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Abstract
We present a multigrid method of the second kind to optimize time-periodic, parabolic, partial differential equations (PDEs). We
consider a quadratic tracking objective with a linear PDE constraint. The first order optimality conditions, given by a coupled system
of boundary value problems, can be rewritten as an integral equation of the second kind, which is solved by multigrid of the second
kind. The evaluation of the integral operator consists of solving sequentially a boundary value problem for respectively the state and
the adjoints.

Motivation
Time-periodic PDEs are used to model a variety of industrial
applications , relevant to OPTEC, e.g. solar powerplants, bio-
chemical reactors and cyclic controlled chemical reactors.

General problem
Find optimal control u ∈ U which minimizes the objective func-
tion J : Y × U → R and satisfies the parabolic PDE-constraint
e (y, u) = F , i.e.,
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miny,u J(y, u)

s.t. e(y, u) = F

where J is the compromise between the cost of the control and
its benefit, e.g. the error between the state y(u) and a prescribed
target state z. The system model and the periodicity con-
straint are included in e : Y × U → P ∗.

Model problem
Tracking a prescribed state z in the L2-norm, with an L2-cost
on the distributed control u ∈ U .
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miny,u
c1

2‖y − z‖2
L2(ΩT ) + c2

2‖y (T ) − zT‖
2
L2(Ω) + α

2‖u‖
2
U

s.t.

∂ty −△y = u + f in Ω × (0, T )

y (0) − y (T ) = 0 on Ω

y = 0 on ∂Ω × (0, T ) ,

where α is a regularization parameter for tuning the control ef-
fort and the approximation error.

Optimality conditions
Define the Lagrangian and introduce the adjoint p ∈ P ∗∗ as,

L (y, u, p) = J1(y) + αJ2(u) − 〈p, e(y, u)〉P ∗∗,P ∗

The first order conditions (FOC) are then given by,

Lu = 0 ⇒ α J ′
2(u) − e∗u(y, u)p = 0 (1)

Ly = 0 ⇒ J ′
1(y) − e∗y(y, u)p = 0 (2)

Lp = 0 ⇒ e(y, u) = 0. (3)

The state (3) and the adjoint (2) equations are both boundary
value problems given by a parabolic PDE.

For the model problem:

Ly = 0 ⇒































−∂tp −△p = c1 (y − z) in Ω × (0, T )

p (T ) − p (0) = c2 (y(T ) − zT ) on Ω

p = 0 on ∂Ω × (0, T ) .

Fredholm integral equation of the 2nd kind
Assume that e(y, u) = Ay + Bu models a linear problem.
(3) ⇒ y(u), (2) ⇒ p(y, u) and substituting in (1), results in,

(α J ′
2) u +

(

B∗A−∗J ′
1 A−1B

)

u +
(

B∗A−∗J ′
1A

−1F + B∗A−∗J ′
1 z

)

= 0

(4)

Numerical Algorithm
Indirect discretization of (4), by discretizing the FOC with
dg(0)cg(1) -method on a time-space grid.

Apply multigrid of the second kind on (4).

•Evaluate the kernel of (4) for given u by

1. solving (3) for y with a space-time multigrid (1st kind)
2. solving (2) for p with a space-time multigrid (1st kind)

•Semi-coarsening (1st kind) and full coarsening (2nd kind).

Numerical results
The calulated control
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