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Abstract

Compared to dictation systems, recognition systems for
spontaneous speech still perform rather poorly. An im-
portant weakness in these systems is the statistical lan-
guage model, mainly due to the lack of large amounts
of stylistically matching training data and to the occur-
rence of disfluencies in the recognition input. In this pa-
per we investigate a method for improving the robustness
of a spontaneous language model by flexible manipula-
tion of the prediction context when disfluencies occur. In
the case of repetitions, we obtained significantly better
recognition results on a benchmark Switchboard test set.

1. Introduction

The automatic recognition of spontaneous speech is cur-
rently one of the main topics in speech research. Practical
applications include voice operated telephone services,
automatic closed captioning for TV programs, automatic
transcription of meetings, etc. Yet, the recognition accu-
racy of freely spoken language is quite poor when com-
pared to that of dictated speech: while the word error rate
(WER) for large vocabulary speaker-independent dicta-
tion is about 5%, the WER for spontaneous speech recog-
nition ranges from 15% for broadcast news [1, 2] to 40%
for meeting and telephone conversation transcription [3].

One of the main reasons for this discrepancy is the
lack of a sufficient amount of stylistically matching train-
ing data to estimate spontaneous language models. Writ-
ten transcripts of casual language use are rather scarce,
while typical large vocabulary stochastic language mod-
els rely on vast amounts of training material [4]. The oc-
currence of disfluencies in casual speech makes a spon-
taneous language model even less robust. This paper fo-
cuses on the latter problem.

In the literature different approaches to spontaneous
language modeling have already been pursued. [5] tried
to incorporate knowledge of discourse theory: sentences
typically start with given information whereas new infor-
mation comes at the end. Correspondingly, two expert
language models were trained on the relevant sentence
parts, yielding a slight 0.3% absolute improvement in
WER for recognition of spontaneous telephone conver-

sations (Switchboard). Disfluencies almost always oc-
curred in the sentence’s given information part. [6] ex-
plore N-best list rescoring on the basis of chunking in-
formation. The underlying motivation is that the cov-
erage of the chunker bears information in order to dis-
criminate between syntactically acceptable and syntacti-
cally anomalous recognition hypotheses. The technique
reduced the WER by 0.3% absolute on Switchboard. Fi-
nally, [7] report on dealing with disfluencies in language
modeling by editing the prediction context. More specif-
ically, the prediction context for a newly hypothesized
word is cleaned up by removing the disfluencies in it.
The improvement in WER on Switchboard is, parallel to
the other approaches, not really significant. The research
described in this paper extends the latter work by imple-
menting a more flexible manipulation of the prediction
context: disfluencies are only removed from the context
when they do not contain informational value.

The paper is organized as follows. First, we discuss
the investigated disfluencies and the proposed model to
handle them. Next, the experimental set-up is described
and results on the Switchboard task are given. Finally, we
conclude and discuss future research on the topic.

2. Handling disfluencies

2.1. The investigated disfluencies

As mentioned above, one of the features that distin-
guishes spontaneous from read speech is the occurrence
of disfluencies. The disfluency types we focus on in this
work are listed below:

repetitions: That is what what I think.

hesitations: That is what um I think.

sentence restarts: That is what um. . . Yeah I think so.

About 85% of the disfluencies in our train and test
corpus (Switchboard, cf. infra) are of the three types
listed above [8]. Therefore we suppose that the behavior
of our model for disfluencies will be reflected adequately
by the selected disfluency types.

One of the hypotheses explaining the difficulty of
spontaneous language modeling by means of N-grams



points explicitly to disfluencies: as N-grams base their
word prediction on a local context of N-1 previous words,
intervening disfluencies render this context less uniform.
Or put differently, the prediction of a next word would
be more accurate if based on a context from which dis-
fluencies are removed and which is extended to the left
with regular words to make up for the removed disfluen-
cies. So when using a trigram language model (LM) in
the case of the hesitation mentioned above, we hypoth-
esize that I would be better predicted by the context is
what than by what um. The disfluencies themselves are
predicted in the same way as regular words.

Yet, as shown by [9] and [10], in some cases disflu-
encies are good predictors for following words. Hesita-
tions, for example, sometimes tend to precede less fre-
quently used words (depending, among other factors, on
the position of the hesitation in the sentence). In addition,
repetitions are not always grammatically incorrect (e.g. I
hope that that work is done.). So simply removing dis-
fluencies from the prediction context seems too crude. In
our model we tried to incorporate this observation by al-
lowing the system to pick the most probable option when
both a context with disfluency and a cleaned-up context
are available.

2.2. The proposed model

We explain in detail how the proposed model works by
taking the case for repetitions as an example. The model
for repetitions is sketched in figure 1. As can be seen
on the figure, we assume that a trigram language model
is used. The upper path illustrates the normal LM proce-
dure. Suppose that word B is repeated, then the prediction
of the next word C is based on the context B B. The re-
moval of the repetition is demonstrated by the lower path.
The prediction of C is made on the basis of the modified
context A B; the repeated word B is removed.
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Figure 1: The model for repetitions

In section 3, we will compare the reference system,
which always follows the upper path, with a system that
always removes the disfluency from the context (thus al-
ways follows the lower path). This comparison was also
conducted in [7]. Additionally, we also investigate a sys-
tem that selects the most probable prediction context. In
that case the prediction of C is based on the most prob-
able of both contexts mentioned, and depending on the

situation the upper path or the lower path is chosen.
The analogous models for hesitations (symbol uh)

and sentence restarts (context <S>) are depicted in fig-
ures 2 and 3 respectively. The figure shows that in these
cases, it takes one word more for both options to join
again. It should be noted that in the model for sentence
restarts, a sentence restart is only allowed following a
hesitation although in spontaneous speech a sentence can
restart at any point. However, a pilot experiment de-
scribed in [11] showed that a restart following any word
overgenerates hypotheses and worsens recognition.
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Figure 2: The model for hesitations
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Figure 3: The model for sentence restarts

Before turning to the real recognition experiments,
we set up a small-scale experiment to investigate whether
the probabilities in the trigram language model, estimated
on a rather small word text database (only 3M words, cf.
infra), were reliable enough to distinguish between the
different prediction contexts compared in the proposed
models. We did this by analyzing sentence restarts af-
ter the hesitation uh in a Switchboard test set. The test
set contained 72 occurrences of uh in the middle of the
sentence. From a manual examination we learned that in
18% of these cases the sentence restarted following the
hesitation, and in the remaining 82% of the cases the sen-
tence just went on.

Next, we made the language model choose between
both contexts with the model depicted in figure 4. We
found that both for the sentence restarts and for the con-
tinued sentences, the LM was able to select the correct
transition in the model in 84% of the cases. As this clas-
sification task result is based purely on the LM (not on
an optimized classifier), it clearly indicates that most in-
formation on the optimal LM prediction context can be
found in the trigram language model.
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Figure 4: The model for the language model evaluation

3. Experiments and results

3.1. Experimental setup

The proposed models for handling disfluencies were eval-
uated by means of recognition experiments with the
ESAT speech recognizer and based on the Switchboard
corpus, a collection of informal telephone conversations
in American English [12]. This section describes the
baseline recognition system and the benchmark Switch-
board test set.

Gender independent acoustic models were estimated
on the 310 hours of Switchboard-1 data. A global pho-
netic decision tree defines 8K tied states in the cross-word
context dependent and position dependent models. Each
tied state is modeled with a mixture of on average 220
tied gaussian distributions from a total set of 117K differ-
ent gaussians.

A Good-Turing smoothed trigram language model
was built on the basis of the 3M words in the
Switchboard-1 conversation transcripts. The recognition
lexicon consisted of the 27K words in the Switchboard-1
training data.

For the test set, the 2001 HUB5 benchmark was
used, more particularly the part that corresponds to
Switchboard-1 (data that was of course excluded from
the training set). This test set consists of 20 phone
calls: in total almost 2 hours of data, or 1718 sen-
tences with 20K words. Reference transcriptions and
scoring software for this benchmark can be found at
ftp://jaguar.ncsl.nist.gov/lvcsr/mar2001.

The decoder of the recognition system is based on a
single pass time synchronous beam search algorithm (no
speaker adaptation was used). The baseline recognition
result on the 2001 HUB5 test set is 29.8% WER. The
recognizer then runs 4 times slower than real time (on
a 2.8 GHz Pentium 4 processor). Real time recognition
(using smaller acoustic models and investigating fewer
hypotheses in the search) results in a WER of 31.6%.

For the experiments in [11], the models for handling
disfluencies were implemented directly into the single
pass recognition. For the experiments in this paper how-
ever a more flexible (flexible concerning the planned in-
corporation of acoustic-prosodic information) two pass
strategy was adopted, generating graphs with hypotheses

in the first pass and rescoring them in the second.

3.2. Results and discussion

The resulting WERs for the recognition experiments
are summarized in table 1. For each of the three
disfluency types, three types of context manipulation
were investigated: leaving the context unchanged (the
baseline experiment), changing the context according to
the model, and choosing the most probable of the two
former options.

unchanged changed choice
repetition 29.8% 29.7% 29.6%
hesitation 29.8% 29.9% 29.8%

restart 29.8% 29.8% 29.9%

Table 1: WERs for the different disfluency types with
varying context manipulation: full test set

Given the size of the test set, the differences between
the WERs seem to be insignificant at first sight. But it is
not really fair to say so as only about 5% of the words in
the test set are disfluencies. In practice the investigated
models influence only about 20% of the sentences.

In order to find an appropriate subset of sentences
to do the evaluation, it’s not a good idea to evaluate
the investigated models on the sentences which contain
disfluencies only as the models can introduce errors in
other sentences. However this problem can be solved
by evaluating only the sentences for which there is a
difference between the recognition result without and
with the model. Doing so, table 2 is found. Note that the
result with unchanged context varies as the selected test
set depends on the experiment. The fact that the results
are worse then on the full test set is probably due to the
selection of typically long sentences in the test set.

unch’d changed unch’d choice
repetition 35.2% 34.8% 36.7% 35.1%
hesitation 33.2% 33.9% 36.8% 37.4%

restart 34.9% 35.4% 35.7% 36.5%

Table 2: WERs for the different disfluency types with
varying context manipulation: partial test set

In table 2 the results are clearer. On the left, the re-
sults with changing context are given, on the right those
with choice in context. Although still only one result is
really significant (the improvement using the model for
repetitions with choice in context), we can conclude that
the proposed model improves the robustness of the sys-
tem in case of repetitions, but slightly deteriorates results
for hesitations and restarts.



This different behavior is probably due to the detec-
tion of the disfluency. For hesitations and restarts this
detection is weak: it is simply based on the recognition
of the uh word, which is modeled in the current sys-
tem as a choice between 4 short phonetic strings. Us-
ing this acoustic model, a hesitation can be hypothesized
easily. So this generates many possible prediction con-
text changes. This problem can probably be solved by
improving the hesitation detection, for instance by using
acoustic-prosodic cues that point to the presence of a dis-
fluency.

4. Conclusions and future research

In this paper we investigated whether spontaneous lan-
guage modeling can benefit from a specific approach to
disfluencies. We tried to improve on the robustness of
a plain trigram LM by manipulating prediction contexts
containing repetitions, hesitations or restarts.

In case of repetitions, we found that the recognition
can be improved significantly by offering the recognition
system the choice between removing or not removing the
disfluency from the prediction context. However for hes-
itations and restarts this method results in a small deteri-
oration of the recognition rate.

In a first step in our future research we will try to
solve this problem by improving the detection of hesita-
tions using additional acoustic-prosodic information.

Further, we will set up experiments on the inclusion
of additional LM training material. Perplexity measures
can indicate which parts of written text data are gram-
matically or stylistically close to spontaneous speech.
Adding those texts when training the LM can improve the
statistics when disfluencies are removed from the predic-
tion context and at the same time lead to a more accurate
automatic context selection.
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