1sl: An Integer Set Library
for the Polyhedral Model

Sven Verdoolaege

Department of Computer Science, Katholieke Universiteit Leuven, Belgium and
Team ALCHEMY, INRIA Saclay, France
Sven.Verdoolaege@{cs.kuleuven.be, inria.fr}

1 Introduction and Motivation

In compiler research, polytopes and related mathematical objects have been
successfully used for several decades to represent and manipulate computer pro-
grams in an approach that has become known as the polyhedral model. The key
insight is that the kernels of many compute-intensive applications are composed
of loops with bounds that are affine combinations of symbolic constants and
outer loop iterators. The iterations of a loop nest can then be represented as the
integer points in a (parametric) polytope and manipulated as a whole, rather
than as individual iterations. A similar reasoning holds for the elements of an
array and for mappings between loop iterations and array elements.

For most types of program transformations, it is safe to approximate the set
of integer points in a polytope by the polytope itself. Many researchers therefore
use polyhedral libraries such as PolyLib [18] and PPL [1] that exploit the double
description of polytopes in terms of both facets and vertices. In particular, some
operations can be performed a lot more efficiently on one representation than on
the other. However, the computation of one representation from the other may
also be very costly, as in the worst case the size of the output may be exponential
in that of the input. In practice, polyhedra that arise from compiler applications
are typically close to hypercubes, i.e., they have few facets and many vertices.

A different approach is taken by the Omega library [16], which specifically
handles sets of integer tuples satisfying affine constraints. There is also explicit
support for parameters, existentially quantified variables and relations between
pairs of integer tuples, making the library not only more accurate, but also more
convenient to use. Note that polyhedral libraries have no need for existentially
quantified variables since the projection of a rational polyhedron is again a ra-
tional polyhedron. The internal representation is based on the constraints of the
sets (although vertices are implicitly constructed during the convex hull compu-
tation) and most operations are built on top of an extension of Fourier-Motzkin
elimination [20] and a series of heuristics. The library is very fast on simple
problems, but rather unpredictable on larger problems. Furthermore, it is not
thread-safe and only supports machine precision. The library had also been left
unmaintained for many years and had grown a reputation of being unreliable
due to various unimplemented corner cases. Only recently have most, if not all,
of these corner cases been resolved in the Omega+ library [7].

2 Sven Verdoolaege

We present isl, an LGPL, thread-safe, C library for manipulating sets and
relations of integer tuples bounded by affine constraints using GMP [13] based ar-
bitrary precision integer arithmetic. The interface of the library draws inspiration
from that of Omega, but the underlying implementation is completely different,
favoring the use of a collection of targeted and efficient algorithms. The internal
representation is also different, with Omega transforming sets with existentially
quantified variables to unions of intersections of polyhedra and lattices in order
to be able to perform some set operations, while isl uses a representation in
terms of integer divisions inspired by the output format of PipLib, a library for
performing parametric integer programming [11]. The isl library is available
from http://freshmeat.net/projects/isl/.

The isl library is mainly intended to be used in the polyhedral model for
program analysis and transformation, but some of the many operations it sup-
ports can and have been used outside of this model. From inception, one of the
primary long-term objectives has been to provide all set and polynomial manipu-
lations required by the barvinok library, which, at that time, used a combination
of PolyLib, PipLib, Omega and GiNaC [4]. We have already achieved the short-
term objectives of replacing PolyLib in the loop generator CLooG [3], producing
better code by eliminating constraints that are redundant over the integers but
not over the rationals, and of forming the basis of an equivalence checker [22] of
programs that can be represented in the polyhedral model.

2 Internals

The main objects of interest are sets and binary relations over tuples of integers
bounded by affine constraints, which we will call polyhedral sets and maps,
respectively. Each map R is a finite union of basic maps R = J, R;, each mapping
a tuple of n integer parameters to a binary relation on tuples of integers, i.e.,
R; 1 Zn — 227 . 5y Ri(s), with

Ri(s)z{asl—mcgeZd1 de2|HzGZ"‘:A1w1+A2$2+Bs—|—Dz+c20}

and A; € Z™*% B € Zm*", D € Z™*¢ and ¢ € Z™. Sets are defined similarly.
The difference between sets and maps lies only in their use. Maps have domains
and ranges, can be composed with each other and can be applied to sets. Basic
sets are essentially projections of the integer points in a polyhedron and include
intersections of polyhedra and lattices as a special case. Note that in practice and
for reasons of efficiency, equality constraints are represented separately. For some
operations, it is convenient to have explicit representations for the existentially
quantified variables. In particular, we use greatest integer parts of rational affine
combinations of the parameters and the domain and range variables.

The core of the library is formed by an incremental LP solver modeled after
that of Simplify [10]. This solver is used in practically every operation of the
library. In particular, it is used in an ILP feasibility solver based on general-
ized basis reduction [9], which is in turn used to check the emptiness of a set,
producing a sample element if not. Such sample elements are used during the

isl: An Integer Set Library for the Polyhedral Model 3

computation of the integer affine hull using the algorithm of [15], which is very
useful for reducing the dimension of a set by detecting implicit equalities and
for eliminating redundant existentially quantified variables. Finally, parametric
integer programming [11] is built on top of these LP and ILP solvers. Parametric
integer programming is used to compute the lezicographic minimum of a map and
to compute a unique (lexicographically minimal) representation for the existen-
tially quantified variables. The lexicographic minimum of a map R is a map R’
that maps each domain element * € dom R, to the unique lexicographically min-
imal element in its image, i.e., R'(s) = {x — y € R(s) | y = lexmin R(s,) },
with R(s,z) ={y |z — y € R(s) }.

The above algorithms are used to implement the basic operations on sets
and maps such as intersection, union, difference, projection and emptiness check.
Other operations require additional algorithms, some of which are listed below.

— convez hull, a very “rational” operation, which therefore does not fit in very
well in an integer set library and is not implemented very efficiently. Still, it
is provided as it is used in CLooG. The algorithm is based on [14], extended
to handle unbounded polyhedra. The library also provides a “simple hull”
operation, which computes the smallest basic set that contains the input
set and that can be described using only translates of the constraints of the
input set. The result is an overapproximation of the convex hull, but it is
much more efficient to compute.

— set coalescing changes the representation of a set (without changing its mean-
ing) by replacing pairs of basic sets by a single basic set. The algorithm is
based on a variation of the constraints based technique of [6], but extended
to handle sets of integers. It is different from the algorithm of [2], which uses
both constraints and vertices and considers only rational sets.

— the transitive closure of a map R is the map Rt = Up>1 R¥. with R' = R

and R* = Ro RF~! for k > 2. It is computed approximatively using an
algorithm that improves upon both [17] and [5].

— dependence analysis [12] is a crucial operation for the polyhedral model.
Given a list of write and read accesses in a program, dependence analysis
determines which write instance is the last to precede a given read instance.
The algorithm relies heavily on the computation of lexicographic maxima.

— parametric vertex enumeration computes the parametric vertices of a para-
metric polytope and is essential for the computation in barvinok of the
number of elements in a polyhedral set. The algorithm for the actual vertex
enumeration is essentially that of [19], but the corresponding chamber de-
composition is implemented much more efficiently. Preliminary experiments
on a couple of non-trivial cases show that the implementation is orders of
magnitude faster than that of PolyLib and as fast as or slightly faster than
TOPCOM [21] (version 0.16.2).

— bounds on piecewise step-polynomials are computed in an approximative, but
usually fairly accurate, way using the algorithm of [8]. Step-polynomials are
polynomial expressions in greatest integer parts of affine expressions and
appear as the result of (weighted) counting problems over polyhedral sets.

Sven Verdoolaege

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In: Hermenegildo, M. V., Puebla, G. (eds.)
SAS ’09. LNCS, vol. 2477, pp. 213-229. Springer-Verlag, Berlin (2002)

Bagnara, R., Hill, P., Zaffanella, E.: Exact join detection for convex polyhedra and
other numerical abstractions. Comput. Geom. Theory Appl. 43(5), 453-473 (2010)

. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:

PACT ’04. pp. 7-16. IEEE Computer Society (2004)

Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for sym-
bolic computation within the C4++ programming language. J. Symb. Comput.
33(1), 1-12 (2002)

Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive
closure of a union of affine integer tuple relations. In: COCOA ’09. pp. 98-109.
Springer-Verlag, Berlin, Heidelberg (2009)

Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of
polyhedra. Comput. Geom. 18(3), 141-154 (2001)

Chen, C.: Omega+ library (2009), http://www.cs.utah.edu/~chunchen/omega/
Clauss, P., Fernandez, F.J., Gabervetsky, D., Verdoolaege, S.: Symbolic polyno-
mial maximization over convex sets and its application to memory requirement
estimation. IEEE Transactions on VLSI Systems 17(8), 983-996 (Aug 2009)
Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.F.: An implementation of the
generalized basis reduction algorithm for integer programming. Cowles Foundation
Discussion Papers 990, Cowles Foundation, Yale University (Aug 1991)

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365-473 (2005)

Feautrier, P.: Parametric integer programming. Operationnelle/Operations Re-
search 22(3), 243-268 (1988)

Feautrier, P.: Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20(1), 23-53 (1991)

Free Software Foundation, Inc.: GMP, available from ftp://ftp.gnu.org/gnu/gmp
Fukuda, K., Liebling, T.M., Liitolf, C.: Extended convex hull. In: Proceedings of
the 12th Canadian Conference on Computational Geometry. pp. 57-63 (2000)
Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133-151 (1976)

Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
Omega library. Tech. rep., University of Maryland (Nov 1996)

Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs
and its applications. Int. J. Parallel Program. 24(6), 579-598 (1996)

Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra. Tech.
rep., ICPS, Université Louis Pasteur de Strasbourg, France (Mar 1999)

Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Interna-
tional Journal of Parallel Programming 25(6), 525-549 (Dec 1997)

Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 8, 102-114 (Aug 1992)
Rambau, J.: TOPCOM: Triangulations of point configurations and oriented ma-
troids. In: Cohen, A.M., Gao, X.S., Takayama, N. (eds.) ICMS 2002. pp. 330-340
(2002)

Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. In: Computer Aided Verification
21. pp. 599-613. Springer (Jun 2009)

