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Abstract. In this paper we present a multiscale model of a plastic deformation process in which the anisotropy of plastic
properties is related to the evolution of the crystallographic texture. The model spans several length scales from the macro-
scopic deformation of the workpiece to the microscale interactions between individual grains in a polycrystalline material. The
macroscopic behaviour of the material is described by means of a Finite Element (FE) model. Plastic anisotropy is taken into
account in a constitutive law, based on the concept of a plastic potential in strain rate space. The coefficients of a sixth-order
Facet equation are determined using the Taylor theory, provided that the current crystallographic texture at a given FE inte-
gration point is known. Texture evolution in the FE integration points is predicted by an ALAMEL micromechanical model.
Mutual interactions between coarse and fine scale are inherent in the physics of the deformation process. These dependencies
are taken into account by full bidirectional coupling in the model. Therefore, the plastic deformation influences the crystallo-
graphic texture and the evolution of the texture induces anisotropy of the macroscopic deformation. The presented approach
enables an adaptive texture and yield surface update scheme with respect to the local plastic deformation in the FE integration
points. Additionally, the computational cost related to the updates of the constitutive law is reduced by application of parallel
computing techniques. Suitability of on-demand computing for this computational problem is discussed. The parallelisation
strategy addresses both distributed memory and shared memory architectures. The cup drawing process has been simulated
using the multiscale model outlined above. The discussion of results includes the analysis of the planar anisotropy in the cup
and the influence of complex deformation path on texture development. Evolution of texture at selected material points is
assessed as well.
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INTRODUCTION

The crystallographic texture has a significant influence on the mechanical and physical properties of sheet products
as it causes plastic anisotropy. Obviously, this should be taken into account during the simulation of sheet forming
processes with the Finite Element (FE) method. The evolution of the texture occurring in the deformed material should
be reproduced in the plastic anisotropy of the material. An appropriate and reliable constitutive model for the material
should involve the updating of the constitutive law and must correspond to the quantitatively accurate prediction of
the texture. This is a challenging task, since phenomena at multiple scales are involved in the physics of the process.
These requirements make the entire task complex and computationally costly. Moreover, one has to decide whether
the evolution of material properties in the FE simulation should either occur continuously (i.e. in every time step) or
whether it can be deferred to selected update temporal points.

The current paper exploits several concepts proposed previously by Van Houtte and co-workers. For the sake of
clarity, some of the ideas are briefly recapitulated in the paper. For a detailed description, the reader is referred to the
original papers: the Facet method is comprehensively discussed in [1] and the Advanced LAMEL (ALAMEL) model
is presented in [2].
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MULTISCALE MODEL

The macro-scale part of the model presented in this paper follows the idea of the Finite Element method with an
analytical macroscopic yield locus. There are many successful examples in the literature that an accurate analytical
expression can describe the plastic anisotropy of the polycrystalline. Such yield locus model can be identified by
evaluating a micro-scale model, e.g. one based on the Full Constraint (FC) Taylor assumption [3], a self-consistent
model (e.g. [4]) or a more advanced one, such as the ALAMEL model used in this paper. Thus, a strong connection
between microscopic phenomena and macroscopic material response is introduced. This link persists even if the
microscale properties of the material are assumed to remain constant. However, such formulation does not permit
a reliable description at the crystal level. Another, completely different approach discards entirely the analytical
yield locus expression and makes use of the Representative Volume Element (RVE) formulation, owing to the
homogenisation theory.

We take the aforementioned issues into account in a new multiscale model of a deformation process presented in the
paper. In this model, the phenomena occurring at the multiple length scales are mutually dependent. The anisotropy
of plastic deformation contingents upon the evolution of crystallographic texture and vice versa. The FE mechanical
model of cup drawing process is considered as a macroscopic description of the deformed workpiece. The analytical
constitutive law describing the plastic anisotropy, based on the concept of a plastic potential in strain rate space, is
implemented into the commercial FE code ABAQUS/Explicit.

The plastic anisotropy of textured polycrystalline material can be described by means of a plastic potential in strain
rate space. Recently, Van Houtte et al. [1] proposed the Facet method that utilises a homogeneous polynomial to
describe the plastic potential. For materials without strain rate sensitivity, the deviatoric stress tensor S derived from
the plastic flow stress can be calculated for a given strain rate tensor d as:

S =
∂ψ(d)

∂d
, (1)

In the Facet method, the plastic potential ψ(d) in the strain rate space is expressed using the function:

ψ(D) = [Gn(D)]
1
n , (2)

where Gn(D) is a homogeneous polynomial of degree n and n is an even natural number greater than 1. The Facet
method exploits the property of the strain rate tensor d that it can be converted into a vector D in a five-dimensional
space. Consequently, the Facet equation is given by:

Gn(D) =
K

∑
κ=1

λκ (Sκ,pDp)
n , (3)

where D is a five-dimensional strain rate vector, Dp, p = 1 . . .5 are the components of the strain rate vector, λκ and the
components of 5D deviatoric stress vectors Sκ,p, p = 1 . . .5,κ = 1 . . .K are parameters. Einstein summation convention
is used for the index p. Provided that λκ ≥ 0 for all κ and n is a positive even number, it can be proven that the
equipotential surface as defined by Equation (2) and Equation (3) is always convex [1].

The identification of the parameters in Equation (3) requires numerous evaluations of the stress vectors for the
corresponding nearly equidistant strain rate modes. This can be done by means of the FC Taylor or a more advanced
micromechanical model. Previous experience [1] shows that an acceptable approximation of the equipotential yield
surface requires a degree n≥ 6 and at least 402 strain modes. The amount of strain modes evaluations can be reduced
by a factor of two if the stress differential effect need not be accounted for.

For the purpose of the parameter identification, it is suitable to rephrase the Equation (3) in matrix form. The
parameters λκ can be determined by solving the following system of equations:

[W ]{λ} ∼= {C} , (4)

where the vector C selects the equipotential surface and the components of the matrix Wi j = (Di ·S j)
n are identified

as the homogeneous n-th degree polynomials of the plastic work dissipated per unit volume in function of the
macroscopic plastic strain rate D. The 5D deviatoric stress vectors S j correspond with the D j strain modes for which
the micromechanical model calculates the plastic work. The system (4) is solved using the Non-Negative Least Squares
(NNLS) algorithm [5], which ensures that all components of λ are positive or zero.
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Algorithm 1 The pseudo-code of the texture updating algorithm implemented in ABAQUS user subroutine
Require: D is calculated for every integration point

1: for all integration points do
2: P← P+Ddt
3: if criterion for updating is satisfied then
4: Subject the texture to deformation P . run the ALAMEL
5: P← 0
6: for all strain modes do
7: calculate stress tensor S . run the FC Taylor model
8: end for
9: Store the checkpoint data

10: Calculate λ coefficients by solving system (4) . identify the Facet model
11: Commit the updated constitutive law
12: end if
13: end for

Texture evolution in the FE integration points is predicted by the ALAMEL micromechanical model [2]. The
ALAMEL belongs to the class of statistical models for the plastic deformation of polycrystalline materials. The
model follows the Taylor assumption that plastic deformation must be homogeneous for thin regions situated at both
sides of the grain boundary. However, one of the advantages of the ALAMEL over the classic FC Taylor approach
is related to the stress equilibrium conditions imposed at the grain boundaries in the simulated microstructure. It
was shown in [2] that the qualitative predictions of the texture are more accurate than those obtained using the FC
Taylor model. The ALAMEL represents the state of the crystallographic texture by means of a discrete form of the
orientation distribution function (ODF). The crystallographic orientations are expressed using three Euler angles in
Bunge notation [6]. Triclinic class of sample symmetry must be imposed to the original ODF because the initial
orthorhombic symmetry is expected to disappear due to the texture updating.

In this work, we assume that the texture may evolve independently in every FE integration point. This evolution is
split into intervals between the updating events. An overview of the updating method is presented in Algorithm 1. In
order to decide whether such event has to be activated, the history of deformation is being tracked. The state of the
material is described by means of the accumulated plastic strain:

Pi =
∫ ti

ti−1

Ddt, (5)

where i is the ordinal number of the updating event, D is the plastic strain rate as calculated by the FE in the integration
point, ti−1 is the time of the previous updating event. The time intervals |ti− ti−1| can be imposed either explicitly
or determined on-line using a more elaborated criterion. In this work we utilise the following predicate function to
determine whether the texture-related material properties should be updated:

f (Pi) =

{
1 : ||Pi|| ≥ Pcr
0 : otherwise , (6)

where Pcr is a parameter. The criterion is defined as satisfied if the predicate (6) results in value 1. The activation
of the criterion (6) is considered as a necessary condition for modification of the local texture representation. The
accumulated plastic deformation Pi is passed to the ALAMEL model, which applies the appropriate lattice rotations
to the crystals belonging to the virtual microstructure. Afterwards, the updated texture data are used as an input
for the reconstruction of the plastic potential (2). This step requires series of stress tensor calculations for the
prescribed strain modes. The Taylor theory was used [3], assuming the identical critical resolved shear stresses on
24 {110}+{112}<111> slip systems. Provided that the stress components are evaluated, the system (4) is solved. As a
result, the updated yield surface is affected by the modification introduced by the texture prediction model.

It is worth noting that the mechanical properties of the material remain constant between the successive updates.
However, the time steps used by the FE are very short, which is intrinsic to the explicit time integration solvers.
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Computational issues

Keeping in mind that the complexity of the problem translates into the time demanded for computations, we analysed
the predominant components of the execution time for our model. For a reasonable value of the parameter Pcr chosen as
0.1, the number of updating steps Nu was appraised approximately as Nu≈ 6000. This reckoning was made by counting
the virtual activations of the criterion (6) observed in the FE simulation of the cup drawing process performed for the
constant material properties. If the computer program implementing our multiscale model is executed on a single CPU,
the estimation of the time necessary for the computations is given by: Ts = NuTu+TFE = 6000 ·10[min]+1620[min]≈
43[days], where Tu is the amount of time for a single texture and constitutive model update, TFE is the time spent on
the FE calculations.

Algorithm 1 exhibits several opportunities for parallelisation. The iterations of the top-level loop (line 1 in Al-
gorithm 1) can be executed independently of each other. In the current study the workload related to that loop is
distributed among the compute nodes of the high performance cluster (HPC) facility. Our implementation takes into
account a varying problem size, since the number of updating criterion activations may vary from one time step to
another. Instead of requesting a constant pool of the CPUs from the HPC queuing system, the code starts the worker
programs on demand, with respect to the task size and the current availability of the idle CPUs in the cluster. Therefore,
the actual number of processors that are put at our disposal may vary from several to hundreds. For this reason it is dif-
ficult to estimate the speedup of the parallel algorithm in terms of the classic definition. Nevertheless, the assessment
of the overall efficiency can be done a posteriori.

One can notice that the evaluation of the micromechanical model for the set of strain modes (line 6 in Algorithm 1)
can be performed without any communication between the processors. The multicast communication is required only
prior to the loop 6, because every processor involved in the task must have the current texture available. The scheme
outlined above is suitable for parallelisation on either multi-core (Symmetrical Multi-Processor, SMP) or distributed
memory architecture. In the current implementation the former choice is made. Thus, the execution of the loop 1 in
distributed among the nodes of the cluster, and the internal loop 6 is parallelised on the multi-processor nodes.

In view of the fact that the two-level parallelisation is implemented in the code, it is possible to tune Algorithm 1 for
execution in the HPC environment. For instance, the criterion for texture updating may include an additional part which
depends on the global FE time increment number. In order to improve concurrency of the block 3–12 in Algorithm 1,
one can decide that the criterion is fulfilled only in the time increments that are multiple of N, where N is a parameter
of the algorithm. The distributed checkpointing operation (line 9 in Algorithm 1) allocates the I/O operations over the
parallel filesystems. Step 6 in Algorithm 1 can benefit from availability of modern multi-core CPUs, as it shows nearly
linear speedup. The aforementioned improvements are utilised to improve the performance of the model.

RESULTS

In this work the cup drawing is considered, which is a simple and typical example of sheet forming process. The
investigated material is a low carbon DC01 steel. The model outlined in the previous section has been implemented
in the FE code Abaqus/Explicit. The sample is discretised using the reduced integration elements C3D8R. A local
coordinate system is attached to every element in the FE mesh. Initially, the coordinate system is common for the
entire FE mesh, but the local coordinate systems co-rotate with the material during the simulation. Coulomb friction
with the coefficient µ = 0.05 is imposed at the contact surfaces. The Young modulus is assumed 210 GPa and Poisson
ratio 0.3. A Swift-type hardening law is used, with the following values of coefficients: K = 659 MPa, n = 0.399 and
ε0 = 2.96 ·10−2. The coefficients were corrected following the method given in [7]. The Facet expression of degree 6
was used, the parameters of the Equation (3) were determined using 201 strain modes.

The geometry of a calculated intermediate cup is presented in Fig. 1. It can be seen that part of the elements have
undergone at least one updating of the material properties. The updates take place in the zones that correspond to the
localization of the largest accumulated plastic strain. Forasmuch as the element-by-element updating approach is used,
the amount of constitutive law updates is moderate at the early stages of deformation, as is demonstrated in Fig. 1.
The final geometry of the cup is shown in Fig. 2. It can be seen in that figure that two ears appear for 0◦ and 90◦ to the
rolling direction (RD).

The calculations were performed on the HPC cluster. The parallel machine consists of 256 nodes, which are mainly
dual-core and quad-core AMD Opteron systems. The design of our code exploits the fact that the PBS/Maui job system
promotes relatively short, parallel jobs. The simulation of the process required 136034 FE time increments to reach
the total simulation time 5 · 10−3s. The actual number of the texture and yield surface updates as counted during the
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FIGURE 1. The partially deformed sheet during the cup drawing. The finite elements where the update of material properties
has occurred are marked gray. Grayscale denotes the number of the updating events in the element. The update of texture and
constitutive law is limited to the zones corresponding to the largest accumulated plastic strain

FIGURE 2. The final cup geometry obtained from the multiscale model. The points A, B and C denote the locations of texture
measurements. The local reference frames for the experimental textures are indicated with x1, x2 and x3 axes

calculation was Nu = 5939. Measured execution time of parallel computations was only Tp = 2265[min]≈ 1.57[days].
This lead to a posteriori estimation of the speedup, S = Ts

Tp
≈ 27.

In order to verify the results of the numerical model, an experimental study was additionally performed. The analysis
included the initial and final state of the material. The measurements of the texture in a cold-rolled DC01 steel sheet
(thickness 0.5mm) provided an orientation distribution function (ODF) which was utilized as the initial input data. The
texture in the analysed sheet exhibits a strong γ-fibre, the maximal ODF value was 19.04, texture index was 7.108. The
discretisation of the ODF consists of 5000 equally-weighted grains. Such a discretisation is considered as sufficiently
representative for the lattice orientations in low carbon steel grades [1].

The X-ray measurements of the final texture were taken from the fully deformed experimental cup. The locations
of the sampling points are indicated in Fig. 2. The points A, B and C are selected to be placed close to the cup rim at
90◦, 45◦ and 0◦ to the rolling direction, respectively.

The evolution of texture in the point A is shown in Fig. 3. In order to facilitate the evaluation of the results, all
the calculated textures are rotated to the coordinate systems used in the experiment. Therefore, in all cases the radial
direction of the cup is aligned with the vertical x1 axis of the experimental sample. To illustrate the evolution of the
texture, the sections of ODFs are presented with the φ1 Euler angle ranging from 0 to 360◦ and φ2 = 45◦. According
to the update criterion (6), the plastic strain increments of uniform norm ||Pi||= Pcr are applied, Pcr = 0.1. Figure 3a
shows the state of the initial texture, while Fig. 3b presents the state of the texture after deformation P1, Fig. 3c
presents the deformation texture after the second update with deformation P2 and so on. The φ2 = 45◦ section of
the ODF determined for the experimental cup in the point A is presented in Fig. 3j. The texture indices are also
listed. The strongly decreased texture index corresponds to the broadening of the original texture. The index increases
continuously after all subsequent updates due to increased intensities for particular orientations along the original γ-
fibre. A remarkable congruence between the experimental and the ALAMEL-predicted texture can be noticed in that
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a)

b)
i = 1

c)
i = 2

d)
i = 3

e)
i = 4

f)
i = 5

g)
i = 6

h)
i = 7

i)
i = 8

j)

Texture Index (TI)
a) b) c) d) e)

7.11 3.44 3.77 4.28 4.93

f) g) h) i) j)
5.66 6.27 6.92 7.54 7.71

FIGURE 3. φ2 = 45◦ sections of the ODF for: a) initial experimental texture, b) – i) evolution of the texture in the point A (90◦ to
RD) predicted by the ALAMEL model for the successive deformations Pi (||Pi||= 0.1), j) – texture measured in the corresponding
point of the experimental cup. Texture index is given for every texture a) – j)

figure. This is particularly relevant for the final deformation texture, see Figures 3 i and 3 j. When comparing the main
texture component, one has to remark that the intensity of the texture is very similar in both cases. Additionally, this
is confirmed by the texture index of the experimental texture which coincides with the ALAMEL result. It shows a
substantial improvement to the previous findings (e.g. [8, 9]), where the angular position of the texture components
was correctly identified by means of FC Taylor model, but the intensity of the texture was overestimated.

The agreement between the yield locus calculated from the measured textures and the simulated one can be visually
inspected using a π-plane section of stress or strain rate space. The following relations are satisfied for the π-plane:
d11 + d22 + d33 = 0 and S11 + S22 + S33 = 0 for strain rate and stress space, respectively. Figure 4 shows the π-plane
sections of yield locus in stress space and equipotential surface in stain rate space, calculated for the point A. As
seen in that figure, the shape of the equipotential surface calculated using the Taylor model on the basis of the texture
evolution predicted with the ALAMEL is fairly consistent with the result obtained for the real deformation texture.
The convexity of the yield surface is also reproduced by the model.

Successive deformation of the material leads to a new deformation texture, as it can be seen in Fig. 5. The φ2 = 45◦

sections of the ODF for point B reveal only small discrepancy between prediction and measurement. The final texture
in point B is approximately orthorhombic and strongly resembles the final texture in point C. The texture in point A is
nearly identical to the one in point C. It is noticeable that the texture indices of the predicted ODF in the three points
significantly correspond to the experimental ones.

The plastic anisotropy of the flat samples is commonly characterised by the q-values, i.e. the ratio of the plastic strain
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FIGURE 4. π-plane section of a) yield locus in stress space and b) equipotential surface in stain rate space. The sections are
calculated for the texture data in point A, as denoted in Fig. 2: plain line – initial texture, open symbols – final texture prediction
shown in Fig. 3h, filled symbols – experimentally determined deformation texture shown in Fig. 3i

a)

b)

c)

d)

FIGURE 5. Comparison of the final deformation texture: a), c) are predicted by the ALAMEL in point B (45◦ to RD) and C (0◦
to RD), respectively, b), d) were determined experimentally in the corresponding points. Texture index: a) TI=8.363, b) TI=8.265,
c) TI=7.541, d) TI=7.443

in the width direction to the one in the longitudinal direction. The relation between Lankford r-value and q-value is
expressed by q = r/(r + 1). The subsequent changes of the crystallographic texture induce the accommodation of
plastic anisotropy as shown in Fig. 6. For better comparison with results calculated for the experimental texture,
the q-values are presented as a function of the angle to the sample radial direction, i.e. in the experimental sample
reference frame. The filled symbols in Fig. 6 denote the results obtained for the experimental textures following the
method described in [10]. A smooth evolution of the planar anisotropy towards a new stable configuration is observed.

a) b) c)

FIGURE 6. Evolution of q-values in consecutive update steps (open symbols). The initial q-values are denoted with plain line,
filled symbols denote q-values calculated for the final texture measured on the experimental cup. In the plot for the point A the lines
are calculated using the intermediate textures b) – i) as shown in Fig. 3, respectively. Number of plastic strain increments Pi of the
norm Pcr is denoted by the index i
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Interestingly, in the point A and C the anisotropy after the first texture update seems to be substantially lower than in
the initial material. The subsequent updates lead to an increase of q-value variation which finally ranges from 0.52
to 0.8 in point A and 0.48 to 0.81 in point C, respectively. This is not the case for the points B, where the tendency
towards augmented planar anisotropy is instantaneously obtained. The agreement between q-values obtained from
the measured textures after deformation and the simulated textures is satisfactory, although some discrepancies are
observed for the point C.

CONCLUSIONS

A new multi-scale approach to crystallographic texture prediction in a complicated metal forming process was pre-
sented in the paper. The concept of analytical constitutive law describing the plastic anisotropy in the FE was applied in
the model. A state-of-the-art Facet method for plastic potential in strain rate space was implemented into the FE code.
Owing to the successive reconstructions of the yield locus, coupled to the evolution of the crystallographic texture,
the mutual interactions between micro- and macro-scale are taken into account. Therefore, the plastic deformation
influences the texture, while the evolution of the texture induces the changes in the anisotropy of macroscopic defor-
mation. The presented approach enables the adaptive texture and yield surface update schema with respect to the local
plastic deformation in the FE integration points. Despite the fact that the model does not predict the true continuous
evolution of the microstructural and mechanical properties, the quantitative forecast of the micro- and macro-scale
material behaviour is reasonably accurate.

The results of this study confirm the capability of the ALAMEL model to predict the evolution of the crystallo-
graphic texture in steels. In comparison to the previous attempts (e.g. [8, 9]) in which the FC Taylor theory was used,
the quantitative accuracy of texture intensities is improved.

The limitations of the model due to its computational complexity are discussed in the paper. To overcome these
restrictions, parallelisation techniques have been implemented in the code. A satisfactory speedup of the computations
on a HPC cluster compared to a single processor calculations is achieved.
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