
Towards a general purpose identity card

Jan Vossaert Pieter Verhaeghe Bart De Decker
Vincent Naessens

Report CW587, June 2010

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Towards a general purpose identity card

Jan Vossaert Pieter Verhaeghe Bart De Decker
Vincent Naessens

Report CW587, June 2010

Department of Computer Science, K.U.Leuven

Abstract

Many countries are currently designing or even rolling out electronic
identity cards. Simultaneously, eID applications are developed. In many
cases, the eID technology is initially integrated in governmental applica-
tions. Thereafter, the technology is adopted by other domains (i.e. the
financial sector, eHealth services, social networking, corporate environ-
ments, ...). However, security, privacy, performance and/or scalability
restrictions in current eID architectures may constrain the enormous po-
tential of eID cards for electronic authentication. This report gives an
overview of the major shortcomings of current eID designs and presents a
general purpose electronic identity card that reconciles crucial concerns.

Keywords : eID technology, privacy, security.

Towards a general purpose identity card

Jan Vossaert1, Pieter Verhaeghe2, Bart De Decker2, and Vincent Naessens1

1 Katholieke Hogeschool Sint-Lieven, Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

firstname.lastname@kahosl.be
2 Katholieke Universiteit Leuven, Department of Computer Science,

Celestijnenlaan 200A, 3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

Abstract

Many countries are currently designing or even rolling out electronic identity
cards. Simultaneously, eID applications are developed. In many cases, the eID
technology is initially integrated in governmental applications. Thereafter, the
technology is adopted by other domains (i.e. the financial sector, eHealth ser-
vices, social networking, corporate environments . . .). However, security, pri-
vacy, performance and/or scalability restrictions in current eID architectures
may constrain the enormous potential of eID cards for electronic authentication.
This paper gives an overview of the major shortcomings of current eID designs
and presents a general purpose electronic identity card that reconciles crucial
concerns.
Keywords : eID technology, privacy, security

1 Introduction

Many European countries are currently laying the foundations for national eID
technology [6]. In this context, smart cards are being increasingly used for iden-
tification, authentication and digital signatures. They are usually called elec-
tronic identity cards. Some countries are already past the design phase and are
currently rolling out the eID infrastructure. Early eID applications aim at facil-
itating communication between citizens and governmental institutions. But eID
cards are, consequently, also gradually introduced in other domains (e-health
domain, financial, commercial domain, etc.). The architecture of current eID
cards, however, was driven by concerns that typically apply in the governmental
domain. Examples are ease-of-use, strong authentication, etc. The requirements
for on- and offline applications in different domains, however, can exhibit a wide
diversity. Whereas for some services, a higher level of security is required (e.g.
online banking), in other areas the protection of the card holder’s privacy should
be the first priority (e.g. social networking). Moreover, by introducing the eID
technology in diverse domains, scalability becomes a major concern.

This paper presents the design and evaluation of a general purpose identity
card that tackles the security requirements that arise when the card is used in
multiple domains and that protects the privacy of the card holder, hereby con-
sidering reasonable trust assumptions. Moreover, the proposed eID technology
is scalable and the security and privacy measures do not have a unfavourable
impact on the performance. We thereby mainly focus on authentication (rather
than identification or digital signatures). The rest of this paper is structured as
follows. Section 2 evaluates other eID card initiatives. The requirements and no-
tations are respectively discussed in section 3 and 4. Section 5 gives an overview
of the protocols. The design and prototype are evaluated and compared to other
solutions in section 6. This paper ends with general conclusions.

2 J. Vossaert et al.

2 Related work

Many European countries are currently taking initiatives to roll-out electronic
identity technology. The approaches can be classified into five categories, namely
solutions based on (either contact or contactless) smart cards, password based
solutions, solutions in which citizens can manage electronic identities on mobile
devices, technology independent solutions and combinations thereof. Smart cards
are by far the most widely adopted. Electronic identity cards allow individuals
to identify, to authenticate and/or to sign electronic documents. Two crypto-
graphic architectures for electronic identity cards are very popular. Either each
card shares one or more personal certificates (and corresponding private keys)
in which attributes are embedded or multiple cards keep a common asymmetric
key pair and a set of (non-)certified attributes. Many countries (like Belgium)
apply the former strategy. The latter approach is adopted by the German eID
card. The rest of this section evaluates the opportunities and constraints of the
design of the Belgian and German eID card. We thereby mainly focus on elec-
tronic authentication. These initiatives are representative for the two categories
mentioned above (although many variants exist).

The Belgian electronic identity (BeID) [10, 4] card contains personal infor-
mation of the card owner, written in three files: an identity file (with the card
holder’s name, NRN3, place and date of birth and some card related informa-
tion), a picture and an address file (with the current place of residence). Each file
is signed by the government. The BeID card also stores two personal asymmetric
key pairs (and corresponding certificates). The private keys SKsig and SKauth are
stored in a tamper-resistant part of the chip. SKsig is used for signing electronic
documents; SKauth is used for authentication. Some personal information, such
as the NRN and name, is also included in the card owner’s certificates. Any
application can read out the identity, picture and address files and the certifi-
cates without the user’s consent (i.e. this operations does not require the user
to enter a PIN). SKsig and SKauth are activated by a PIN code. Many Belgian
eID applications support mutual authentication: the service provider authenti-
cates to the browser and the card authenticates to the server. The BeID card,
however, cannot verify the authenticity of the service provider. This may lead
to man-in-the-middle-attacks as discussed in [9]. Moreover, SKauth remains ac-
tivated after authentication. Malicious applications can, therefore, authenticate
to several service providers, from which sensitive personal information such as
tax declaration info, bank account information, etc.) can be retrieved. These
consecutive authentications remain transparent to the user. Moreover, the card
has weak privacy properties: during authentication, users can be uniquely iden-
tified since their name and NRN is included in the authentication certificate.
This also allows collaborating service providers to link authentication sessions
and user profiles. Moreover, the data that are released during and after authen-
tication are certified (i.e. the information in the authentication certificate and
identity file is signed, hence, endorsed by the government). Easy deployability
and low costs are the major benefits. The government does not need to certify
service providers and citizen CRLs are maintained by the government. Hence,
it is easy to deploy BeID applications. However, the card should not be used
for applications with high privacy and security risks, such as providing access to
medical records, bank transactions, social networking applications, etc. A similar
approach has been adopted by many other European countries [2, 1].

A totally different approach is used by the German eID [3]. A common key
pair (SKCo, PKCo) is shared by a large set of cards. SKCo cannot be read
out. The key pair is used to set up a secure channel with service providers.

3 National Registry Number (i.e. a unique identifier for each citizen)

Towards a general purpose identity card 3

In contrast to the Belgian eID, service providers also authenticate to the card
themselves. This avoids man-in-the-middle attacks. The service provider can
only query a limited subset of the available personal information on the card.
This subset is defined by the government and stored in the service provider’s
certificate CertSP. Moreover, service provider specific nyms are generated by
the card, based on a personal master secret in the card and data in CertSP.
Hence, the card has better privacy properties compared to the BeID: users can
authenticate pseudonymously/anonymously to service providers, collaborating
service providers cannot generate extensive citizen profiles and the veracity of
the released information cannot be proven to third parties (i.e. attributes are
not certified). However, the government needs to know the master secret of each
eID to generate service specific revocation lists (i.e. a separate revocation list is
distributed to each service provider). The latter implies a high infrastructural
cost.

3 Requirements

The requirements of a general purpose electronic identity card are classified into
three categories. The security and privacy requirements are defined by ENISA
and extensively motivated in [8]:

– Security requirements:
• S1: mutual and strong authentication mechanism between the card and

service provider/government.
• S2: access control to the card (i.e. based on rights/privileges)
• S3: secure communication between card and service provider/government

– Privacy requirements:
• P1: selective disclosure based on the service provider
• P2: service provider specific pseudonyms
• P3: unlinkability of pseudonyms (even by government)
• P4: support for conditional anonymity during authentication4

– Performance and scalability:
• O1: acceptable performance (authentication/release of information)
• O2: scalable certification/validation/revocation mechanisms
• O3: support for online and offline services

4 Basic Terminology

Five different roles are defined in the system. The user (U) is the owner/holder
of an electronic identity card (SC). M represents the software (e.g. middleware)
running on the PC with the card reader. A service provider (SP) can control
access to his services and offer personalized services by requiring user authenti-
cation with the eID card. The government (G) has three major tasks. First, G
issues identity cards to citizens (i.e. users). Each card contains a set of public and
private keys, certificates and attributes of the card and its owner. Examples of
attributes are chip number, lastValidationTime, birth date, address info,
etc. Second, G (re)validates or blocks identity cards at regular times. During
(re)validation, the lastValidationTime is updated. Third, G issues certificates
to service providers. The keys and certificates that are maintained in the eID
eco-system are listed below:

4 P4 allows identification of suspects in case of abuse.

4 J. Vossaert et al.

– Each card holds a unique master secret, KU , that is used to generate session
keys Ks (see further) and service specific pseudonyms. KU can either be user-
specific or card-specific. The former strategy allows citizens to reuse KU in
multiple eID cards (e.g. when the previous card is defect or lost). However,
a secure backup of KU is required (e.g. by using a key escrow mechanism).
If KU is card-specific, a mechanism must be designed to link (old and new)
pseudonyms of the same citizen generated by two different cards.

– A governmental key pair (SKG, PKG) is used to set up a secure authenti-
cated communication channel between identity cards and the government.
PKG is placed on each identity card during initialization, the corresponding
secret key is only known by the involved governmental service. The card
can be updated with a new governmental key by sending the corresponding
certificate to the card. This requires proper authentication of G to the card.

– A common key pair (SKCo, PKCo) is equal for a large set of eID cards. PKCo

is embedded in a certificate CertCo. SKCo and CertCo are stored on the card
during initialization. This allows the government and service providers to
verify that a genuine eID is used (without revealing unique identifiers).

– Each service provider has an asymmetric key pair (SKSP, PKSP). SKSP is
certified by the government (i.e. CertSP). CertSP contains at least the service
provider’s unique name, a validity period and a set of queries (i.e. a set of
attributes or properties thereof) that the SP can submit to the card. SKSP

and CertSP are used to authenticate to eID cards.
– A session key Ks is used to securely transmit data between a card and a ser-

vice provider (including governmental services). This session key is generated
based upon the hash of the master secret KU and a counter.

H(.) represents a universal hash function. Arrows (→ or ←) represent the
direction of communication. We assume that during a protocol run, the same
connection is used. Dashed arrows (99K or L99) represent communication over
an anonymous channel. Variables of the card are shown in teletype font; if the
variable is underlined, it is stored in temporary memory. ”String” represent
string constants. Interactions with the card holder are indicated with boxed U .

5 Protocols

This section discusses four protocols, namely card (re)validation, service provider
authentication, card authentication, and controlled release of information. The
card’s validation time can be updated whenever the card is online. The other
protocols are typically combined if a user requests access to a service. The user
needs to enter his PIN code for each separate service provider.

5.1 Updating the card’s lastValidationTime

Table 1 illustrates card (re)validation protocol. It results in a new time value
on the card that represents the most recent validation time. The time is used
during authentication with service providers to prove that the card was valid
at that time. An anonymous communication channel can be setup between the
middleware and G in order to hide the whereabouts of the card holder.

When the eID card has not recently been revalidated, the user is requested5

to start the revalidation protocol (1–6). The card first receives a challenge from
the government and signs it with SKCo (7–9) resulting in a signature, sig. The
card then generates a new symmetric key Ks and encrypts it with the public
5 Note that steps 4–5 are optional. If they are omitted, the card will be automatically

revalidated or blocked.

Towards a general purpose identity card 5

key of the government, PKG (10–11). Next, sig, CertCo and the chip number are
encrypted with Ks (12). The encrypted message Emsg and key Ekey are then sent
to the government (13). The government then decrypts Ekey and the encrypted
message, verifies the signature sig and checks the status of the chip number
(14–18). If the card is still valid, the government encrypts the current time (and
its hash) with Ks and sends it to the card (19–21). If the card is not valid,
G sends a "blockCard" command6 to the card (18). Finally, upon receiving
the encrypted time, the card decrypts it, verifies the integrity, and updates its
lastValidationTime (22–24). If a block command is received, the card rejects
any further authentication requests.

revalidateCard():

(1) SC : inserted in reader
(2) SC ← M : "Hello", currentTime
(3) SC → M : reqRevalidation := (lastValidationTime < currentTime - δ)

(4) M → U : if (reqRevalidation) showRevalWindow() else abort()

(5) M ← U : response [assume Yes; otherwise abort()]
(6) M 99K G : "RevalidationRequest"

(7) G : c := genChallenge()
(8) SC← M L99 G : "RevalidateCard", c
(9) SC : sig := sign(H(c ||”Revalidation”|| chip number), SKCo)

(10) SC : Ks := genNewSymKey(H(KU || ”Key” || counter++))
(11) SC : Ekey := asymEncrypt(Ks, PKG)
(12) SC : Emsg := symEncrypt([CertCo, sig, chip number], Ks)
(13) SC→ M 99K G : Emsg, Ekey

(14) G : Ks := asymDecrypt(Ekey, SKG)
(15) G : [CertCo, sig, chip number] := symDecrypt(Emsg, Ks)
(16) G : if (verifyCert(CertCo) == false) abort()
(17) G : if (verifySig(sig, H(c ||”Revalidation”|| chip number), PKCo) == false) abort()
(18) G : if (stillValid(chip number) == false) sendBlockCommand()
(19) G : time := getCurrentTime()
(20) G : Etime := symEncrypt([time, H(time)], Ks)
(21) SC← M L99 G : Etime

(22) SC : [time, hashTime] := symDecrypt(Etime, Ks)
(23) SC : if (H(time) != hashTime)abort()
(24) SC : lastValidationTime := time

Table 1. The card is regularly revalidated by the government.

5.2 Authentication of the service provider

During SP authentication (see table 2), the card checks the trustworthiness of
the service provider and stores which queries may be performed by the service
provider. Note that the communication between the middleware and the service
provider can also happen over an anonymous channel.

First, the service provider (SP) sends a request for authentication and its
certificate CertSP, which still needs to be valid after the most recent card valida-
tion time (1–3). The card starts a new session (sesId), and copies the SP’s name
and maximum rights for that session (4–6). Next, the card generates a session
key, Ks, and a fresh challenge, c, encrypts Ks with the SP’s public key, and the
challenge (with some added redundancy) with Ks, and sends both cyphers to
the service provider (7–13) where they are decrypted and verified (14–16). The

6 The command includes the chip number and its hash, both encrypted with Ks.

6 J. Vossaert et al.

incremented challenge, the oldest acceptable validation time and its hash, are
reencrypted with the session key and sent to the card (17–18). The card then
decrypts and verifies the response (19–21) and checks whether the card is still
acceptable to the SP (i.e. whether revalidated recently enough) (22).

authenticateServiceProvider():

(1) SC← M ← SP : "AuthenticateSP", CertSP

(2) SC : if (verifyCert(CertSP)==false) abort()
(3) SC : if (CertSP.validEndTime < lastValidationTime) abort()
(4) SC : sesId := genNewSessionID();
(5) SC : session[sesId].maxRights := CertSP.maxRights
(6) SC : session[sesId].Subject := CertSP.Subject
(7) SC : Ks := genNewSymKey(H(KU || ”Key” || counter))
(8) SC : session[sesId].Ks := Ks

(9) SC : c := genChallenge(H(KU || ”Challenge” || counter++))
(10) SC : session[sesId].chal := c
(11) SC : Ekey := asymEncrypt(Ks, CertSP.PK)
(12) SC : Emsg := symEncrypt([c, CertSP.Subject, sesId], Ks)
(13) SC→ M → SP : sesId, EKey, Emsg

(14) SP : Ks := asymDecrypt(Ekey, SKSP)
(15) SP : [c, subject, ses] := symDecrypt(Emsg, Ks)
(16) SP : if ((subject != SP) || (ses != sesId)) abort()
(17) SP : Eresp := symEncrypt([c+ 1, accValTime, H(accValTime)], Ks)
(18) SC← M ← SP : sesId, Eresp

(19) SC : [resp, accValTime, hashTime] := symDecrypt(Eresp, session[sesId].Ks)
(20) SC : if (resp != session[sesId].chal+1) abort()
(21) SC : if (H(accValTime) != hashTime) abort()
(22) SC : if (lastValidationTime < accValTime) abort(sesId)
(23) SC : session[sesId].auth = true
(24) SC : session[sesId].timeout = τ

Table 2. The service provider authenticates towards the card.

5.3 Authentication of the card

During card authentication, the service provider verifies the trustworthiness of
the card. Note that the communication between the middleware and the service
provider can also happen over an anonymous channel.

First, the service provider sends an encrypted challenge via the middleware
to the card (1–3). The card then decrypts the challenge and the current state
of the session (4–6), signs the challenge with the common SKCo, encrypts the
outcome and its certificate with the session key and sends it to SP (7–9). Finally,
the service provider decrypts the card’s response and verifies the certificate and
the signature (10–12).

5.4 Disclosure of card holder’s attributes (or properties thereof)

This protocol (see table 4) allows the service provider to query a subset of
the attributes from the card based on privileges (maxRights) assigned by the
government.

First, the service provider sends an attributes query to the card, containing
identifiers of the attributes/properties he wishes to obtain (1). The middleware
intercepts the query and requests the card holder’s consent; the card holder can
modify (reduce) the query and gives his consent by entering the PIN code of the

Towards a general purpose identity card 7

authenticateCard():

(1) SP : c := genChallenge()
(2) SP : Emsg := symEncrypt([c, sesId], Ks)
(3) SC← M ← SP : "AuthenticateCard", sesId, Emsg

(4) SC : [c, ses] := symDecrypt(Emsg, session[sesId].Ks)
(5) SC : if ((ses != sesId) || closed(sesId)) abort()
(6) SC : if (session[sesId].auth == false) abort()
(7) SC : sig := sign(H(c || ”Auth”), SKCo)
(8) SC : Emsg := symEncrypt([CertCo, sig], session[sesId].Ks)
(9) SC→ M → SP : sesId, Emsg

(10) SP : [CertCo, sig] := symDecrypt(Emsg, Ks)
(11) SP : if (verifyCert(CertCo) == false) abort()
(12) SP : if (verifySig(sig, H(c || ”Auth”), CertCo.PK) == false) abort()

Table 3. The card authenticates towards the service provider.

card (2–3). The possibly modified query and PIN code are forwarded to the card,
which checks the PIN code and verifies whether (a) the session is still open, (b)
the SP has been authenticated properly and (c) the query is consistent with the
privileges assigned by the government to the service provider (4–8). If a (service
provider specific) pseudonym is required7, it is generated by the card (9) and the
outcome of the query (10) is encrypted with the session key (11–12) and sent to
the SP which will decrypt it, verify its integrity and process the personal data
(13–14). The SP can close a session by sending a ”LogOff(sesId)” command to
the card. Any active sessions are also automatically terminated upon removal of
the card from the card reader since session data is stored in transient memory.

releaseAttributes():

(1) M ← SP : "attributeQuery", sesId, query

(2) M → U : showQueryWin(SP, query)

(3) M ← U : response [Assume OK [query∗, PIN]; otherwise abort()]
(4) SC ← M : "attributeQuery", sesId, query∗, PIN
(5) SC : if (PINincorrect(PIN)) handleWrongPIN()
(6) SC : if (closed(sesId)) abort()
(7) SC : if (session(sesId).auth == false) abort()
(8) SC : if (query∗ � session[sesId].maxRights) abort()
(9) SC : nymSP := H(KU || session[sesId].Subject)

(10) SC : queryResults := solveQuery(query∗)
(11) SC : data := [nymSP, queryResults, H(nymSP || queryResults)]
(12) SC→ M → SP : Eattributes := symEncrypt(data, session[sesId].Ks)
(13) SP : [nymSP, queryResults, hashData] := symDecrypt(Eattributes, Ks)
(14) SP : if (H(data) != hashData) abort()

Table 4. The card releases attributes to the authenticated service provider.

6 Discussion

This section evaluates the performance properties, security/privacy properties
and usability/deployability properties against the requirements discussed in sec-
tion 3. We also compare our approach with existing alternatives.

7 Otherwise, this step is omitted.

8 J. Vossaert et al.

Performance properties The prototype is developed on a TOP IM GX4 [5]
smart card. The performance measurements are based on 1024 and 2048 bit RSA
keys. Table 5 clearly shows that asymmetric private key operations are expensive
compared to other crypto operations. Omitting the communication overhead, the
performance of the protocols is, therefore, linear to the number of private key
operations. Table 6 shows the number of required cryptographic operations

RSA AES SHA1
Key length in bits 1024 2048 128 192 256 -

Verification 26 60 - - - -
Signing 555 1655 - - - -
Encryption 24 60 19 21 23 -
Decryption 553 1654 24 27 30 -
Hashing - - - - - 2

Table 5. Average timing results for cryptographic operations on the TOP IM GX4
smart card. Tests are done with 128 bytes data, times are in ms.

for the Belgian eID and the general purpose eID. Card validation and service
consumption are evaluated separately. Our protocols require considerably more
cryptographic operations on the card compared to the Belgian eID. However,
only one signature is performed on the card (which is equal to the Belgian eID).
Since this is by far the most time consuming operation, the total execution time
does not considerably increase. Service consumption does imply a considerable
computational overhead towards the service provider compared to the Belgian
eID. This is, however, similar to initiating an TLS/SSL session, which is widely
adopted by service providers for secure transfer of data. Moreover, with the
Belgian eID, OCSP [7] is often used to validate user certificates, which introduces
extra communication overhead.

Belgian eID General Purpose eID
Service consumption Card validation Service consumption

Actors SrvPr. Gov. Card Gov. Card SrvPr. Card

Verify/asEncrypt 3 0 0 2 1 2 2
Sign/asDecrypt 0 1 1 1 1 1 1
Symm. operation 0 0 0 2 2 5 5
Hashes 0 0 0 3 3 4 7

Table 6. Overview of the required operations during authenticaton.

We reserved 6500 bytes for identity files (including a small picture). Multiple
keys also need to be stored in persistent memory: one key pair (SKCo, PKCo)
requires 472 bytes, two public keys (PKG and PKSPCA

) require 2*172 bytes
and a certificate (CertCo) estimated at 600 bytes. Finally, a master secret
and counter are also stored on the card, each requiring 20 bytes. The sum is
7956 bytes (excluding the program code). Multiple attributes are stored for each
session, typically in transient memory, defining the context of that session. The
storage for each session is lower than 100 bytes.

Security properties First, according to S1, strong mutual authentication is re-
alized between the service provider (or government) and the card. This prevents
man-in-the-middle attacks. Second, service providers have restricted access to
the personal information stored on the card (cfr. S2). The government can up-
date the lastValidationTime and block revoked cards. Only certified service

Towards a general purpose identity card 9

providers can access the card holder’s personal information. The government
defines which attributes or properties thereof can be queried by each service
provider. In contrast to the BeID, a user must reenter his PIN code each time
when personal information needs to be disclosed to a SP. Third, the approach
provides a flexible and efficient revocation mechanism (cfr. O2) (see also privacy
properties). No CRL/OCSP checks are required by the service provider nor the
card. At the service provider’s side, this is realized with certificates that have
a short lifetime. It is, however, possible to check the validity of the server cer-
tificate with an OCSP check initiated by the card (i.e. the card can forward –
via the middleware – the serial number to the government OCSP server over
a secure connection). Alternatively, although less secure, the OCSP check can
also be initiated by the middleware. A card does not need to be revalidated
before each authentication session. The policy of the service provider decides
the validity interval for lastValidationTime. Short intervals are more secure
and appropriate for online services (i.e. retrieving a new lastValidationTime
from the government requires no substantial overhead and can be initiated by
client middleware as soon as it detects that an eID card is inserted in a reader).
Offline services (e.g. vending machines for alcoholic beverages or cigarettes) typ-
ically allow a larger validity interval. A reasonable trade-off between security
and usability must be found. Finally, no real random generator is required on
the card: SKCo and the master secret, KU , are generated at set-up (by means of
a certified/trusted module); session keys and challenges are based on KU and a
counter.

Privacy properties Access policies (cfr. P1) are defined by the government.
A dedicated attribute in each SP’s certificate defines the maximal information
that can be retrieved from the card. Users can decide to release only a subset of
information but then some limited trust is required in the client middleware or
an advanced card reader which enables the user to restrict the query of the SP8.
Every release of personal information requires the user to enter the PIN. Every
query for personal information, therefore, requires explicit consent of the user.

No link between the user’s identity and the transaction at the service provider
is possible, even if government and service provider collaborate (unless uniquely
identifying information is released). We assume that the master secret, KU ,
is only known by the card. Similar to the German eID, collaborating service
providers cannot link information to the same user (unless uniquely identifying
info is released) (cfr. P2 and P3). Conditional anonymity (cfr. P4) is also possible.
The service provider can request a probabilistic encryption of the user’s real
name, SSN or serial number with the public key of a trusted third party (TTP).
The cyphertext can then be decrypted by that TTP. The public key of the TTP
can be embedded in the certificate of the service provider. Hence, each service
can have its own TTP (or deanonymizer) if it is approved by the government.

Usability and scalability properties Although our approach has similar
privacy properties compared to the German eID, our solution provides a better
separation of concerns and, hence, is more scalable (cfr. O2). First, the revalida-
tion service can be administered by an external entity. It replaces CRL/OCSP
checks by the service provider. Note that OCSP checks may link service requests
to serial numbers (and indirectly to identities). Second, the certificates of service
providers have a relatively short validity period. This implies a short window of
vulnerability.
The complexity of revocation strategy is linear to the number of citizens whereas,

8 It is impossible to increase the SP’s rights; hence, the only abuse that is possible, is
that the card holder’s restrictions are ignored.

10 J. Vossaert et al.

in the German eID, a separate revocation list must be generated for each service
provider (i.e. linear to number of citizen multiplied by number of services).
The proposed approach can be applied to a wide variety of online services (such
as webservices) and offline services (such as cigarette vending machines) (cfr.
O3). The user only needs to update the lastValidationTime regularly. For this
service, no trust is required in the client workstation on which the card is in-
serted. The lastValidationTime can be updated each time a user has Internet
access. For offline services, an administrator does not need to update CRLs at
each vending machine (which is a serious maintainance barrier in the German
eID architecture). No PIN-pad reader is necessary for card revalidation. However,
it prevents PIN caching. A screen can display info kept in CertSP (i.e. ensure
the card holder that the right service provider is contacted) and that only the
minimal amount of personal information will be disclosed. Such a reader reduces
the level of trust required in client middleware. Finally, the proposed solution
is easily extensible to prove attribute values or properties thereof that are even
not stored at the card itself. For instance, a car rental company may request
the card holder to prove to be the owner of a valid driver’s license; an
insurance company may request family status information (such as marital
status, number and age of children . . .). Some of these attributes are not stored
at the card due to limited storage space or because they may change too fre-
quently. CertSP can list a set of queries Q1, ..., QN to other service providers
SP1, ..., SPN that cannot be answered by the card alone. If so, the card will,
after validation of CertSP and explicit consent of the user, initiate a connection
to SP1, ..., SPN to retrieve the requested values and forward them to the initial
service provider SP . This approach is more reliable and scalable than the one
that is currently applied in Belgium (and in many other countries). For instance,
the Crossroads Bank for Social Insurance organizes and executes data transfer
between multiple institutions and service providers. A service provider typically
sets up a connection to other service providers. However, in many cases, no ex-
plicit user consent is required. Our solution also allows data transfer between
service providers and has two major benefits. First, the access policy is kept
in CertSP (i.e. no central policy decision point is required). Second, the user’s
explicit consent is required.

7 Conclusion

This paper presents the design of a general purpose electronic identity card. The
approach is based on a time service that updates (blocks) valid (revoked) cards.
We extensively argued the benefits of this approach compared to solutions that
are currently developed or even rolled out. More specifically, the proposed so-
lution compromises a strong level of security and privacy and high scalability
and performance. The former is required when the card is used outside the gov-
ernmental domain (e.g. banking services and social networking). The latter is
required as the number of services increases.

References

1. Estonian identity card. http://www.id.ee/.
2. Portuguese citizen card. http://www.cartaodocidadao.pt/.
3. Advanced security mechanisms for machine readable travel documents - extended

access control (eac) and password authenticated connection establishment (pace).
Technical Guideline TR-03110, 2008.

4. Danny De Cock, Christopher Wolf, and Bart Preneel. The Belgian Electronic
Identity Card (Overview). In Jana Dittmann, editor, Sicherheit 2005: Sicherheit -

Towards a general purpose identity card 11

Schutz und Zuverlässigkeit, Beiträge der 3rd Jahrestagung des Fachbereichs Sicher-
heit der Gesellschaft für Informatik e.v. (GI), volume LNI P-77 of Lecture Notes
in Informatics (LNI), pages 298–301, Magdeburg,DE, 2006. Bonner Köllen Verlag.

5. Gemalto. Top gx4, product information. http://www.gemalto.com/products/

top_javacard/download/TOP_GX4_Nov08.pdf, 2008.
6. Giles Hogben Ingo Naumann. Privacy Features of European eID Card Specifica-

tions. Technical report, ENISA, 2009.
7. A.Malpani S. Galperin C. Adams M. Meyers, R. Ankney. Rfc2560: X.509 internet

public key infrastructure, online certificate status protocol - ocsp. http://tools.
ietf.org/html/rfc2560, June 1999.

8. Ingo Naumann. Privacy and Security Risks when Authenticating on the Internet
with European eID Cards. Technical report, ENISA, 2009.

9. B. De Decker V. Naessens P. Verhaeghe, J. Lapon and K. Verslype. Security and
privacy improvements for the belgian eid technology. pages 237–248, May 2009.
Proceedings of the 24th IFIP International Information Security Conference.

10. Marc Stern. Belgian eID Card content. Zetes, CSC, 2.2 edition, 2003.

