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Abstract

Games are a multi-billion dollar industry and a
driving force behind technology. The key to
make computer games more interesting is to cre-
ate intelligent artificial game agents. A first step
is teaching them the protocols to play a game. To
the best of our knowledge, most systems which
train AI agents are used in virtual environments.
In this work we train a computer system in a
real-world environment by video streams. First,
we demonstrate a way to bridge the gap be-
tween low-level video data and high-level sym-
bolic data. Second, using the high-level, yet
noisy data, we show that state-of-the-art statisti-
cal relational learning systems are able to capture
underlying concepts in video streams. We evalu-
ate the selected methods on the task of detecting
fraudulent behavior in card games.

1. Introduction
Games are a multi-billion dollar industry and a driving
force behind technology. Computer games were one of
the main reasons for the spread of home computers in the
1980s. Also, since the advent of the world wide web, on-
line games have gained popularity and created new chal-
lenges for the developers. At the other pole, the gambling
industry generates a large volume of revenues and plays a
non-negligible role from an economic point of view. This
pushes technical innovation in several directions – an im-
portant one is smart visual surveillance systems.
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In this work, we are interested in monitoring people play-
ing games in real-world environments by sensorial obser-
vation. This can be useful in several ways. One is to create
artificial game agents that learn by interacting with humans
in a natural environment – for instance playing card games.
As a first step, agents need to learn the rules of the game
by observing humans playing it. Currently, most computer-
controlled agents are trained in virtual environments, where
it is assumed that the state of objects is directly available to
the agent. Another useful task is fraud detection in real-
world casinos based on sensor information. Not only does
fraudulent behavior lower the game experience for players,
it can also cause serious economic threats.

The difficulty of the tasks is due to several aspects. Firstly,
it depends, besides the challenges raised by sensor informa-
tion, on the richness of the game protocols. Games can be
arbitrarily complex due to the number of actions and ob-
jects or stochastic aspects. Still, common characteristics
between them are their sequential behavior and inherent
structure – given by relations between objects, which can
elegantly be represented using relational sequences. While
complex scenes are best described by high-level, logical
representations, video data consists out of noisy low-level
numerical values. Bridging the gap between the two types
of representation is complex and is the first problem to
solve. While this question has been studied before (Tran &
Davis, 2008; Needham et al., 2005), there does not yet ex-
ist a generally accepted framework that is flexible enough
to extract rich symbolic representations from video streams
in a general setting.

Secondly, one needs to learn models of dynamic scenes
based on logical representations in order to reason about
different aspects of the scene. Previous work has ap-
proached learning from sensor data aspects of games – such
as their strategies – in a purely relational setting (Needham
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et al., 2008; Needham et al., 2005; Bennett & Magee, 2007;
Fern, 2005). Efficient reasoning about real-world activities
requires logical representations, however due to the inher-
ent noise in video streams purely logical rules will not suf-
fice. Statistical relational learning (SRL) techniques (De
Raedt, 2008) combine hard logical information with noisy
uncertain knowledge. This makes them a good fit for our
task. Different SRL systems exist that can handle logical
sequences (Kersting et al., 2008; Thon et al., 2008).

This paper significantly extends the earlier work (Antanas
et al., 2009)1 by (1) a new problem setting – namely detect-
ing fraud in card games – and (2) the use of discriminative
models – namely TildeCRF. We applied the selected tech-
niques on the popular card game Uno.

The rest of this paper is organized as follows. In Section 2
we formulate the problem settings and show how to obtain
logical descriptions from video streams. In Section 3 we
discuss the sequential learning systems we used. Before
concluding we present our experiments in Section 4.

2. From video streams of games to relational
representations

Uno is a card game for two to seven players. The game
objective is to be the first to get rid of all the cards in one’s
hand to a discard pile. The Uno deck (Fig. 1(a)) consists of
‘common’ cards of 4 colors with ranks from 0 to 9 in each
color. There are ‘action’ cards in each color (e.g skip) and
special action cards or jokers (e.g. wild). At any point in
time only one exposed card is on the table. Each turn, a
player may play a card from its hand that matches either
the color or number of the top exposed card, or a (special)
action card.

We approach the subtask of translating videos of Uno
games into relational sequences, therefore bridging the
gap between low-level data and high-level representations.
Uno games can be naturally described using sequences of
played cards. One major difference in representing se-
quences is given by the complexity of the underlying lan-
guage – namely the individual sequence elements. Uno
games can be described by sequences of propositional iden-
tifiers where each identifier represents a played card (as in
Example 2.1).

Example 2.1 A sequence of moves in an Uno game:
2− red, 1− red, red− draw2, wild, blue− 6,
blue− skip, wild4, . . .

These sequences are atomic and applying propositional
models to them requires one to explicitly enumerate all pos-

1presented as poster at the 19th International Conference on
Inductive Logic Programming (ILP 2009)

(a) Standard Uno cards (b) Cards with markers (red,
one); (one, green)

Figure 1. The Uno game domain

sible states in the game (all possible combinations number-
colors). For complex problems propositional representa-
tions can lead to a combinatorial explosion in the number of
parameters. Instead, we use relational representations (De
Raedt, 2008) – more precisely ground atoms – to describe
sequences of elements (as in Example 2.2). This allows one
to generalize over similar situations.

A logical atom is an expression of the form p(t1, . . . , tn)
where p is a predicate symbol with arity n and the ti are
terms. We assume a functor-free language, hence terms are
only built from constants and variables. Constants are de-
noted in lower case and variables in upper case. Ground
expressions do not contain variables and ground atoms
are called facts. In our examples the symbols card and
joker are predicates, while blue, red, 2, etc are constants.
card(red, 2) is a predicate which does not contain any
variables. Common cards are represented as card(red, 2),
and action cards as either card(red, draw2) (colored ac-
tion card) or joker(wild4) (special action card). Each re-
lational atom in the sequence represents the top exposed
card on the discard pile.

Example 2.2 The same sequence of moves in a relational
form:

card(red, 2), card(red, 1), card(red, draw2),
joker(wild), card(blue, 6), card(blue, skip),
joker(wild4), . . .

We propose a simple and efficient method to obtain rela-
tional sequences from video streams by making use of tags
for object recognition. We associate with each (previously
trained) tag a symbol that represents the object that we want
to detect. As an example, a common card contains two tags:
one for color and one for number (action cards have special
symbols – e.g. skip). In Fig. 1(b), two different cards with
tags are shown together with their associated symbols. We
use the ARToolKit framework (Kato et al., 2000) to gener-
ate and recognize markers. It uses 2D planar tags and has
been employed in augmented reality applications.

The introduction of tags for object detection avoids the dif-
ficult task of applying feature extraction and image pro-
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cessing. Instead of doing complex object recognition, we
can analyze scenes by looking for known markers. This en-
ables us to focus on the machine learning task. Still, the ap-
proach is realistic in that similar results could be obtained
by applying more advanced state-of-the-art results in vi-
sion (Bay et al., 2008). In addition, the use of tags offers
a general framework for symbol detection across different
games. With each tag one can associate any symbol, there-
fore the same set of markers can be used to represent dif-
ferent symbols, depending on the cards of the game (e.g. a
tag with associated symbol one for Uno can be used to rep-
resent symbol ace for Poker). In previous work (Needham
et al., 2005; Needham et al., 2008) similar relational se-
quences were obtained from video and audio data by clus-
tering extracted video features. However, the disadvan-
tages of this approach are that feature clustering can give
much redundancy and objects can easily be misclassified.

In order to obtain the data in the format shown in Exam-
ple 2.2 from video streams, a pre-processing phase from
tags to logical atoms is required, as described in the fol-
lowing steps.

Step 1: Using ARToolKit, we first obtain a description of
each video frame in terms of tags:

tag(1, 2), tag(1, red), . . . , tag(102, 2), tag(102, red),
tag(103, 1), tag(103, red), . . . , tag(179, 1),
tag(179, red), tag(180, red), . . . , tag(186, red),
tag(187, 1), tag(187, red), . . . , tag(205, 4),
tag(206, 4), tag(207, draw2), tag(207, red).

The atom tag(1, 2) – for instance – corresponds to observ-
ing the tag 2 in video frame 1, similarly tag(1, red) stands
for observing tag red in frame 1.

Step 2: We compress this sequence by merging tags with
the same frame number into one atom and replacing sets
of identical consecutive atoms with one atom. The com-
pressed variant of the sequence above is:

card(red, 2, 102), card(red, 1, 77), joker(red, 7),
card(red, 1, 18), joker(4, 2), card(red, draw2, 36).

The atom card(red, 2, 102) has as arguments the color,
the number (or special action) and the number of identical
video frames, respectively. The atom joker(wild, 7) has
as arguments the joker symbol and the number of identical
video frames.

Step 3: We filter very short sequences with length
Sl < 5 and replace the states where the symbols are
senseless with the tags unknown for jokers, unknownc
for colors and unknownn for numbers2. For instance,
joker(4, 2) does not make sense as jokers cannot be num-

2ARToolKit introduces inter-marker confusion (e.g. it may
recognize green instead of the correct tag 6).

bers, therefore it is replaced by joker(unknown). Also,
the ground atom card(yellow, green) is substituted by
card(unknownc, unknownn) since a card cannot contain
two colors. The resulting relational sequence is:

card(red, 2), card(red, 1), joker(unknown),
card(red, 1), card(red, draw2).

After pre-processing, the noise-free sequence from Exam-
ple 2.2 is in fact the one in Example 2.3.

Example 2.3 ‘Noisy’ relational sequence – the same as in
Example 2.2) – obtained from video streams:

card(red, 2), card(red, 1), joker(unknown),
card(red, 1), card(red, draw2), joker(wild),
joker(unknown), card(blue, 6), card(yellow, 6),
card(unknownc, unknownn), card(yellow, 2),
card(blue, skip), joker(wild4), . . .

Tags simplify the recognition task, yet there is uncertainty
in the recognition process, due to lighting conditions and
occlusion. ARToolKit deals with this by providing confi-
dence values for detected markers. In this work we only
consider the markers detected with a confidence factor
above 0.5. Although this removes a considerable amount
of noise, ARToolKit still introduces non-negligible inter-
marker confusion and false positive rates. Added to the
temporary occlusion of markers when cards are manipu-
lated, this translates into a significant source of noise (as
shown in Example 2.3). We approach the sequential, rela-
tional and noisy aspects of this kind of data by employing
sequential SRL techniques.

3. Employing statistical relational techniques
for relational video sequences

There are several learning tasks that can be identified when
learning from sequences. In this work we focus on learn-
ing to detect fraudulent game sequences based on video
streams. This is done by considering the task of se-
quence classification, that is to label sequences of Uno
game moves as legal or illegal. Because our domain is
best represented using sequences of relational atoms and
even though there exist several SRL techniques for rela-
tional sequences (Kersting et al., 2008), in this work we
employ r-grams (Landwehr & De Raedt, 2007) and Tilde-
CRF (Gutmann & Kersting, 2006). These two models are
representatives of very different classes of learning algo-
rithms. The former is trained using a generative learner,
whereas the latter employes a discriminative one.

3.1. R-grams: n-grams for relational sequences

The r-gram model lifts propositional n-grams (Manning &
Schütze, 1999) to logical representations. It estimates the
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probability of a sequence X = 〈x1 . . . xm〉 as smoothed
Markov chains, a finite mixture of Markov distributions of
different orders. A Markov chain of order n − 1 estimates
the probability of X as follows

P (X) =
m∏

i=1

P
(
xi|xi−n+1 . . . xi−1

)
=

m∏
i=1

C(xi−n+1 . . . xi)
C(xi−n+1 . . . xi−1)

where the conditional probabilities are estimated from a set
S of training sequences using ‘gram’ counts: C(x1 . . . xk)
is the number of times 〈x1 . . . xk〉 appeared as a subse-
quence in anyX ∈ S. To avoid the overfitting of the model
for a large gram order n, models of different orders can
be combined and consequently the conditional probabili-
ties are defined as

P (xi|xi−n+1 . . . xi−1) =
n∑

k=1

αkPk

(
xi|xi−k+1 . . . xi−1

)
where α1, . . . , αn are positive weights with

∑n
k=1 αk = 1

and Pk is the conditional distribution defined by a k-
order gram. An r-gram model is obtained by general-
izing sequence elements xi to first-order logical atoms,
such as xi = card(blue, 2). They exploit the relational
structure by considering relational generalizations of grams
and estimating conditional probabilities for non-ground
atoms. The generalized gram card(blue, X) – for in-
stance – stands for an arbitrary blue card and the proba-
bility P (card(blue, X) | card(blue, Y)) is the probabil-
ity that a blue card is followed by another blue card. This
way, by relational generalization they upgrade n-grams
with smoothed probability estimates (compared to model-
ing sequences by considering all data at the ground level).
Similar to n-grams, the r-gram model can consider grams
of different orders. In r-grams the conditional distribution
of a relational sequence X = 〈x1 . . . xm〉 is defined as

P (xi|xi−n+1 . . . xi−1) =
∑
r∈R

αrPr(xi|xi−k+1 . . . xi−1)

where the xi are logical atoms, R is the set of all gener-
alized relational grams, Pr is the conditional distribution
defined by a particular gram. Learning an r-gram model
from data involves choosing the set of relational grams, es-
timating their corresponding probabilities (cf. Figure 2) and
define weights for every r-gram in the selected set.

Sequence classification is performed by building an r-gram
model RC for each class C and labeling unseen sequences
X with the class that maximizes PC(X) · P (C), where
P (C) is the prior probability of the class C. More details
can be found in (Landwehr & De Raedt, 2007; Kersting
et al., 2008).

0.40 card(C, B)
0.51 card(A, C)
0.08 joker(C)
0.01 card(C, D)

←− card(A, B)

Figure 2. Rules extracted from a relational bigram model for the
class legal. The first two rules show that the next card should have
either the same color A with probability P1 = 0.4, or the same
number B with probability P2 = 0.51, while the third shows that
a joker can be played next with a probability P3 = 0.08. The last
rule models noise.

Y1 Y2 Y3 YTYT-1

X1 X2 X3 XTXT-1

...

...

Figure 3. Graphical representation of a linear-chain CRF. The
nodes labeled with Yi represent the output sequence, and the Xi’s
represent the input. As one can see, every node element depends
on the complete input.

3.2. TildeCRF: CRFs for relational sequences

Conditional Random Fields (Lafferty et al., 2001) are a
state-of-the art model for sequence labeling and tagging.
They define a probability distribution P (Y |X) as follows

1
Z(X)

exp
∑m

t=1
F (yt−1, yt, X)

where X = 〈x1x2 . . . xn〉 is the observed sequence,
Y = 〈y1 . . . yn〉 is the sequence of labels assigned to the
observed sequence, F (yt−1, yt, X) is a potential function,
and Z(X) is a normalization factor over all possible state
sequences Y ∈ Y defined as∑

Y ∈Y
exp

∑m

t=1
F (yt−1, yt, X)

A potential function is a real-valued function that captures
the degree to which the assignment yt to the output variable
fits the transition from yt−1 and X . Due to the global nor-
malization by Z(X), each position t influences the overall
probability. In the Uno domain, X is the sequence of cards
played in one game and Y labels every move either as legal
or illegal.

TildeCRF3 (Gutmann & Kersting, 2006) is a relation exten-
sion of CRFs where the potential function F (yt−1, yt, X)
is represented as sums relational regression trees (cf. Fig-
ure 4). TildeCRF employs Gradient Tree Boosting (Fried-
man, 2001; Dietterich et al., 2004) to learn the potential

3http://www-kd.iai.uni-bonn.de/index.php?
page=software details&id=17
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False

...

False

True

0.498

True

PreviousLabel=legal

card_played(Pos,Id,-1,Color1,Number1) ...

True False

card_played(Pos,Id,0,Color1,Number2) ...

True False

card_played(Pos,Id,1,Color1,Number3) card_played(Pos,Id,0,Color2,Number1)

True False

0.495 card_played(Pos,Id,1,Color3,Number2) joker_played(Pos,Id,1,Joker1)

False

0.43

True

...

False

0.33

True

Figure 4. A learned regression tree by TildeCRF representing the
gradient in the first iteration. Internal nodes represent tests –
queries in Prolog form – and leafs represent the output.

function. This is a functional gradient search, where one
approximates the true gradient by a regression tree. While
it is not possible to determine the gradient analytically, the
value of the gradient can be calculated for every position
in the training data. By evaluating the gradient for all po-
sitions and fitting a relation regression tree to this data set,
one obtains an implicit representation of the true gradient.
The potential after the i-th iteration is thus the sum of i
regression trees F (yt−1, yt, X) = ∆1 + . . .+ ∆i.

There are several ways for getting a classifier from a trained
CRF. We can predict the output sequence Y with the high-
est probability: H(X) = arg maxY P (Y |X). The Viterbi
algorithm (Rabiner, 1989) can be used for this. Another
option is to predict every atom yt in the output sequence
individually. This makes sense when we want to maximize
the number of correctly tagged input atoms

Ht(X) = arg maxk∈K P (yt = k|X).

There are several ways to use a CRF for sequence classifi-
cation, i.e. to predict a single label for the entire sequence
X . The easiest one – similar to r-grams – is to calculate the
likelihood P (Y |X) for the label sequence Y = 〈ccc . . . c〉
where c is a possible label. The predicted class is the one
with the highest likelihood. We refer to this as global label
rule. Another possibility is to use majority vote. That is,
one first predicts H(X). Next, one counts the number of
times each class atom was predicted, i.e.

count(c, Y ) := |{i ∈ {1, . . . , T} | yi = c}| .

Then, the sequence X is assigned to class c with probabil-
ity P (c|X) = T−1 · count(c,H(X)). For binary classifi-
cation problems, one can also predict the class as positive,
if there is at least one position labeled as positive. We refer
to this as single rule mode. Majority vote and rule mode

can be combined with forward backward and Viterbi re-
spectively.

4. Experiments
We set up experiments to answer the following questions:

(Q1) Does a generative statistical relational model, such
as r-grams, perform well when dealing with limited
real-world video data?

(Q2) Can a discriminative statistical relational model, such
as TildeCRF, be used for sequence classification tasks
even when it is trained as a model for tagging?

Experimental data was collected from video sequences of
people playing the game with the special tagged cards, us-
ing a subset of the Uno cards (without the doubles). The
camera was mounted on the ceiling so that it captured
the playing deck at any moment. The illegal games were
played by 2 players – a fair player and a fraudulent one,
while the legal ones by 2 honest players. In order to make
sure that the fraudulent player is performing illegal moves
during the game, the real players reproduced simulated
games with the special tagged cards. For experiments a
set of 50 complete Uno games were recorded as example
sequences. Each of the examples are labeled with one gen-
eral label (legal or illegal) per sequence.

We used stratified 5-fold cross validation. The folds were
built by randomly assigning the examples to folds such that
the number of legal and illegal examples are evenly dis-
tributed. For both legal and illegal examples we randomly
sampled from examples with high and low level of noise
and for each of the these, in the case of illegal examples,
we sampled from the distribution of the low and high num-
ber of incorrect moves per sequence, while in the case of
legal examples from the distribution of the low and high
sequence lengths. The absence of such a stratification can
give an uneven distribution of noisy, low-level illegal ex-
amples and noise free, high-level illegal examples, which
results in a standard deviation often higher than 10%.

For r-grams we trained two models, one for each of the
classes legal and illegal. We used both models to classify
a sequence as described in Section 3.1. For TildeCRF we
considered the classifiers described in Section 3.2.

The experimental results are shown in Table 1. Most clas-
sification methods perform well when used with TildeCRF,
except FB rule which give the poorest results and also a
high standard deviation. Viterbi majority gives the best
performance. Both systems perform well on the sequence
classification task with respect to the predicted accuracy,
answering positively to the questions Q1 and Q2. Discrim-
inative models perform slightly better than generative ones.
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Model Setting Accuracy

r-grams Length 2 0.84± 0.12
Length 3 0.94± 0.05
Length 4 0.94± 0.05
Length 5 0.92± 0.04

TildeCRF Vi majority 0.96± 0.06
Vi rule 0.92± 0.07
FB majority 0.96± 0.06
FB rule 0.87± 0.09
Global label 0.90± 0.07

Table 1. Classification results on the Uno data set. The bold nota-
tion shows the best accuracy scores.

However, due to the size of the data set, the result is not sta-
tistically significant. The advantage of generative models is
that the learned models are easier to understand.

5. Conclusions
This work is a first step to solve the fraud detection prob-
lem in games from video data. We present a method to ob-
tain relational descriptions from video streams using mark-
ers, bridging the gap between low-level video information
and high-level representations. We successfully employed
r-gram and TildeCRF models with relational descriptions
of sequences to show that they perform well to detect il-
legal game sequences in Uno. As future work we plan
to address the detection of more complex and less obvi-
ous fraudulent behaviors, games with richer protocols as
application and the use of multiple and different types of
sensors. Another interesting problem is fraud detection in
real-time, after each move is played.
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