Maternal Plasma PGH and IGF-I: Indices of 

Fetoplacental Growth? 

 Several studies have examined whether maternal PGH 
and IGF-I are correlated with fetal size, as calculated 
from ultrasound parameters or measured at birth. It ap-
pears from the data that PGH and IGF-I do correlate with 
fetal size when assessed at or around the same GA, wheth-
er in the early third trimester  [29, 44]  or at delivery  [23] . 

In some studies, there is also a relationship between PGH 
or/and IGF-I sampled in the second or early-third trimes-
ter and birth weight  [28, 48] , but this is not the case in 
other studies  [24, 29, 44] . A study in diabetic women con-
firms that the correlation between PGH and birth weight 
strengthens with later GA at sampling  [48] . An elegant 
longitudinal evaluation shows that while the PGH (but 
not the IGF-I) slope between 24.5 and 37.5 weeks GA 
(peak value) modestly predicts birth weight, the overall 
PGH and IGF-I slopes during pregnancy are not predic-
tive of birth weight  [14] . 

  The above findings might be explained by the assump-
tion that circulating PGH and IGF-I reflect (regulate?) 
placenta growth and function, and by the well-known 
correlation between placenta weight and birth weight. In-
deed, the correlation between PGH or IGF-I and placen-
ta weight is better than that with birth weight in several 
studies  [23, 43, 48] , and the overall IGF-I slope during 
pregnancy predicts placenta but not birth weight  [14, 43] . 
Predictably, PGH and IGF-I values in the third trimester 
are lower in pregnancies complicated by severe pre-
eclampsia or IUGR with uteroplacental blood flow insuf-
ficiency  [26–28, 83, 89, 90] , although there is some incon-
sistency in the reported early or mid-pregnancy PGH and 
IGF-I values of women who later develop preeclampsia 
 [77–79, 91] .

GH
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IGF-I
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Liver
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PGH

  Fig. 3.  Schematic view of the alterations in the GH-IGF axis dur-
ing pregnancy. In the nonpregnant state, pituitary GH is the main 
stimulus for hepatic IGF-I secretion in the liver, which in turn 
regulates pituitary GH secretion by a negative feedback mecha-
nism. During pregnancy, the placenta produces PGH, a GH vari-
ant which is equally somatogenic and stimulates hepatic IGF-I 
secretion from the second half of pregnancy; consequently, pitu-
itary GH secretion is downregulated. Neither PGH nor IGF-I 
cross the placental barrier.     
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  The data are even more controversial for IGFBP-1. Ma-
ternal plasma total and nonphosphorylated (i.e. decidua-
derived) IGFBP-1 concentrations (22–26 weeks GA) were 
reported to be increased in IUGR pregnancies  [92] , and 
IGFBP-1 (sampled at various GA) show a moderate in-
verse correlation with birth weight in some  [44, 69, 70, 72]  
but not other  [24, 63, 93]  studies. It is unlikely that this 
correlation would persist after controlling for the major 
effect of maternal body size  [33] . We  [65]  and Giudice’s 
group  [63]  documented that amniotic fluid IGFBP-1, 
sampled at 14–20 weeks GA, does not predict birth weight; 
but other groups reported a negative correlation between 
amniotic fluid IGFBP-1 at 13–19 weeks GA and birth 
weight  [94] , or higher amniotic fluid IGFBP-1 (15–16 
weeks GA) in IUGR pregnancies ( ! 5th percentile)  [93] . 

  Collectively, the data indicate that maternal circulat-
ing PGH and IGF-I correlate with fetoplacental size at 
that GA. However, the measurement of IGF-I or IGFBP-1 
in second-trimester amniotic fluid and the measurement 
of PGH, IGF-I or IGFBP-1 in maternal plasma in the sec-
ond or early third trimester do not emerge as consistent, 
clinically useful biochemical predictors of size parame-
ters at birth.

  Possible Mechanisms of Action to Explain Improved 

Fetal Growth 

 Neither PGH nor the IGFs cross the placental barrier. 
Indeed, PGH is not detectable in the fetal circulation  [6] , 
and animal studies have confirmed the lack of transpla-
cental passage of IGF-I  [56] . Yet PGH and the IGFs might 
stimulate fetal growth indirectly by affecting maternal 
metabolism, placental development and/or  the transpla-
cental transport of nutrients. 

  Regarding maternal metabolism, it is hypothesized 
that PGH is one of the placental hormones – together with 
progesterone and placental lactogen – involved in the 
physiological insulin resistance and reduced glucose tol-
erance that characterizes the second half of pregnancy 
 [10, 95] . These metabolic changes are well known to pro-
mote the nutrient flow to the fetus and fetal growth rate 
 [96] . Certainly, acromegaly  [97]  and GH use by healthy 
 [98]  or GH-deficient  [99]  individuals all lead to insulin 
resistance in the liver and peripheral tissues (i.e. skeletal 
muscles or/and adipose tissue) and hyperinsulinemia. 
Also, transgenic mice with PGH expression display insu-
lin resistance and hyperinsulinemia  [11] ; one possible 
mechanism is the disturbance of insulin receptor signal-
ing pathways in skeletal muscles  [100] . But the available 

Table 1. Fetoplacental effects of maternal endogenous or exogenous GH, PGH, IGF-I and IGF-II, and IGFBP-1

Effect Maternal ligand Research model Reference

Stimulation of trophoblast invasion PGH in vitro 107
IGF-I 108
IGF-II 109
IGFBP-1 109

Stimulation of placental growth IGF-II mouse and guinea pig 103, 111
IGF-I? guinea pig 103, 113

Stimulation of placental maturation IGF-I guinea pig 103, 113
IGF-II mouse and guinea pig 103, 112

Stimulation of placental diffusion capacity GH sheep 115
IGF-II mouse 111, 112

Stimulation of placental and fetal glucose uptake IGF-I guinea pig 104, 114
IGF-II? guinea pig 104

Stimulation of placental and fetal amino acid uptake IGF-I in vitro 116, 117
guinea pig 114

IGF-II mouse 111, 118
Increase in fetal amino acid concentrations IGF-I guinea pig 103

IGF-II guinea pig 103
Stimulation of fetal lactate uptake IGF-I sheep 115
Stimulation of fetal growth IGF-I guinea pig 103, 114

IGF-II mouse and guinea pig 103, 111
Improved fetal survival IGF-I guinea pig 103

IGF-II guinea pig 103
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evidence in humans does not strongly support this hy-
pothesis. We found no difference in plasma PGH in grav-
idas with an abnormal vs. normal response to a glucose 
load  [24] . Also, the PGH concentrations of diabetic (type 
1 or type 2) gravidas are unchanged  [28] , and PGH levels 
in type 1 diabetic pregnancies are unrelated to changes in 
insulin requirements  [48] . Conversely, plasma PGH re-
mains unaltered during an oral glucose tolerance test in 
healthy gravidas  [101] , while extreme hyperglycemia (25 
mM) inhibits PGH secretion by the placenta in vitro  [102] . 
Further research is needed but the conclusion that PGH is 
a ‘diabetogenic’ hormone of pregnancy is premature. 

  GH is a lipolytic hormone  [99] . PGH may also promote 
lipolysis, because a correlation between PGH and FFA 
levels was reported at delivery  [23] . In guinea pigs, the 
chronic infusion of IGF-I during the second half of gesta-
tion reduces maternal adipose tissue stores, suggesting 
increased lipolysis which in turn might lead to alterations 
in the ‘nutrient partitioning’ between mother and fetus 
 [103, 104] . 

  IGF-I and IGF-II, GH/PGH receptors and type 1 IGF 
receptors are all expressed in the placenta  [40, 105–107] . 
It is unknown whether PGH or the IGFs modulate pla-
cental IGF-IGFBP expression by an auto-/paracrine mode 
of action. Yet data obtained in vitro and in animal models 
indicate that PGH and the IGFs have beneficial effects on 
trophoblast invasion and placenta function (summarized 
in  table 1 ). The promotion of trophoblast invasion is like-
ly mediated by locally produced PGH and IGFs, e.g. IGF-
I in villous mesenchyme  [108] , IGF-II in trophoblast and 
IGFBP-1 in decidua  [40, 109] ; IGF-II and IGFBP-1 appear 
to act in concert  [109, 110] . However, the larger placentas 
in mice with decidual IGFBP-1 overexpression are dys-
functional, resulting in IUGR  [60] . The stimulation of 
placenta growth and maturation, and transplacental nu-
trient transport appears to be mediated by both locally 

produced IGF-II  [111, 112]  and circulating IGFs  [103, 104, 
113, 114] . The guinea pig is an attractive animal model for 
this type of research, because its hemochorial placenta 
closely resembles the human placenta; the ovine placenta, 
however, is substantially different.

  Conclusion and Future Directions 

  Pregnancy is a hypersomatotropic state. The soaring 
PGH secretion stimulates hepatic IGF-I secretion which 
increases 2- to 3-fold in the second half of pregnancy, 
while pituitary GH secretion is suppressed. The tissue 
bioavailability of IGF-I is probably increased as well, as 
suggested by increased free IGF-I concentrations. Data 
obtained in preclinical models show that the local pro-
duction of PGH and the IGFs promotes trophoblast inva-
sion and placenta growth and function; in addition, in-
creased circulating IGF-I promotes placenta maturation 
and transplacental nutrient transport. These effects 
should boost fetal growth rate.

  Further preclinical data are required, but we also need 
to move on to human pregnancy. It would be interesting 
to know whether the considerable variation in PGH and 
IGF-I levels during pregnancy bears consequences for 
symptoms such as edema and carpal tunnel syndrome, 
for carbohydrate, lipid and protein metabolism in the 
mother, and for placental functional indices. In a next 
phase, pilot studies could assess whether recombinant 
IGF-I treatment (which does not cross the placenta) im-
proves placental function in gravidas at risk for uteropla-
cental insufficiency. Surely, to investigate how PGH, the 
IGFs, the IGFBPs and the classic steroid hormones (estro-
gens and progesterone) interact at the maternal-fetal in-
terface to promote fetal growth, represents a fascinating 
area for further research. 
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