
Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

Analysis and Design of Cryptographic Hash Functions

Sebastiaan INDESTEEGE

Dissertation presented in partial
fulfillment of the requirements
for the degree of Doctor in
Engineering

May 2010

Analysis and Design of Cryptographic Hash Functions

Sebastiaan INDESTEEGE

Jury:
Prof. dr. Adhemar Bultheel, chairman
Prof. dr. ir. Bart Preneel, promotor
Dr. Orr Dunkelman

(Weizmann Institute of Science, Israel)
Prof. dr. Lars R. Knudsen

(Technical University of Denmark)
Prof. dr. ir. Vincent Rĳmen
Prof. dr. ir. Joos Vandewalle
Prof. dr. ir. Luc Van Eycken

U.D.C. 681.3*D46

Dissertation presented in partial
fulfillment of the requirements
for the degree of Doctor in
Engineering

May 2010

There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable.

There is another theory which states that this has already
happened.

Douglas Adams

c© Katholieke Universiteit Leuven – Faculty of Engineering
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wĳze ook zonder voorafgaande schriftelĳke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

D/2010/7515/52
ISBN 978-94-6018-213-6

Preface

A PhD dissertation does not suddenly appear out of thin air. On the contrary, it is
the result of a long process, involving much more people than just those mentioned
on the cover. This one is no different. Many have contributed to it, in one way or
another. I’d like to take this opportunity to thank (at least some of) the people
who have helped and encouraged me during the past years.

First of all, I’d like to thank my promotor, prof. Bart Preneel. He has created a
pleasant environment for me to do research in, granting me a great deal of freedom
to plot my own course, but still giving me guidance when I required it. He also
offered me plenty of opportunities (and funding) to make trips to conferences and
other events abroad, where I met several distinguished people in the cryptologic
community. I would like to express my gratitude to the members of my jury —
dr. Orr Dunkelman, prof. Lars Knudsen, prof. Bart Preneel, prof. Vincent Rĳmen,
prof. Joos Vandewalle, and prof. Luc Van Eycken — for reviewing this manuscript
and for their valuable feedback, and to prof. Adhemar Bultheel for chairing the jury.
I would also like to acknowledge the financial support of the Fund for Scientific
Research, Flanders (FWO-Vlaanderen) that made this research possible.

When I joined COSIC in 2006, I had the privilege of sharing an office with
Christophe De Cannière, and later also Orr Dunkelman, both of which taught
me various tricks of the trade. I’ve really learnt a tremendous amount from their
experience; not only on purely technical topics, but also on life as a researcher.
I’d like to thank my other colleagues in COSIC as well, including the numerous
COSIC visitors I met, and especially my office mates and fellow ‘Alma addicts’.
Sorry I don’t mention all of you here, but the group has grown too large for that.
We had plenty of nice discussions on a multitude of topics, ranging from serious
to, well, not quite so serious.

Péla Noë deserves special mention. Without her help, I’d probably still be lost
somewhere in the labyrinth of administration and paperwork. She was — and
still is — always ready to help out. For every administrative issue I encountered,
she managed to quickly find a solution, and did so with great enthusiasm. The
financial aspects were handled impeccably by Elvira Wouters and Elsy Vermoesen.

Throughout the course of my PhD, I’ve had the pleasure to work together with
several very bright researchers. I’ve gained a lot from these fruitful collaborations
and I’d like to acknowledge my co-authors: Elena Andreeva, Jean-Philippe

i

ii PREFACE

Aumasson, Eli Biham, Christophe De Cannière, Orr Dunkelman, Emilia Käsper,
Nathan Keller, Florian Mendel, Svetla Nikova, Bart Preneel, Christian Rechberger,
Martin Schläffer, and Elmar Tischhauser.

In March 2008, I visited TU Graz, Austria. I am very grateful to the people
of the Krypto group at IAIK who hosted me. Thank you for the many interesting
discussions we had in Graz, Mario Lamberger, Florian Mendel, Tomislav Nad,
Norbert Pramstaller, Christian Rechberger, Vincent Rĳmen, and Martin Schläffer.
In the summer of 2009, I visited Sony corp. in Tokyo, Japan as a research intern.
It was a very enriching and unforgettable experience for me to discover Japan, and
to experience the Japanese way of living. Thank you very much to everyone at
Sony who made this possible, and in particular to Shiho Moriai, Kyoji Shibutani,
and Taizo Shirai.

During the past years, I’ve also supervised the Master’s thesis of several
students. Even though you may not have noticed, I have learnt from each one
of you. Thank you, Dries Cuypers, Jens Hoffmann, Igor Jacques, Nicky Mouha,
Hans Narinx, Wim Ramakers, Dirk Rĳkx, Joris Thielen, and Markus Ullrich.

Many thanks to my friends, who kept on trying to convince me that there is
life outside of research. Although you may not always have been very successful at
persuading me, thank you for being persistent nevertheless. Thanks to my fellow
‘bosses’ at Ulyssis for making me feel not quite so abnormal for being passionate
about computers and UNIX-like systems.

And last, but definitely not least, I would like to thank my parents and my
brothers, Dries and Mathĳs. I know it must not always have been easy to have a
PhD student as a son or a brother — they are rather peculiar creatures indeed —
but thank you very much for your continuous support and encouragement.

Sebastiaan Indesteege
Heverlee, April 2010

Abstract

Cryptographic hash functions play an important role in the security of many
applications such as digital signatures, the protection of passwords, the derivation
of cryptographic keys, tamper detection, and countless others. This versatility has
earned them the nickname ‘Swiss army knives of cryptography’.

Most of the widespread and popular hash functions, such as MD5, SHA-1 and
SHA-2, share a common design philosophy. Recent cryptanalytic advances have
raised serious concerns regarding the long-term security of these hash functions.
Some of them, e.g., MD4 and MD5, were broken in practice, and for others, e.g.,
SHA-1, severe theoretical weaknesses were shown. Even though the SHA-2 family
is not (yet) really threatened by any attack, it receives little confidence because it
is based on the same design principles. Hence, there is a clear need for new, secure
cryptographic hash functions. The United States ‘National Institute of Standards
and Technology’ (NIST) has started an international competition to develop the
next generation cryptographic hash function standard, which will be called SHA-3.
This competition started in 2007, and is still ongoing with 14 candidates left in
the second round of evaluations.

Most of the research presented in this dissertation is closely related to this
competition. We have designed a candidate cryptographic hash function called
Lane. The primary objectives of Lane are to be secure, easy to understand,
elegant and flexible in implementation. It was entered into the SHA-3 competition,
but did not advance to the second round of evaluations.

Furthermore, we have actively contributed to the evaluation of several SHA-3
candidates. For a number of first round candidates, we have demonstrated attacks
that contradict the security claims made by their designers. In particular, we
have shown practical collision attacks on the candidates Dynamic SHA, EnRUPT
and SHAMATA, as well as a theoretical collision attack on Dynamic SHA2 and
a practical preimage attack on Maraca. Beside the SHA-3 competition, we have
contributed to the cryptanalysis of the hash functions RC4-Hash, SHA-2, and
Tiger, and the block cipher KeeLoq that is used among others in vehicle anti-theft
systems.

iii

iv ABSTRACT

Samenvatting

Cryptografische hashfuncties spelen een belangrĳke rol in de veiligheid van een
groot aantal toepassingen, zoals digitale handtekeningen, het beveiligen van
wachtwoorden, het afleiden van cryptografische sleutels, het ontdekken van het
ongeoorloofd wĳzigen van gegevens, en talloze andere. Dankzĳ deze veelzĳdigheid
hebben ze de bĳnaam ‘het Zwitsers zakmes van de cryptografie’ gekregen.

Het merendeel van de vaak gebruikte en populaire hashfuncties, zoals
MD5, SHA-1 en SHA-2, is gebaseerd op dezelfde ontwerpfilosofie. Recente
cryptanalytische doorbraken hebben ernstige zorgen gebaard over de veiligheid
van deze hashfuncties op lange termĳn. Sommigen onder hen, zoals MD4 en MD5,
werden in de praktĳk gebroken. Voor anderen, zoals SHA-1, werden er ernstige
theoretische zwakheden aangetoond. Hoewel de SHA-2 familie (voorlopig) nog
niet bedreigd wordt door om het even welke aanval, is er weinig vertrouwen in
de veiligheid ervan omdat er op dezelfde ontwerpprincipes gesteund wordt. Er is
dus een duidelĳke behoefte aan nieuwe, veilige cryptografische hashfuncties. Het
‘National Institute of Standards and Technology’ (NIST) uit de Verenigde Staten
organiseert een internationale competitie die moet leiden tot het ontwikkelen van
de nieuwe standaard cryptografische hashfunctie, die SHA-3 zal heten. Deze
competitie is van start gegaan in 2007 en loopt nog, met 14 kandidaten in de
tweede evaluatieronde.

Het grootste deel van het onderzoek in deze verhandeling is nauw verbonden
met deze competitie. We hebben de cryptografische hashfunctie Lane ontwor-
pen. De voornaamste doelstellingen van Lane zĳn veiligheid, verstaanbaarheid,
elegantie en flexibiliteit in implementatie. Lane heeft deelgenomen aan de SHA-3
competitie, maar werd niet geselecteerd voor de tweede evaluatieronde.

Verder hebben we actief bĳgedragen tot de evaluatie van verschillende SHA-3
kandidaten. Voor een aantal kandidaten uit de eerste ronde hebben we aanvallen
getoond die de veiligheidsbeweringen van de ontwerpers tegenspreken. In het
bĳzonder hebben we praktische botsingsaanvallen ontwikkeld voor de kandidaten
Dynamic SHA, EnRUPT en SHAMATA, alsook een theoretische botsingsaanval
voor Dynamic SHA2. Verder hebben we in de praktĳk aangetoond dat Maraca de
vereiste éénwegseigenschap niet bezit. Naast de SHA-3 competitie hebben we ook
bĳgedragen tot de cryptanalyse van de hashfuncties RC4-Hash, SHA-2 en Tiger,
en het blokcĳfer KeeLoq, dat onder meer gebruikt wordt in anti-diefstalsystemen
voor auto’s.

v

vi SAMENVATTING

Contents

Preface i

Abstract iii

Samenvatting v

Contents vii

List of Figures xv

List of Tables xvii

I Analysis and Design of Cryptographic Hash Functions 1

1 Introduction 3
1.1 Cryptology . 3
1.2 Confidentiality and Authenticity 4
1.3 Cryptanalysis . 5
1.4 About this Dissertation . 6

2 Cryptographic Hash Functions 7
2.1 Introduction . 7
2.2 Security Requirements . 8

2.2.1 Preimage Resistance . 9
2.2.2 Second Preimage Resistance 9
2.2.3 Collision Resistance . 9

2.3 Applications . 10
2.4 Iterated Hash Functions . 11

2.4.1 The Merkle-Damgård Construction 12
2.4.2 Other Constructions . 13

2.5 Generic Attacks . 13
2.5.1 Exhaustive Search . 14

vii

viii CONTENTS

2.5.2 Time-Memory Trade-Offs 14
2.5.3 The Birthday Attack . 15
2.5.4 Generic Attacks on Iterated Constructions 18

2.6 Conclusion . 18

3 Design of Cryptographic Hash Functions 19
3.1 Introduction . 19

3.1.1 History and State of the Art 19
3.1.2 The NIST SHA-3 Competition 20

3.2 The Lane Hash Function . 21
3.2.1 Independent Cryptanalysis of Lane 22

3.3 On Pseudo-Collisions . 24
3.3.1 Pseudo-Collision Attacks 24
3.3.2 Towards Two-Step Compression Function Collisions 24
3.3.3 The Lane Iteration Mode 26
3.3.4 A Generic Merkle-Damgård Iteration 28

3.4 Conclusion . 30

4 Analysis of Cryptographic Hash Functions 31
4.1 Introduction . 31
4.2 Dynamic SHA and Dynamic SHA2 31
4.3 EnRUPT . 32
4.4 KeeLoq . 33
4.5 Maraca . 33
4.6 RC4-Hash . 34
4.7 SHA-2 . 35
4.8 SHAMATA . 36
4.9 Tiger . 36
4.10 Conclusion . 37

5 Conclusion 39
5.1 Directions for Future Research . 39

Bibliography 41

II Publications 51

List of Publications 53

Preimages for Reduced-Round Tiger 57
1 Introduction . 59
2 Description of Tiger . 60
3 Preimages for Three Rounds of Tiger 62
4 Preimages for the Compression Function of Tiger-12 64

CONTENTS ix

4.1 Algorithm . 65
4.2 Extension to Tiger-13 . 66

5 First and Second Preimages for Tiger-12 67
5.1 Second Preimages for Tiger-12 67
5.2 First Preimages for Tiger-12 68
5.3 Extension to Tiger-13 . 69

6 Conclusion . 69
References . 69

Trivial Collisions for Simplified and Reduced SHA-2 71

1 Introduction . 73
2 Description of SHA-256 . 74

2.1 A Simplified Variant of SHA-256 74
3 Finding Collisions . 75

3.1 Alternate Description of SHA-256 75
3.2 Inserting Odd Additive Differences. 75
3.3 The Message Difference . 76
3.4 The Collision Search . 76

4 Conclusion . 77
References . 77

A Practical Attack on KeeLoq 81

1 Introduction . 84
2 Description and Usage of KeeLoq 85

2.1 The KeeLoq Block Cipher 85
2.2 Protocols Built on KeeLoq 87

3 Our Attacks on KeeLoq . 88
3.1 The Slide Property . 88
3.2 Determining Key Bits . 89
3.3 Basic Attack Scenario . 90
3.4 A Generalisation of the Attack 93
3.5 A Chosen Plaintext Attack 94

4 Experimental Results . 94
5 Practical Applicability of the Attacks 96

5.1 Gathering Data . 96
5.2 Key Derivation . 96

6 Conclusion . 97
References . 97
A Related-Key Attacks on KeeLoq 99

A.1 A Related-Key Attack Using Keys Related by Rotation . . 99
A.2 Improved Slide/Meet-in-the-Middle Attack Using Related

Keys . 101

x CONTENTS

Collisions and Other Non-Random Properties for Step-Reduced SHA-256 103
1 Introduction . 105

1.1 Previous Work on Members of the SHA-2 Family 106
1.2 Our Contribution . 106

2 Description of SHA-256 . 107
3 Review of the Nikolić-Biryukov Semi-Free-Start Collision Attack . 109

3.1 The Second Phase of the Attack 109
3.2 The First Phase of the Attack 110

4 Our Collision Attacks on Step-Reduced SHA-256 111
4.1 23-Step Collision . 111
4.2 24-Step Collision . 114
4.3 Further Extensions . 116

5 Collision Attacks on Step-Reduced SHA-512 117
6 Conclusion . 119
References . 120
A Detailed Description of the Second Phase of the Nikolić-Biryukov

Attack . 122
B Solving L(x + δ) = L(x) + δ′ . 123

Collisions for RC4-Hash 125
1 Introduction . 127
2 Description of RC4-Hash . 128
3 Fixed Points of the Compression Function C 129

3.1 Fixed Points of Type I . 129
3.2 Fixed Points of Type II . 132
3.3 Relation to Finney States 134

4 Collisions for RC4-Hash . 134
5 Discussion . 136
6 Conclusion . 138
References . 138

Coding Theory and Hash Function Design 143
1 Introduction . 145

1.1 Our Contribution . 146
1.2 Related Work . 146

2 A New Parallel Compression Function Design 146
3 Designing the Message Expansion 148

3.1 A Meet-in-the-Middle Preimage Attack 148
3.2 Mitigating the Attack . 149
3.3 Assessing Resistance against Differential Cryptanalysis . . . 149

4 Application: the Lane Hash Function 150
5 Conclusion . 150
References . 151

CONTENTS xi

The Lane Hash Function 153
1 Introduction . 155
2 Specification . 155

2.1 Introduction . 155
2.2 Preliminaries . 156
2.3 Building Blocks . 159
2.4 Preprocessing . 165
2.5 The Lane Compression Function 166
2.6 The Output Transformation 171

3 Design Rationale . 172
3.1 The Iteration Mode . 172
3.2 The Compression Function 176
3.3 Advantages and Limitations of Lane 179

4 Security Analysis . 180
4.1 Reduced Versions of Lane for Cryptanalysis 180
4.2 Standard Differential Cryptanalysis 181
4.3 Truncated Differential Cryptanalysis 187
4.4 Higher Order Differential Cryptanalysis 191
4.5 Cryptanalysis of Wide-Block Rĳndael 193
4.6 Algebraic Attacks . 194
4.7 Attacks Based on Reduced Query Complexity 195
4.8 Wagner’s Generalised Birthday Attack 198
4.9 Meet-in-the-Middle Attacks 199
4.10 Long Message Second-Preimage Attacks 200
4.11 Length-Extension Attacks 201
4.12 Multicollision Attacks . 201
4.13 On the Mode of Iteration 202
4.14 Expected Strength of Lane 203

5 Implementation Aspects . 204
5.1 General Purpose CPU’s . 204
5.2 Embedded Systems with an 8-bit CPU 208
5.3 Hardware Implementation 210

References . 212
A The Constants Used in Lane . 217

Practical Collisions for EnRUPT 221
1 Introduction . 223
2 Description of EnRUPT . 224

2.1 The EnRUPT Hash Functions 224
2.2 The EnRUPT Round Function 225

3 Basic Attack Strategy . 227
4 Linearising EnRUPT . 228
5 The Collision Search . 228

5.1 An Observation on EnRUPT 228

xii CONTENTS

5.2 Accelerating the Collision Search 229
6 Finding Good Differential Characteristics 230

6.1 Coding Theory . 230
6.2 Low Weight Codewords . 231
6.3 Estimating the Attack Complexity 231

7 Results and Discussion . 235
8 Conclusion . 249
References . 249

Practical Preimages for Maraca 251
1 Introduction . 253
2 Description of Maraca . 254

2.1 The Maraca Permutation 255
3 Basic Attack Idea . 255
4 Linearising the Maraca S-box . 256
5 A Preimage Attack on Maraca . 258

5.1 Making Conditions Dependent 258
5.2 Maraca’s Finalisation Phase 259
5.3 Dealing with Contradictions 260

6 Practical Aspects . 260
6.1 The Precomputation Phase 260
6.2 The Online Phase . 261

7 Conclusion . 262
References . 262

Cryptanalysis of Dynamic SHA(2) 263
1 Introduction . 265
2 Brief Description of Dynamic SHA and Dynamic SHA2 266

2.1 Building Blocks . 266
2.2 Compression Functions . 267

3 Collision Attack on Dynamic SHA 270
3.1 A Differential Property of the Function R1 270
3.2 A 9-Step Local Collision . 271
3.3 The Attack . 272

4 Preimage Attack on Dynamic SHA 273
4.1 Preimage Attack on the Compression Function 274
4.2 Complexity Evaluation . 274
4.3 Application to the Hash Function 275

5 Collision Attack on Dynamic SHA2 276
5.1 First Iterative Part . 276
5.2 Second Iterative Part . 277
5.3 Third Iterative Part . 278

6 Conclusion . 278
References . 279

CONTENTS xiii

A Practical Results . 280
B Differential Characteristic for Dynamic SHA2 281
C Extensions to the 512-bit Versions 282

C.1 Collision Attack on Dynamic SHA 282
C.2 Preimage Attack on Dynamic SHA 282
C.3 Collision Attack on Dynamic SHA2 282

Practical Collisions for SHAMATA-256 287
1 Introduction . 289
2 Description of SHAMATA . 290

2.1 The Message Injection . 291
2.2 The State Update Function 291

3 Basic Attack Strategy . 292
3.1 Overview of the Attack . 292
3.2 Choosing the Message Difference 293
3.3 Linearising ARF r . 293
3.4 Basic Message Modification 294

4 Finding a Good Differential Path 295
4.1 Low-Weight Codewords . 295
4.2 An Alternative Approach 297

5 Collision Attack on SHAMATA . 297
5.1 Collisions for SHAMATA-256 and SHAMATA-512 297
5.2 Practical Collisions for SHAMATA-256 299

6 Conclusion . 301
References . 302
A Colliding Message Pair for SHAMATA-256 303

Curriculum Vitae 305

xiv CONTENTS

List of Figures

I Analysis and Design of Cryptographic Hash Functions 1

2.1 A hash function. 8
2.2 An iterated hash function. 11

3.1 A compression function collision, and a two-step compression
function collision. 25

3.2 The Lane iteration mode. 26
3.3 Two-step compression function collisions and the Lane iteration

mode. 27
3.4 A generic Merkle-Damgård iteration with output transformation. . 29
3.5 Four cases of two-step compression function collisions. 29

II Publications 51

Preimages for Reduced-Round Tiger 57
1 The state update transformation of Tiger. 63
2 Constructing second preimages for Tiger-12. 67
3 Constructing first preimages for Tiger-12. 68

Trivial Collisions for Simplified and Reduced SHA-2 71

A Practical Attack on KeeLoq 81
1 The i-th KeeLoq encryption cycle. 86
2 A typical slide attack. 88
3 The notation used in the attack. 90
4 The attack algorithm. 91
5 A related-key attack using keys related by rotation. 99

Collisions and Other Non-Random Properties for Step-Reduced SHA-256 103
1 The state update transformation of SHA-256. 109

xv

xvi LIST OF FIGURES

Collisions for RC4-Hash 125
1 The compression function of RC4-Hash, C

(
〈S, j〉 ,X

)
. 129

2 The output transformation of RC4-Hash, gn

(
〈S, j〉

)
. 130

3 A collision pair for RC4-Hash using fixed points of type I. 135
4 A collision pair for RC4-Hash using fixed points of type II. 136
5 The RC4 stream cipher. 141

Coding Theory and Hash Function Design 143
1 A compression function design based on parallel permutations. . . 147

The Lane Hash Function 153
1 The SubBytes transformation in Lane-224 and Lane-256. 160
2 The ShiftRows transformation in Lane-224 and Lane-256. 161
3 The MixColumns transformation in Lane-224 and Lane-256. . . . 162
4 Pseudocode for generating the Lane constants. 163
5 The AddConstants transformation in Lane-224 and Lane-256. . . 163
6 The AddCounter transformation in Lane-224 and Lane-256. . . . 164
7 The SwapColumns transformation in Lane-224 and Lane-256. . . 165
8 The SwapColumns transformation in Lane-384 and Lane-512. . . 167
9 The Lane compression function. 169
10 Pseudocode for the Lane permutation rounds. 170
11 Pseudocode for the permutations in Lane-224 and Lane-256. . . . 172
12 Pseudocode for the permutations in Lane-384 and Lane-512. . . . 172
13 A collision differential for Lane. 186
14 Truncated differentials in one lane of Lane-256. 188
15 Truncated differentials in one lane of Lane-512. 189

Practical Collisions for EnRUPT 221
1 The EnRUPT hash function. 226
2 The EnRUPT round function. 226
3 Trellis segments used in the calculation of DP×9. 233

Practical Preimages for Maraca 251
1 The Maraca hash function. 255
2 The Maraca permutation. 256

Cryptanalysis of Dynamic SHA(2) 263
1 Compression function of Dynamic SHA. 268
2 Compression function of Dynamic SHA2. 269

Practical Collisions for SHAMATA-256 287
1 The state update function of SHAMATA. 292
2 Patterns used in the guess-and-determine phase. 301

List of Tables

I Analysis and Design of Cryptographic Hash Functions 1

2.1 The birthday paradox. 16

3.1 The second round SHA-3 candidates. 21

4.1 Our cryptanalysis contributions. 37

II Publications 51

Preimages for Reduced-Round Tiger 57

1 Notations. 61

Trivial Collisions for Simplified and Reduced SHA-2 71

1 The SHA-256-XOR-24 expanded message difference. 76
2 Example collision pair for SHA-256-XOR-24. 78

A Practical Attack on KeeLoq 81

1 An overview of the known attacks on KeeLoq. 86

Collisions and Other Non-Random Properties for Step-Reduced SHA-256 103

1 Comparison of our results with the known results in the literature. 107
2 The notation used in this paper. 108
3 A 9-step differential. 110
4 Example colliding message pair for 23-step reduced SHA-256. . . . 114
5 Example colliding message pair for 24-step reduced SHA-256. . . . 115
6 Experimental results of the free-start near-collision attack on

SHA-256. 117
7 Example colliding message pair for 23-step reduced SHA-512. . . . 119

xvii

xviii LIST OF TABLES

Collisions for RC4-Hash 125
1 Partial state rotations of type I. 132
2 Partial state rotations of type II. 134
3 Example collision pair for RC4-Hash64, using fixed points of type I. 137
4 Example collision pair for RC4-Hash64, using fixed points of type II. 137
5 The message reordering r(·). 140
6 The initial value permutation SIV. 140

Coding Theory and Hash Function Design 143

The Lane Hash Function 153
1 Parameters of the Lane hash functions. 156
2 The notation used in the specification of Lane. 157
3 The AES S-box, in hexadecimal format. 160
4 The flag byte φ. 166
5 The Lane initial values IVn, if no salt is used. 167
6 Number of rounds in the Lane permutations. 170
7 The full round number r. 171
8 Lower bounds on the number of active S-boxes 184
9 Expected strength of Lane against cryptanalytic attacks. 204
10 Test platform for the software implementations of Lane. 206
11 Performance measurement results of our Lane implementations. . 206
12 Number of XMM instructions in one Lane round. 207
13 Hardware evaluation of the Lane hash function. 210
14 The constants used in Lane. 217

Practical Collisions for EnRUPT 221
1 EnRUPT parameters. 224
2 Summary of our attacks. 235
3 A collision example for EnRUPT-256. 236
4 Differential characteristic for EnRUPT-128. 237
5 Differential characteristic for EnRUPT-160. 239
6 Differential characteristic for EnRUPT-192. 241
7 Differential characteristic for EnRUPT-224 or -256. 243
8 Differential characteristic for EnRUPT-384. 245
9 Differential characteristic for EnRUPT-512. 247

Practical Preimages for Maraca 251
1 The Maraca S-box (hexadecimal). 257

Cryptanalysis of Dynamic SHA(2) 263
1 A 9-step local collision for Dynamic SHA. 271
2 Differential characteristic for the second iterative part of Dynamic

SHA2. 277

LIST OF TABLES xix

3 Summary of our results. 279
4 Collision example for Dynamic SHA-256. 281
5 Conditions on the message words w0, . . . , w15 for Dynamic SHA. . 283
6 Differential characteristic for the third iterative part of Dynamic

SHA2. 284
7 Conditions on the message words w0, . . . , w15 for Dynamic SHA2-512.286

Practical Collisions for SHAMATA-256 287
1 The differential path for 25 rounds of SHAMATA. 298

xx LIST OF TABLES

Part I

Analysis and Design of
Cryptographic Hash Functions

1

2

Chapter 1

Introduction

1.1 Cryptology

Cryptology has a long history, during which it has evolved from an arcane art into
a science. For most of its history, cryptology was the domain of diplomats, secret
services and the military. The methods and devices used were kept strictly secret,
lest they fall into the hands of the enemy. Kahn [46] gives a comprehensive account
of this early history of cryptology. In the 1970’s, cryptology gradually escaped from
the shroud of secrecy and mystery that had surrounded it for centuries, and found
its way into open research. Some of the catalysts for this sweeping change were the
publication of the Data Encryption Standard (DES) [59] in 1977 and the invention
of public key cryptography [21].

Cryptology has been — and still is — an important factor in the evolution
towards the information society. More and more transactions that used to be
carried out in person are being replaced by their digital counterparts, taking
place over worldwide networks like the internet. When information is being
transmitted over a potentially insecure medium, messages may be intercepted,
modified, rerouted, and so forth. One can no longer trust that communications
are not being eavesdropped on, or that the information one receives is genuine.
Even the identity of the other party in a communication becomes uncertain, as the
other party may very well be an impostor. Thus, the digital world creates several
new security challenges. For example, a handwritten signature on a contract is
difficult to copy accurately — or at least this is assumed to be difficult. In the
digital world, on the other hand, a signature is just a series of bits. It is very
simple to make a perfect copy of such a series of bits. Cryptology provides us with
the necessary technology to regain (some) of the guarantees that could be taken
for granted in classical face-to-face transactions. For a comprehensive overview
of cryptology in general, we refer to the ‘Handbook of Applied Cryptography’ by
Menezes, van Oorschot and Vanstone [57].

3

4 INTRODUCTION

1.2 Confidentiality and Authenticity

When discussing cryptology, most people consider only the problem of protecting
the confidentiality or secrecy of information. It is thus not surprising that also
historically, this has been the focus of cryptology for a long time. The goal is to
ensure that only certain authorised parties have the ability to learn the content of
the protected information, while others can not.

To achieve secrecy, the sensitive information or plaintext can be encrypted into
a ciphertext. This ciphertext is illegible to anyone, except to those who know how
to decrypt it. Following Kerckhoffs’ principle [49] from the 19th century, it is
assumed that the system or algorithm used to encrypt and decrypt is known to
the adversary, except for a secret key. Hence, the ciphertext should be illegible
to anyone who does not know this decryption key. In symmetric encryption, the
encryption and decryption keys are the same. Asymmetric encryption uses a
different key for the two operations. The encryption key is made known to anyone,
hence it also called the public key, while the decryption key or private key is kept
secret. Anyone can encrypt messages using the public key, but only the intended
recipient knows the private key and is thus the only one able to decrypt.

Often, however, the authenticity of a message is more important than its
secrecy. Consider for instance financial transactions. While secrecy of such
transactions is important for reasons of privacy, their authenticity is paramount.
If information on financial transactions leaks to the public, this may cause an
embarrassment to the affected bank, but this is not nearly as disastrous as
undetected fraudulent transactions. It is thus important to ensure that all
transactions that are carried out have originated from a properly authenticated
party, and have not been tampered with. Note that two types of authentication
are required: authentication of the sender (entity authentication) as well as the
message itself (data authentication). For a long time, it was believed that the
problem of authenticity was automatically solved by encryption. The idea was
that anyone capable of generating a ciphertext that decrypts to a meaningful
plaintext surely must know the encryption key. This is not true, however. A trivial
counterexample is the Vernam cipher or one-time pad. While this encryption
scheme is proven to be unconditionally secure, an attacker only has to change one
bit of the ciphertext to flip the corresponding plaintext bit.

Cryptographic hash functions play an important role in the protection of the
authenticity of information. Simply put, the hash result they generate can be
considered as a fingerprint of the message, and hence they reduce the problem of
protecting the authenticity of a long message to protecting the authenticity of a
short hash value. For a secure cryptographic hash function, it is not feasible to
find a collision, i.e., two distinct messages with the same hash result, or to find a
preimage, i.e., a message corresponding to a given hash result. Because of these
properties, one can assume a one-to-one correspondence between messages and
hash results.

CRYPTANALYSIS 5

1.3 Cryptanalysis

Cryptology consists of two closely related subdisciplines: cryptography and
cryptanalysis. Cryptography concerns the research on designing new algorithms,
and devising new applications. Cryptanalysis attempts to break these algorithms,
i.e., construct attacks that subvert their security. There is a continuing reciprocity
between cryptography and cryptanalysis, as new designs need to be analysed, and
novel analyses give ideas for new designs to resist them.

Some cryptographic schemes and protocols can be formally proven to be
unconditionally secure. This implies that they can not be broken, not even if
the adversary would have an unlimited computational power at his or her disposal.
For other schemes, it can be proven that their security reduces to some hard
mathematical problem. Such proofs show that any attack on the scheme can be
transformed into an algorithm to solve the underlying hard mathematical problem.
Hence, breaking the scheme cannot be easier than solving the underlying problem,
which is considered to be hard.

However, often, the luxury of such strong formal proofs of security is not
available. Especially in symmetric cryptology, proofs of security are the exception
rather than the rule. In such cases, we must resort to practice oriented methods
and attempt to develop attacks on cryptographic algorithms. There exist generic
attacks that apply to all cryptographic algorithms of a certain type, e.g., all block
ciphers, or all hash functions. The computing power required for such attacks can
be estimated, and the parameters of the algorithms are chosen such that these
attacks are well beyond what is feasible in practice. If a cryptanalyst succeeds
to develop an efficient shortcut attack, that considerably outperforms any generic
attack, this is a clear indication that the required security goals are not being
met, and the algorithm is considered broken. Cryptanalytic attacks yield valuable
insights that can be used to avoid similar attacks in the design of subsequent
algorithms. For certain types of cryptanalytic attacks, design strategies have
been developed for which it can be proven that the attack methodology does not
apply. For instance, the ‘Wide Trail’ design strategy, which was used to design
the Advanced Encryption Standard (AES) [16], offers provable resistance against
(plain) linear and differential cryptanalysis.

Note however that the absence of attacks does not guarantee that a scheme
is secure. Perhaps no attacks have been found because no one has attempted to
find any. In order to build confidence in the security of a cryptographic algorithm,
it needs to be evaluated for a sufficiently long time. This evaluation should be
performed, not only by the designers of the algorithm, but also by independent
cryptanalysts. It is common practice to also consider reduced or weakened variants
of cryptographic primitives for the purpose of cryptanalysis. If the full primitive
can not be broken, but some reduced variant can, this gives an indication of the
security margin offered by the full primitive, and can help to establish confidence
in its security.

6 INTRODUCTION

1.4 About this Dissertation

This dissertation is based on publications, and consists of two parts. The first
part gives a general introduction to the field cryptology and cryptographic hash
functions, and introduces relevant concepts. It also provides a brief outline of
our contributions to the design and analysis of cryptographic hash functions. The
second part consist of a selection of our publications, reproduced as they were
originally published. For a detailed list of publications, see p. 53.

This first part consists of five chapters. This chapter, Chapter 1, introduced
the field of cryptology in a nutshell. Chapter 2 focuses on cryptographic hash
functions. Cryptographic hash functions and their relevant properties are defined,
and certain important known results related to hash functions are discussed.
However, it is not intended to be a comprehensive overview of the relevant
literature. Chapters 3 and 4 give a summary of our contributions to the design and
analysis of cryptographic hash functions. The main purpose of these chapters is to
illustrate how our publications fit together, and how they relate to other work in
the field. Finally, Chapter 5 concludes and discusses possible directions for future
work.

Chapter 2

Cryptographic Hash Functions

2.1 Introduction

This chapter aims to give a brief introduction to cryptographic hash functions and
their most important properties and applications. For an in-depth discussion of
hash functions, we refer to the treatment of Preneel in [69].

A hash function is an efficient, deterministic algorithm that maps an input
of arbitrary length into an output of fixed length, see Fig. 2.1. Often, the term
message is used to denote the input of a hash function, and the output is called
the digest, the fingerprint, or the hash value. A hash function thus associates any
message with a certain fingerprint, which can be used to represent the message.
For this purpose, it is desirable that no two messages have the same fingerprint,
i.e., that so-called collisions do not occur.

However, it is impossible to avoid collisions, as there is only a limited number
of possible hash values. Even if the input is limited to some (large) maximum
length, which is often done for practical reasons, the number of possible inputs is
still far greater than the number of possible outputs, hence collisions must exist.
Consider for instance the hash function SHA-256 [62], which generates digests of
256 bits and accepts input messages with a length from 0 bits up to 264 − 1 bits.
There are ‘only’ 2256 possible hash values, but the number of possible inputs is
∑264−1

i=0 2i ≈ 2264

, which is far greater. Thus, while collisions unavoidably exist in
any hash function, for a cryptographic hash function, it should not be feasible to
find them.

Note that there are also plain, non-cryptographic hash functions. These
do not satisfy such stringent requirements. For instance, with respect to
collisions, for a non-cryptographic hash function it is sufficient if collision among
random messages are rare enough to not be of practical concern. These non-
cryptographic hash functions are among others used in data structures such as
hash tables [51]. In this work, only cryptographic hash functions are considered.

7

8 CRYPTOGRAPHIC HASH FUNCTIONS

h 01010011

Figure 2.1 – A hash function compresses an arbitrary-length input
message into a short, fixed length output.

The security requirements that separate cryptographic hash functions from their
non-cryptographic counterparts form the topic of Sect. 2.2.

An attack on a cryptographic hash function, or a cryptographic algorithm in
general, shows that a certain security property is not achieved. For instance, a
collision attack on a hash function consists of an efficient algorithm to find a
collision. The existence of such an efficient algorithm clearly shows that it is not
infeasible to find collisions for this particular hash function. Thus, it is not collision
resistant, and considered broken.

2.2 Security Requirements

Cryptographic hash functions are required to satisfy a number of security
properties. Which of these properties is important, depends on the application the
hash function is used in. It is generally accepted, though, that a cryptographic
hash function has to satisfy the following three main security requirements:

• Preimage resistance,

• Second preimage resistance, and

• Collision resistance.

There are other security requirements, e.g., a cryptographic hash function should
destroy any algebraic structure in its input. Ideally, a cryptographic hash function
should behave like a ‘random oracle’ [10]. A random oracle is an idealised
component that outputs a random string for every new input. If the same input
is repeated, the same output value is returned. This idealised concept is used in
security proofs for protocols and applications built on hash functions. It is proven
that the system is secure, provided that the hash function behaves like a random
oracle. Since a true random oracle does not exist, the best that can be achieved
is that it is not feasible to distinguish the hash function from a random oracle.

For simplicity, we focus only on the three basic security requirements for a
cryptographic hash function mentioned above. For a theoretical treatment of
security notions for hash functions, we refer to [79,84].

SECURITY REQUIREMENTS 9

2.2.1 Preimage Resistance

A hash function is preimage resistant or one-way if it is ‘hard’ to invert, i.e., given
an output y it is ‘hard’ to find an input x such that h(x) = y.

To avoid degenerate cases, it is required that y is a valid output, i.e., ∃x :
h(x) = y. The following example shows such a degenerate case. Consider the hash
function h(x) ≡ 0, i.e., a hash function that always outputs 0. Let y 6= 0. It is
clearly impossible to find a preimage for y, as there is no x such that h(x) = y 6= 0.

There are several variations of the notion of preimage resistance that capture
a number of subtleties in the definition of preimage resistance. For instance, what
if a hash function is hard to invert, except for a certain weak output y⋆? Rogaway
and Shrimpton [79] formalised the definitions of three types of preimage resistance:
‘Pre’, ‘aPre’ and ‘ePre’ and studied how they relate to each other, and to different
security notions.

2.2.2 Second Preimage Resistance

A hash function is second preimage resistant if it is ‘hard’ to, given an input x,
find a second input x′ 6= x such that h(x) = h(x′).

Note that there is only a subtle difference between preimage resistance and
second preimage resistance. From a practical point of view, this difference can
be very significant. Many hash functions have an output transformation, or some
padding rule that restricts the freedom of an adversary in the final part of the
hash computation, making it more difficult to invert. A (first) preimage attack
needs to overcome these difficulties, whereas a second preimage attack can simply
copy these parts from the challenge message.

Rogaway and Shrimpton [79] also studied formal definitions for second
preimage resistance and, similar to preimage resistance, formally define three
distinct notions: ‘Sec’, ‘aSec’ and ‘eSec’. They show several implications between
the various notions, e.g., the default second preimage notion ‘Sec’ implies the
default (first) preimage notion ‘Pre’, but not vice versa. This theoretical result
agrees with the observation mentioned above that a hash function can be (first)
preimage resistant, while being vulnerable to a second preimage attack.

2.2.3 Collision Resistance

For a collision resistant hash function, it must be ‘hard’ to find two distinct inputs
x 6= x′ such that h(x) = h(x′). Note that this is not the same as second preimage
resistance as here, both x and x′ can be chosen by the adversary.

According to some, e.g., Rogaway [78], there is a problem with this definition. If
a collision pair is known, a trivial adversary can be constructed that just outputs
this pair. Moreover, as collisions always exist, it exists in theory for any hash
function. Thus, if ‘hard’ is interpreted as ‘there exists no efficient adversary’ — as
is often done in theoretical works — there is indeed a conceptual problem. The

10 CRYPTOGRAPHIC HASH FUNCTIONS

typical way around this, is to introduce a key to the hash function. The term ‘key’
is perhaps an unfortunate choice, as these keys are not in any way secret. Rather
they are indices that designate a particular hash function as a member of a large
family. The notion of collision resistance then becomes: given a randomly chosen
key, find a collision for the member of the hash function family indexed by this key.
Rogaway [78] proposed an another way to sidestep the issue, without the need for
keys, based on formalising the concept of human ignorance. By requiring explicit
reductions, the existence of such an adversary is no longer a problem, as long as
it can not be written down. This is closer to the practical interpretation of ‘hard’.

2.3 Applications

Hash functions are used in such a wide variety of applications that they have been
dubbed the ‘Swiss army knives of cryptography’. This section briefly introduces a
number of applications of cryptographic hash functions.

Probably the most well known example is the optimisation of digital signatures.
For instance, a hash functions is an essential part of the ‘Digital Signature
Algorithm’ (DSA) [64]. Digital signatures schemes are based on public key
cryptography, e.g., RSA [77]. A signature on a message is generated using the
signer’s private key and signatures can be verified using the public key of the
signer. The algorithms used are typically several orders of magnitude slower than
symmetric algorithms, making straightforward digital signatures prohibitively slow
for long messages. This issue can be solved through the use of a hash function.
A message to be signed is first hashed — which is a fast operation even for long
messages — and then the hash value is signed. Since hash values are short, this
construction also results in compact signatures. An additional advantage is that
the hash function usually destroys the algebraic structure of the message space,
and may thus prevent attacks on the asymmetric algorithm. Of course, the security
of the hash function is critical to the security of the scheme. If an adversary can
generate a collision, and manages to convince the victim to sign one of the messages,
the signature will also be valid for the other, colliding message. Similarly, forgeries
can be constructed if a second preimage can be found for any signed message.

Another common application is password hashing. It is not desirable to store
the passwords of users in a password file, as this file may be exposed. Instead of
storing the user’s passwords, a hash value of each password is stored. When a user
wishes to authenticate, the entered password is hashed, and its digest is compared
to the correct digest from the password file. But reconstructing a password from
the password file requires finding a preimage. Hash chains or Lamport chains [53]
are an extension of this idea that can be used for one-time passwords.

Many cryptographic protocols use hash functions as a building block. Hash
functions can be used to derive short lived keys from long term secrets (key
derivation), to generate pseudorandom information from a key, or to confirm
knowledge of a shared secret, e.g., a session key, without revealing this secret.

ITERATED HASH FUNCTIONS 11

f f f f gIV

m1 m2 · · · mt

H

Figure 2.2 – An iterated hash function.

They can also be used to commit to some information that is to be revealed only
at a later time.

Another application of hash functions is to detect tampering of digital files.
Any modification results in an easily detectable change in the hash digest, except
if the adversary succeeds to construct a second preimage. Using the HMAC
construction [8], a ‘Message Authentication Code’ (MAC) — a function using
a secret key to authenticate messages — can be built from a hash function.

2.4 Iterated Hash Functions

Hash functions map a variable length input into a fixed length output. A natural
way to achieve this, is to construct a hash function h by iterating a compression
function f with a fixed length input. Early hash functions, such as Rabin’s
hash [71] were iterated, as are the vast majority of hash functions that have been
proposed since. Iterated hash functions have the advantage that the message can
be processed in a single pass, and need not be kept in memory in its entirety.

In general, an iterated hash function consists of three parts: a padding routine,
a compression function f and an (optional) output transformation g. The padding
routine takes the input message M of variable length and extends it to a multiple
of the block length. The padded message is then split into t blocks of equal size,
m1 through mt:

(m1, · · · ,mt) ← pad (M) . (2.1)

Then, the message is processed by applying the compression function f
iteratively for each padded message block, starting from a fixed IV or initial
value. Finally, the hash result is generated from the last chaining value ht using
the (optional) output transformation g (see Fig. 2.2):

h0 = IV ,
hi = f(hi−1,mi) for 1 ≤ i ≤ t ,

h(m) = g(ht) .
(2.2)

In many designs, the output transformation g is omitted, or consists of a simple
truncation to the desired output length. The use of an output transformation can
be useful in preventing (first) preimage attacks and length extension attacks. A
length extension attack aims to compute h(x || y) when given h(x), but not x.

12 CRYPTOGRAPHIC HASH FUNCTIONS

In the absence of an output transformation, a trivial length extension attack is
possible, as the last chaining value is equal to h(x) and thus known. An adversary
can simply append arbitrary message blocks and resume the hash computation to
find h(x || y) without requiring the knowledge of x.

2.4.1 The Merkle-Damgård Construction

In 1989, Damgård [17] and Merkle [58] independently showed an iterated
construction that can be proven to be collision resistant if the compression function
is collision resistant. In other words, the Merkle-Damgård construction transfers
the collision resistance of the compression function to the iterated hash function.

The key difference between the Merkle-Damgård construction and a plain
iterated hash function, which was described above, lies in the message padding.
The Merkle-Damgård construction includes the message length in the last padded
block, which makes the padding routine suffix free, i.e., a padded message can not
be a suffix of another, distinct padded message. This practice is called ‘Merkle-
Damgård strengthening’ since Lai and Massey [52]. Many hash functions are
constructed using this principle. For instance, (most of) the MD4-family hash
functions are padded by appending a single ‘1’ bit, a number of ‘0’ bits, and the
message length as a 64-bit unsigned integer. The number of ‘0’ bits is the minimum
required for the padded message to consist of a whole number of 512-bit blocks.

Theorem 2.1 (Merkle-Damgård). Let h be an iterated hash function constructed
from the compression function f using the Merkle-Damgård design principle. If
the compression f is collision resistant, then also the iterated hash function h is
collision resistant.

Proof. Assume that h is not collision resistant. This implies that there exists
an efficient adversary that can find a collision pair (M,M ′), i.e., M 6= M ′ and
h(M) = h(M ′). We distinguish two cases, depending on whether the length of
both messages is equal or not.

Case 1: |M | 6= |M ′|. The last compression function call yields a collision as its
output is the same for both messages, but its input differs as it includes the
message length |M | resp. |M ′|.

Case 2: |M | = |M ′|. Since the messages collide under h and have the same
length, there must be (at least) one compression function call for which
a compression function collision is found.

Hence, if h is not collision resistant, f is also not collision resistant. From this,
the theorem follows.

Note that it is assumed here that no output transformation is used. Otherwise,
the proof needs to be adapted to take into account the possibility for collisions in
the output transformation. For a more detailed discussion of this general case, we
refer to Sect. 3.3.4.

GENERIC ATTACKS 13

2.4.2 Other Constructions

Several improved iteration modes have been proposed, such as EMD by Bellare and
Ristenpart [9], HAIFA by Biham and Dunkelman [14], the Sponge construction
of Bertoni et al. [12, 13], and ROX by Andreeva et al. [4]. These iteration modes
offer more provable properties or resistance against (some of) the generic attacks
on plain Merkle-Damgård iterations described in Sect. 2.5.4.

2.5 Generic Attacks

There exists a class of attacks that apply to any cryptographic hash function,
regardless of its design. Such attacks are called generic attacks. Due to their
generic nature, it is not possible to prevent them. However, the effort required
to mount such a generic attack is (only) dependent on the parameters of the
hash function. Thus, to protect against generic attacks, the parameters of a hash
function are chosen such that the computational effort required by generic attacks
is large enough — by some considerable margin — to make them infeasible in
practice.

In the definition of the security properties of cryptographic hash function in
Sect. 2.2, it was said that it should be ‘hard’ to find preimages, collisions, etc.,
but this leaves the question what ‘hard’ means precisely. A natural definition of
‘hard’ would be infeasible in practice. However, this is a very vague, and rapidly
changing definition. Another option is to use generic attacks as a benchmark. For
instance, finding a preimage for a certain hash function is considered to be ‘hard’
if the best (known) method is a generic preimage attack.

A dedicated attack needs to require significantly less effort than a corresponding
generic attack to be of any interest, even if it is still highly impractical. For a secure
hash function, the best possible attacks should be these generic attacks, i.e., no
shortcut attack should exist. If there are shortcut attacks that outperform generic
attacks by a considerable margin, the hash function is considered to be broken.

It is not always very straightforward to compare attacks. If an attack is
practical, it can be implemented and run on real computing hardware. Since
actual designs are scaled such that generic attacks are not feasible in practice,
any attack that is practical surely outperforms the generic attacks. In the case of
non-practical or theoretical attacks, however, it is not always straightforward to
determine whether or not they are faster than a generic attack.

A crude way to compare attacks is to estimate the number of computations
required for the attack to complete with some non-negligible probability. This is
called the time complexity, and is typically expressed in units of hash function
computations, or compression function evaluations. However, this is not the only
important measure when comparing attacks. The memory requirements need to be
considered, as well as the memory access patterns. Often, there exists a trade-off
between time and memory, but it is not always clear which point on the trade-

14 CRYPTOGRAPHIC HASH FUNCTIONS

off curve is optimal. The importance of the memory access pattern is rooted in
the fact that large memories can only be accessed with a substantial latency. An
attack that has a lower time complexity, but requires random access to a large
memory, may be orders of magnitude slower in reality. Finally, the potential
for parallelisation is an important factor to consider as well. Some attacks can be
parallelised perfectly: running them on m machines in parallel reduces the running
time with a factor m. Other attacks are inherently serial, and can not benefit at
all from the availability of multiple machines.

2.5.1 Exhaustive Search

A straightforward approach to find (second) preimages for a hash function is a
simple exhaustive search. Consider a hash function with an n-bit result. In a
preimage attack, the adversary is given the desired n-bit output y, and tries to
find a message x, such that h(x) = y. As the output is n bits long, a random
message hashes to y with a probability of 2−n, under the assumption that each
output is equally likely. For all real cryptographic hash functions, this is a very
reasonable assumption. After about 2n random trials, it is expected to find a
preimage. Such an attack thus requires about 2n hash function evaluations and
negligible memory. It is trivial to parallelise, as each trial is fully independent, so
the performance of the attack scales linearly with the number of processors.

In the case of multiple targets, the attack can be improved. Consider the
scenario where a preimage is sought for any of 2t target digests. The probability
that a random trial matches one of the targets is 2−n+t, hence after about 2n−t

trials, it is expected that a preimage is found. Because of this simple fact, the
preimage security of a hash function degrades in the case where there are multiple
targets. In applications like password hashing, the use of salts (or keys) can
effectively avoid the undesirable effects of multiple targets.

The same attack can be used to find second preimages. The only precaution
that needs to be taken is to ensure that the challenge message x is not chosen as
one of the random trials, as that would yield a false positive. Note that this attack
can also be used to find collisions by starting from a random message and then
finding a second preimage. However, a much more efficient generic collision attack
exists, based on the birthday paradox. This is explained in Sect. 2.5.3.

2.5.2 Time-Memory Trade-Offs

Generic time-memory trade-off attacks may be used to quickly construct preimages
for hash functions at the expense of an extensive precomputation and a large
memory. This type of attack was pioneered by Hellman [29] in 1980. It was
later improved by Rivest, as described in [20], and a variant was proposed by
Oechslin [67]. The basic idea is to precompute long hash chains, and store the
starting and ending points of each chain in memory. To find a preimage in the
online phase, the same iteration is performed until a known ending point is found.

GENERIC ATTACKS 15

Since the corresponding starting point is also stored, the entire chain can be
reconstructed. Note that it is not guaranteed that the reconstructed chain will
contain the desired preimage, as chains may merge due to collisions.

Time-memory trade-offs can be used to attack password hashing schemes, as
they allow an adversary to quickly invert many password hashes after a one-time
precomputation. To protect against these attacks, password hashing schemes
should use a technique called ‘salting’. For each password, a unique salt or key is
randomly generated and stored in the password file. This salt is incorporated into
the hash computation, which has the effect that for each password, a different hash
function is used. Hence, the precomputation of a time-memory trade-off attack
would have to be repeated for each possible salt, which is not feasible.

2.5.3 The Birthday Attack

The birthday paradox states that in a group of at least 23 randomly chosen people,
there is more than 50% chance that (at least) two of them have the same birthday.
Intuitively, people expect that a significantly larger group of people is required
to observe such birthday collisions with a non-negligible probability. Assuming
that people’s birthdays are uniformly distributed and ignoring leap years, the
probability that N people have a different birthday (with N ≤ 365) is

p′(N) =

N−1∏

i=0

(

1− i

365

)

=
365!

365N (365−N)!
. (2.3)

At least one birthday collision occurs with the complementary probability p(N) =
1 − p′(N). For N = 23, the probability surpasses 50%, and as the number
of people N increases, it rapidly approaches 100%. This can be seen clearly
in Table 2.1, which contains the collision probability for several values of the
number N up to 100.

This can be applied to the problem of finding collisions for a hash function.
Consider an n-bit hash function, i.e., the hash outputs are n bits long. The
probability that two random inputs collide is 2−n, assuming that the output
distribution of the hash function is uniform. The probability that there are no
collisions in a set of N randomly chosen inputs is

p′(N) =
N−1∏

i=0

(

1− i

2n

)

≈
N−1∏

i=0

exp

(

− i

2n

)

= exp

(

− 1

2n

N−1∑

i=0

i

)

. (2.4)

Here, the approximation exp(−x) ≈ 1 − x (for small x) was used. Note that this
is a good approximation when N ≪ 2n. The probability that a collision occurs is
then given by

p(N) = 1− p′(N) ≈ 1− exp

(

− 1

2n
· N(N − 1)

2

)

≈ 1− exp

(

− N2

2n+1

)

. (2.5)

16 CRYPTOGRAPHIC HASH FUNCTIONS

Table 2.1 – The birthday paradox.

Number of people Collision probability

10 11.69 %
20 41.14 %
23 50.73 %
30 70.63 %
40 89.12 %
50 97.04 %
60 99.41 %
70 99.92 %
80 99.991 %
90 99.9994 %

100 99.99997 %

The expected number of randomly chosen messages that need to be hashed
before a collision is found, is ‘only’

√

π/2 · 2n/2 [25, 85]. Thus, the effort required
to find a collision using the birthday attack is, ignoring the constant, only the
square root of a naive exhaustive search.

The simplest variant of the birthday attack thus proceeds as follows. Choose
about

√

π/2 · 2n/2 random messages, compute their hash value, and store them
in a list. Given the size of the list, it is expected to contain a collision. Finding
the collision can be done efficiently by sorting the list. Alternatively, an explicit
sorting step can be avoided through the use of an appropriate data structure for
the list, for instance a hash table. The time complexity of this attack is Θ(2n/2)
hash function evaluations. The memory requirements are given by the size of the
list, and thus also Θ(2n/2) memory elements.

Meaningful Collisions

Note that this attack offers a great deal of freedom to the adversary, as the
messages can be chosen freely. Instead of finding just two random colliding
messages, an adversary can try to find a collision between variations of a ‘good’
message and variations of a ‘bad’ message. After such a collision is found, the
adversary convinces the victim to sign the good message. This signature will then
also be valid for the bad message, as both messages have the same hash value. The
only difference to the collision finding algorithm is that a collision is only useful
with probability 1/2. However, as this can be seen as a halving of the collision
probability, it can be offset by increasing the number of messages by a factor

√
2.

Shortcut attacks are typically much more restrictive in the types of messages
they allow, and typically require at least parts of the message to be seemingly
random gibberish. Still, there are several examples in the literature of how to
construct meaningful colliding messages based on shortcut attacks allowing only

GENERIC ATTACKS 17

very limited control over the message. For instance, Stevens et al. succeeded to
create X.509 certificates that collide under MD5 [82], and even constructed a rogue
‘Certification Authority’ (CA) certificate that is trusted by web browsers, based
on an advanced collision attack on MD5 [83].

Memoryless Birthday Attack

A more advanced variant of the birthday attack aims to eliminate the large memory
requirements. Consider an n-bit hash function h(x), and let f(x) = h (g (x)). Here,
the function g(x) maps an n-bit string into a suitable message. For instance, g(x)
could output a variation of a meaningful message in natural language, where the
input bits introduce small changes, such as typing errors or substituting certain
words with synonyms. It is also possible to search for collisions between variations
of a ‘good’ and a ‘bad’ message using an appropriate definition for g(x). But, for
simplicity, g(x) can be chosen to be the identity function, so f(x) = h(x).

Consider the pseudorandom walk through the set of n-bit strings generated by
iterating f(x) starting from some random starting point x0 ∈ {0, 1}n. Since the
set is finite, the sequence must repeat eventually. Hence, the graph of such a walk
will look like the Greek letter ρ. At the entry of the cycle, we find a collision for
f(x), as there are two different points xi 6= xj , which map to the first point of the
cycle: f(xi) = f(xj).

Using Floyd’s cycle finding algorithm [50], collisions can be found using only
negligible memory. The algorithm is based on the same pseudorandom walk, but
considers two sequences starting from the same point x0. For the first sequence,
f(x) is applied once per step, as before. The second sequence advances twice as
fast, i.e., f(x) is applied twice per step. When both sequences meet in some point
xv = x2v, the second sequence has gone through the same steps as the first, plus
an additional number of cycles. Hence, the cycle length µ divides the difference
in steps, which is v. Now, start iterating again from x0 and xv, using a single
application of f(x) per step for both sequences. As the sequences are an integer
number of cycle lengths apart, they will always be in the same point, as soon as
the first sequence enters the cycle. Thus, they will first meet at the entrance point
of the cycle, xλ = xλ+v, where λ is the length of the ‘tail’ of the ρ-shape.

The expected values of the tail length λ and the cycle length µ are both
√

π/8 ·
2n/2 [25, 85]. In the best case, v = µ and Floyd’s algorithm requires 3µ + 2λ
computations of the function f(x). Thus, in the best case, its expected time
complexity is 5

2

√

π/2 · 2n/2, which is 2.5 times larger than the standard birthday
attack. But, the memory requirements are negligible. Nivasch’s algorithm [66]
requires less time than Floyd’s algorithm, at the expense of logarithmic memory.

Parallel Birthday Attack

Running Floyd’s algorithm in parallel on m processors only gives a factor
√

m
improvement in runtime [85], which is rather inefficient. An efficient parallel

18 CRYPTOGRAPHIC HASH FUNCTIONS

variant of the birthday attack, which gains a factor m, was described by van
Oorschot and Wiener [85].

Each processor independently selects a random starting point, and iterates the
function f(x) until a distinguished point is encountered. A distinguished point is a
point that has some property that can be checked easily, e.g., a certain number of
leading zero bits. When a distinguished point is found, the processor transmits it
to a central database, together with the starting point and the trail length. As the
fraction of distinguished points is small, the amount of information that needs to
be kept centrally is limited. When the same distinguished point is found a second
time, this implies that two trails have been found that end in the same point. If
the starting points differ, the trails must merge at some point. At this merging
point, a collision for f(x) is found. As the lengths and starting points of both
trails are known, the collision can be recovered easily.

A potential problem is that false positives may occur. When one trail contains
the starting point of another trail, they will both end in the same distinguished
point, but no collision can be found from them. However, when the fraction of
distinguished points is small, the trails are long and false positives are unlikely.
Another problem is that a trail could enter a cycle that does not contain a
distinguished point. Such endless loops can be prevented by limiting the maximum
length of a trail to a suitable value.

2.5.4 Generic Attacks on Iterated Constructions

Several attacks have been proposed that are generic in the sense that they only rely
on certain limitations of common iterated hash function constructions. Joux [45]
showed how to efficiently find multicollisions: k colliding messages can be found
with an effort of only Θ(⌈log2(k)⌉2n/2). The long message second preimage
attacks of Dean [19] and Kelsey and Schneier [48] demonstrate that generic second
preimage attacks become easier as the challenge message is longer. A second
preimage attack on a message of 2k blocks has a complexity of only Θ(2n−k)
instead of Θ(2n). The herding attack by Kelsey and Kohno [47] allows an
adversary to commit to a hash value of a yet unknown message after performing
a precomputation step. Later, the adversary can, for any message, compute a
suffix such that it matches the commitment with an effort significantly below the
Θ(2n) operations one would expect. Andreeva et al. [2,3] proposed several further
extensions and generalisations of these ideas.

2.6 Conclusion

This chapter introduced cryptographic hash functions, their properties and
applications. Considerable attention was given to generic attacks on the various
security requirements of cryptographic hash functions. As generic attacks apply
to any hash function, regardless of its design, they provide a useful benchmark to
compare dedicated attacks to.

Chapter 3

Design of Cryptographic Hash
Functions

3.1 Introduction

This chapter describes our contribution to the design of cryptographic hash
functions: the hash function Lane. First, a short sketch of the history of hash
function designs is given in Sect. 3.1.1, leading to the NIST SHA-3 competition for
cryptographic hash function designs, see Sect. 3.1.2. Then, Sect. 3.2 introduces
Lane, our submission to the SHA-3 competition. Finally, Sect. 3.3 discusses
the relevance of pseudo-collisions, addressing questions that were raised by
independent cryptanalysis of Lane.

3.1.1 History and State of the Art

Historically, most cryptographic hash function designs were based on block
ciphers, e.g., the early DES-based hash function proposed by Rabin [71] in 1978.
Preneel et al. [70] studied in a systematic way how a block cipher can be used
to construct a hash function whose output size corresponds to the block size of
the cipher. In 1990, Rivest designed the dedicated hash function MD4 [72]. The
most widely used hash functions today are descendants of MD4. Because of their
similarity in design, they are often called the MD4 family. Actually, one could still
think of MD4 as a block cipher based hash function, except that it is not based
on a pre-existing block cipher. Rather, MD4 contains a block cipher that was
designed specifically for the MD4 hash function. Following a number of attacks on
MD4, Rivest proposed MD5 [74], a strengthened version of MD4, in 1991. Both
MD4 and MD5 were adopted as standards by the Internet Engineering Task Force
(IETF) [73,74], and were consequently used in numerous applications. The current

19

20 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

state of the security of MD4 and MD5 is not very good, as highly practical collision
attacks were shown, e.g. [82,83,87,89].

The National Institute of Standards and Technology (NIST) published the first
version of its ‘Secure Hash Standard’ (FIPS 180) [62] in 1993. It contained one
algorithm: the ‘Secure Hash Algorithm’ or SHA. First made public in 1992, the
design of SHA was clearly inspired by MD4 and MD5. In 1995, SHA was replaced
by SHA-1. The difference between SHA-1 and the original SHA, which is often
referred to as SHA-0, is very small. At that time, it was not known what the
motivation for this change was, but later, cryptanalytic results have shown that
SHA-0 is significantly weaker than SHA-1. Other hash functions of the MD4
family include RIPEMD, and its successors RIPEMD-128 and RIPEMD-160 [22],
and HAVAL [93]. The most recent addition to the MD4 family are the SHA-2
hash functions [62]: SHA-224, SHA-256, SHA-384 and SHA-512.

The ISO/IEC standard on dedicated hash functions, ISO/IEC 10118-3:2004 [43],
contains seven hash functions. In addition to the already mentioned algorithms
RIPEMD-128, RIPEMD-160, SHA-1, SHA-256, SHA-384 and SHA-512, the
standard includes the hash function Whirlpool which, unlike the other six, does
not follow the MD4 design strategy. Instead, Whirlpool is a block cipher based
construction, built on a conservative, special purpose block cipher called W . This
block cipher W was designed following the ‘Wide Trail’ strategy [16].

3.1.2 The NIST SHA-3 Competition

The National Institute of Standards and Technology’s (NIST) ‘Secure Hash
Standard’ [62] contains the cryptographic hash function SHA-1 and the four
members of the SHA-2 family: SHA-224, SHA-256, SHA-384 and SHA-512.
Currently, SHA-1 is in bad shape, and has been since at least 2005 [18, 88]. Even
though almost five years later, still no collision examples for SHA-1 have been
shown, there is hardly any trust left in the security of the SHA-1 hash function.
This also reflects on the SHA-2 family. Even though the most advanced collision
attacks on SHA-256 known at this time target a mere 24 out of 64 steps [33, 80],
there is very little confidence in the long-term security of SHA-2. This can be
explained by the similarities in design and structure between the SHA-2 family of
hash functions and its predecessors, such as MD5 and SHA-1.

These considerations have led NIST to initiate the development of a new hash
function standard, that will be called SHA-3, to serve as a backup solution in case
the security of SHA-2 would fail in the future. In November 2007, NIST issued
a call for candidate algorithms to participate in an international competition for
cryptographic hash functions [60]. This call for contributions was the official start
of the SHA-3 competition [61], which is expected to continue until 2012. The idea
of organising such an international competition to develop a new cryptographic
algorithm is not new. A very similar process led to the selection of the Advanced
Encryption Standard (AES) in 2001 [16].

THE LANE HASH FUNCTION 21

Table 3.1 – The second round SHA-3 candidates.

Name Principal Submitter

BLAKE Jean-Philippe Aumasson
Blue Midnight Wish Svein Johan Knapskog
CubeHash Daniel J. Bernstein
ECHO Henri Gilbert
Fugue Charanjit S. Jutla
Grøstl Lars R. Knudsen
Hamsi Özgül Küçük
JH Hongjun Wu
Keccak The Keccak Team
Luffa Dai Watanabe
Shabal Jean-François Misarsky
SHAvite-3 Orr Dunkelman
SIMD Gaëtan Leurent
Skein Bruce Schneier

On October 31st 2008, the deadline for the submission of candidate algorithms,
NIST had received a total of 64 proposals from teams across the entire world. Of
these 64 candidates, 51 were accepted to the first round of evaluations. We have
designed one of these first-round candidates: the hash function Lane [31]. On 24th
July, 2009 NIST announced the 14 candidates that were accepted to the second
round of evaluations [63], see Table 3.1. Our candidate, Lane, was not accepted
to the second round of the SHA-3 competition.

3.2 The Lane Hash Function

Lane is an iterated cryptographic hash function supporting digest size ranging
from 224 bits to 512 bits. The aims of Lane are to be secure, easy to understand,
elegant and flexible in implementation. Lane can take advantage of the parallelism
offered by modern high-performance CPUs, but also scales down to embedded
systems. Another advantage of Lane is the fact that each element of its design
is supported by a clear design rationale. Furthermore, Lane has undergone a
extensive security analysis. For a comprehensive treatment of Lane, we refer
to [31] (see p. 153).

The iteration mode of Lane is a simple and straightforward iteration mode,
similar to Merkle-Damgård, but with a number of modern enhancements, such as
the use of a counter as in HAIFA [14], and an optional salt to support randomised
hashing [28]. The chaining values are of the same length as the digest, i.e., Lane

is a narrow-pipe design.

22 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

The compression function of Lane has a novel structure based on a light
message expansion and parallel permutations. The permutations are based on
components from the AES block cipher [16]. More precisely, entire rounds of AES
are used as building blocks. This has the advantage that experience from the AES
can be reused in the analysis and implementation of Lane. The message expansion
is kept simple and lightweight on purpose. Thanks to a coding theoretic bound,
it can be proven that the message expansion of Lane precludes a type of meet-
in-the-middle attack. It also provides a useful bound with respect to differential
cryptanalysis. For a discussion of the rationale behind the design of the message
expansion of Lane, we refer to [37] (see p. 143).

Lane offers a multitude of options to the implementer, from fast massively
parallel implementations to small implementations fitting in resource constrained
environments. The fact that Lane uses AES rounds as building blocks enables
dedicated AES hardware units to be employed in implementations of Lane. For
instance, Intel has included a new instruction set called AES-NI [41] in their latest
microprocessors to perform hardware accelerated AES encryption. It is possible
to make a fast implementation of Lane taking advantage of these instructions.
As processors supporting AES-NI were not yet available commercially when Lane

was designed, we had to resort to a rough estimate of the performance benefit. We
estimated that, for Lane-256, a performance of about 5 clock cycles per message
byte could be achieved using the AES-NI instructions [31]. Benadjila et al. [11]
published a more accurate estimation of the performance potential of various AES-
based SHA-3 candidates on processors with AES-NI support. Their estimations are
based on experiments with different, existing instructions that have a performance
profile that matches the new AES-NI instructions as closely as possible. They
estimate the performance of Lane-256 at 5.5 cycles per byte, which is remarkably
close to our rough estimate, and would make Lane one of the fastest SHA-3
candidates on these processors.

3.2.1 Independent Cryptanalysis of Lane

Two independent analyses of the security of Lane have been published. Both
are based on the ‘rebound attack’, which is a new cryptanalytic technique aimed
mainly at byte-oriented symmetric cryptographic primitives. The rebound attack
was introduced by Mendel et al. [56] at FSE 2009, several months after the
submission deadline of the SHA-3 competition. The initial hash functions targeted
by the rebound attack were weakened variants of Whirlpool and round-reduced
versions of the SHA-3 candidate Grøstl [26]. The basic idea behind the rebound
attack is to use an efficient match-in-the-middle technique called the ‘inbound
phase’ to satisfy the low probability part in the middle of a truncated differential
path. It is in this inbound phase that the degrees of freedom available to the
adversary are used primarily. The inbound phase is then followed by a purely
probabilistic ‘outbound phase’.

THE LANE HASH FUNCTION 23

Wu et al. [90] were the first to apply the techniques of the rebound attack to
reduced versions of Lane. They give a semi-free start collision attack on reduced
Lane-256, where the number of rounds in the permutations is halved from 6 to 3.
A semi-free start collision attack is a weaker variant of a collision attack, in which
the attacker can choose the initial chaining value that is used. Wu et al. claim a
time complexity of 262 compression function evaluations and require a memory of
269. For reduced Lane-512, they show a semi-free start collision attack (time 262

and memory 269) and a collision attack (time 294 and memory 2133) for 3 out of
8 rounds, and a semi-free start collision attack (time 2254 and memory 2261) for
4 out of 8 rounds. While the time complexity of these attacks is, except for the
last attack, significantly below the birthday bound of 2128 resp. 2256, the memory
requirements are very high.

Matusiewicz et al. [54] present attacks on the full Lane compression function.
Their attacks are also based on the basic technique of the rebound attack, but it
is augmented with several novel ideas. For Lane-256, they show how to construct
semi-free start collisions with a time complexity of 296 and a very large memory
requirement of 288. For Lane-512, semi-free start collisions can be constructed in
time 2224 with an even higher memory requirement of 2128.

These attacks represent a great cryptanalytic advance in the development of
the rebound attack technique. Due to their very large memory requirements,
however, it is questionable whether they are more efficient than generic attacks.
Furthermore, the memory access pattern is not considered in [54]. The attack on
Lane-256, as it is described in [54], has a random memory access pattern, resulting
in a tremendous slowdown due to memory latency, as discussed in Sect. 2.5. This
can be avoided, but then the memory complexity increases from 288 to 296. Also
note that a generic parallel birthday attack can achieve the same time complexity
of 296 with ‘only’ 232 independent parallel processors. Although 232 ≈ 4, 29× 109

is a large number, it is certainly more reasonable than 288 ≈ 3, 09× 1026 memory.
Furthermore, a semi-free start collision attack targets only the compression

function. It can not, in general, be extended to a collision attack on the hash
function. Since the compression function is never intended to be used in isolation,
only attacks on the entire hash function have any relevance to the security of
applications. While compression function attacks are useful for our theoretical
understanding of security, the do not necessarily threaten the security of the hash
function. Matusiewicz et al. seem to agree with this, as they conclude their paper
as follows [54]:

“Although these collisions on the compression function do not imply
an attack on the hash functions, they violate the reduction proofs of
Merkle and Damgård, or Andreeva in the case of Lane. However,
due to the limited degrees of freedom, a collision attack on the hash
function seems to be difficult for full round Lane.”

It is indeed true that the conditions for the Merkle-Damgård proof, see
Theorem 2.1, are violated by a compression function collision attack. In Sect. 3.3

24 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

we explore the impact of this on the security of Lane, and show that the proof
can be adapted such that the compression function is no longer required to be
collision resistant, but that a weaker notion is sufficient.

NIST did not provide any motivation for their decision to not select Lane for
the second round of the SHA-3 competition. But it is likely that Lane was not
selected because of the compression function attacks of Matusiewicz et al. [54].

3.3 On Pseudo-Collisions

The classical Merkle-Damgård proof [17,58] shows that an iterated cryptographic
hash function following the Merkle-Damgård design paradigm is collision resistant
if its compression function is collision resistant; see Theorem 2.1. Collision
resistance of the compression function is thus a sufficient condition, but is it also
a necessary condition?

3.3.1 Pseudo-Collision Attacks

A pseudo-collision attack on an iterated hash function is a variant of a collision
attack where the attacker is given the additional freedom to choose the initial value
for both messages. Lai and Massey [52] further distinguish two types of pseudo-
collision attacks: semi-free start and free start collision attacks. In a semi-free start
collision attack, the attacker is allowed to choose the initial chaining value, but
the same value should be used for both messages. In a free-start collision attack, a
(small) difference may appear in the initial chaining value. Often, this terminology
is also used to denote compression function attacks where direct control over the
chaining input is required for the attack. Note that a (pseudo-)collision attack on
the compression function directly leads to a pseudo-collision attack on the iterated
hash function by using the compression function attack in the first message block.

Clearly, an efficient pseudo-collision attack of either type violates the collision
resistance of the compression function, and thus the Merkle-Damgård proof (see
Theorem 2.1) no longer applies. But there is no known method to construct a
collision attack on the entire hash function based only on a pseudo-collision attack.
More so, it seems that this is not possible in general. This raises the question if
collision resistance of a compression function is really required, or that a different,
weaker notion may suffice.

3.3.2 Towards Two-Step Compression Function Collisions

The core of the issue is that a pseudo-collision attack assumes that the adversary
has full and direct control over an intermediate chaining value. While a hash
function adversary can indeed affect intermediate chaining values by varying earlier
message blocks, this is only indirect control. To capture this, we introduce the
notion of a ‘two-step compression function collision’.

ON PSEUDO-COLLISIONS 25

f

f

h

h⋆

m

m⋆

6=
f f

f f

h

h⋆

m0 m1

m⋆
0 m⋆

1

6=

(a) (b)

Figure 3.1 – A compression function collision (a), and a two-step
compression function collision (b).

Definition 3.1. A collision for a compression function f(h,m), see Fig. 3.1 (a),
consists of a pair of chaining inputs 〈h, h⋆〉 and a pair of message blocks 〈m,m⋆〉
such that

• a collision is reached: f(h,m) = f(h⋆,m⋆), and

• the compression function is active, i.e., its inputs are not equal: h ||m 6=
h⋆ ||m⋆.

A two-step compression function collision is an extension of this definition that
captures the fact that there is only indirect control over the chaining input by
requiring it to be the output of another compression function call.

Definition 3.2. A two-step collision for a compression function f(h,m), see
Fig. 3.1 (b), consists of a pair chaining inputs 〈h, h⋆〉 and two pairs of message
blocks 〈m0,m

⋆
0〉 and 〈m1,m

⋆
1〉 such that

• a collision is reached: f (f (h,m0) ,m1) = f (f (h⋆,m⋆
0) ,m⋆

1), and

• the second compression function is active: f(h,m0) ||m1 6= f(h⋆,m⋆
0) ||m⋆

1

In Sect. 3.3.3 we show that, for the iteration mode used in Lane, resistance to
two-step compression collisions is a sufficient condition for collision resistance of
the iteration. Section 3.3.4 generalises this to a generic Merkle-Damgård iteration
with an output transformation. The reason for first considering the Lane iteration,
is that it results in a simpler, more concise proof.

26 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

f f f f f0

· · · · · · · · · |M |

H

Figure 3.2 – The Lane iteration mode.

3.3.3 The Lane Iteration Mode

The iteration mode of Lane is a simple and straightforward iteration mode, see
Fig. 3.2. For a detailed specification, we refer to [31] (see p. 153). The first
and the last compression function calls are special, and do not consume any
message data. The purpose of the first compression function call is to derive
the initial value for the actual iteration. It takes a constant input, and can thus
be precomputed. But embedded implementations can opt to recompute it and
avoid having to store the initial value. The last compression function call serves
as an output transformation. It takes the message length as an input, so Lane

performs Merkle-Damgård strengthening in the output transformation. Through
the counter input it is ensured that, although the compression function is exactly
the same, all compression function calls are distinct and not interchangeable.

We can now prove the following theorem in a way that is completely analogous
to the proof of Theorem 2.1 for the Merkle-Damgård construction.

Theorem 3.1. Let h be an iterated hash function using the Lane iteration with
compression function f . If the compression f is two-step collision resistant as in
Definition 3.2, then the iterated hash function h is collision resistant.

Proof. Assume that h is not collision resistant. This implies that there exists
an efficient adversary that can find a collision pair (M,M ′), i.e., M 6= M ′ and
h(M) = h(M ′). We distinguish two cases, depending on whether the length of
both messages is equal or not.

Case 1: |M | 6= |M ′|. The last two compression function calls, i.e., the output
transformation and the preceding compression function call, yield a two-step
compression function collision. Indeed, the final output collides, and the last
compression function call is active as its input includes the message length
|M | 6= |M ′|. This case is depicted in Fig. 3.3 (a).

Note that there is always at least one compression function call before the
output transformation, even if one of the messages has zero length. This is
shown in Fig. 3.3 (b).

Case 2: |M | = |M ′|. Since the messages collide under h, have the same length
and start from the same initial value, there must be (at least) one

ON PSEUDO-COLLISIONS 27

f f f f f

f f f

(a)

0

0

|M |

|M⋆|

H

f f f f f

f f

(b)

0

0

|M |

|M⋆| = 0

H

f f f

f f

f f f

(c)

0

0

|M |

H

f f

f f f

f f

(d)

0

0

|M |

H

Figure 3.3 – Two-step compression function collisions and the Lane

iteration mode.

28 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

compression function call for which a compression function collision is found.
Then, this compression function call and the one preceding it form a two-
step compression function collision. Indeed, the outputs of the second
compression function call collide, and it is active. Figure 3.3 (c) shows this
case. Note that the compression function call in which the collision occurs
can be the output transformation, even when the message lengths are equal.

Also note that there always is at least one compression function call
before the one exhibiting the collision. Indeed, the earliest place where a
compression function collision can occur is in the first compression function
call that processes message data, which is preceded by the compression
function call that derives the initial value. This case is shown in Fig. 3.3 (d).

Hence, if h is not collision resistant, f is not resistant to two-step compression
function collisions. From this, the theorem follows.

We can also trivially prove the following theorem, indicating that the
requirement of two-step compression function collision resistance is a weaker
condition than plain compression function resistance.

Theorem 3.2. A collision resistant compression function is also two-step collision
resistant.

Proof. Assume that the compression function f is collision resistant, but
not two-step collision resistant. This implies that there exists an efficient
adversary that can find a two-step compression function collision, i.e., a tuple
〈h,m0,m1, h

⋆,m⋆
0,m

⋆
1〉 such that f (f (h,m0) ,m1) = f (f (h⋆,m⋆

0) ,m⋆
1), and

f(h,m0) ||m1 6= f(h⋆,m⋆
0) ||m⋆

1.
Now, let h1 = f(h,m0) and h⋆

1 = f(h⋆,m⋆
0). Then it is clear that f(h1,m1) =

f(h⋆
1,m

⋆
1) and h1 ||m1 6= h⋆

1 ||m⋆
1. In other words, the second compression function

call yields a compression function collision. This violates the assumption that f
is compression function resistant, proving the theorem.

3.3.4 A Generic Merkle-Damgård Iteration

This result can be generalised in a trivial way to a generic Merkle-Damgård
iteration mode with output transformation, as shown in Fig. 3.4. The only
difference is that we can no longer treat all cases uniformly and need to consider
a number of corner cases involving the initial value or the output transformation
separately. Note that the original Merkle-Damgård proof (Theorem 2.1) also does
not consider an output transformation and thus needs to be extended in any case.
This is often overlooked, and does have an impact, especially for hash functions
with a weak output transformation. For instance, the ‘output transformation’ of
SHA-224 and SHA-384 consists of a simple truncation [62]. Because of this, a
hash function collision is no longer guaranteed to contain a compression function
collision, and thus the original Merkle-Damgård proof no longer applies.

ON PSEUDO-COLLISIONS 29

f f f f gIV

· · · · · · · · · · · · |M |

H

Figure 3.4 – A generic Merkle-Damgård iteration with output
transformation.

f f

f f

h

h⋆

m0 m1

m⋆
0 m⋆

1

6=

f g

f
g

h

h⋆

m

m⋆
6=

(a) (b)

f f

f

h

IV

m0 m1

m⋆
1

6=

f

f

IV

IV

m

m⋆

6=

(c) (d)

Figure 3.5 – Four cases of two-step compression function collisions
for a Merkle-Damgård iteration with output transformation.

30 DESIGN OF CRYPTOGRAPHIC HASH FUNCTIONS

Instead of requiring just resistance against finding two-step compression
function collisions, we now require that it is hard to construct any of the following
four cases, shown graphically in Fig. 3.5:

(a) Find 〈h,m0,m1, h
⋆,m⋆

0,m
⋆
1〉 such that

• f (f (h,m0) ,m1) = f (f (h⋆,m⋆
0) ,m⋆

1), and

• f(h,m0) ||m1 6= f(h⋆,m⋆
0) ||m⋆

1.

(b) Find 〈h,m, h⋆,m⋆〉 such that

• g (f (h,m)) = g (f (h⋆,m⋆)), and

• f (h,m) 6= f (h⋆,m⋆).

(c) Find 〈h,m0,m1,m
⋆
1〉 such that

• f (f (h,m0) ,m1) = f (IV,m⋆
1), and

• f(h,m0) ||m1 6= IV ||m⋆
1.

(d) Find 〈m,m⋆〉 such that

• f (IV,m) = f (IV,m⋆), and

• m 6= m⋆.

Case (a) is a two-step compression function collision, as in Definition 3.2. Note
that for the Lane iteration, all cases reduce to this single case. Indeed, the output
transformation in Lane is the same as the compression function, so case (b) is
identical to case (a). Also, the initial value IV is derived using the compression
function in Lane. Hence, cases (c) and (d) can be reduced to case (a) through
the use of the IV derivation.

3.4 Conclusion

This chapter introduced our contribution to the design of cryptographic hash
functions: the hash function Lane. Lane was submitted as a candidate to
the NIST SHA-3 competition, but did not advance beyond the first round of
the competition. Independent cryptanalysis of Lane has raised questions on the
relevance of pseudo-collision attacks, which were also addressed in this chapter.

Chapter 4

Analysis of Cryptographic Hash
Functions

4.1 Introduction

This chapter presents a survey of our contributions related to the cryptanalysis of
cryptographic hash functions. We have successfully analysed several hash functions
that were candidates in the SHA-3 competition: Dynamic SHA, Dynamic SHA2,
EnRUPT, Maraca and SHAMATA. Outside of the SHA-3 competition, we have
shown collision attacks on reduced variants of the SHA-2 hash functions, up to
24 rounds. At the time of writing, this is still the best known result for collision
attacks on SHA-2. We also investigated the security of RC4-Hash and reduced
versions of the Tiger hash function. Finally, although not a hash function, our
analysis of the KeeLoq remote keyless entry system is also included here.

Many of our attacks are practical and were implemented and verified to work.
For instance, we show collision examples for Dynamic SHA, EnRUPT, RC4-Hash,
24-step reduced SHA-256, 23-step reduced SHA-512, and SHAMATA-256. For
Maraca, our attack can find preimages for any digest in mere seconds. Our attack
on the block cipher KeeLoq was implemented and tested with data extracted from
an actual KeeLoq chip.

The remainder of this chapter gives a short summary of each of these analysis
results, in alphabetical order. For technical details on each of the attacks, we refer
to the publications included in part II of this dissertation.

4.2 Dynamic SHA and Dynamic SHA2

The hash functions Dynamic SHA [91] and Dynamic SHA2 [92] were proposed by
Xu as candidates in the NIST SHA-3 competition. The principal idea in the design

31

32 ANALYSIS OF CRYPTOGRAPHIC HASH FUNCTIONS

of both functions is the use of data-dependent rotations, i.e., bit-rotations where
the rotation amount is not fixed, but dependent on the processed data. The use
of this building block is not new. It had been used before in certain block ciphers,
e.g., RC5 and RC6 [75,76].

The designer’s motivation to use data-dependent rotations in a hash function
is (an attempt) to thwart differential attacks. The reasoning of Xu is that, if the
rotation amounts are variable depending on the data, it is not possible to trace
differences through the hash function. However, we note that a hash function
adversary not only knows exactly what happens inside the function, but even has
a certain amount of control. In our analysis of Dynamic SHA and Dynamic SHA2,
we make extensive use of this fact to control the rotation amounts.

In a joint work with Jean-Philippe Aumasson, Orr Dunkelman and Bart
Preneel [7] (see p. 263), we present practical collision attacks on Dynamic SHA, and
a close to practical collision attack on Dynamic SHA2. We give a collision example
for Dynamic SHA-256, thereby proving that our attack works. Also, by forcing
all rotation amounts to be zero, it is possible to construct a simple theoretical
preimage attack on Dynamic SHA that is faster than exhaustive search. Neither
Dynamic SHA nor Dynamic SHA2 were accepted into the second round of the
SHA-3 competition, likely because of their clear lack of security, as pointed out by
our cryptanalytic results.

4.3 EnRUPT

The EnRUPT family of hash functions was submitted to the SHA-3 competition
by O’Neil, Nohl and Henzen [68]. It consists of seven EnRUPT variants with
digest lengths ranging from 128 bits to 512 bits. The core operation of EnRUPT
is a simple multiplication of 32- or 64-bit words with the constant 9.

Our attack [38, 40] (see p. 221) on EnRUPT is based on linearisation of the
hash function. All operations in EnRUPT are linear (over GF(2)), except for
the multiplication with 9. However, this operation can be approximated well
by a bitwise shift and an XOR, both of which are linear. Based on techniques
from coding theory, differential paths with a relatively high probability can be
constructed. However, these probabilities are still prohibitively small if the entire
path needs to be satisfied at once.

But due to the design of EnRUPT, it is straightforward to search for a
conforming pair, i.e., messages satisfying the differential path, in a step-by-step
fashion. This greatly reduces the time required to find such a pair, as the
complexities associated with each step of the differential can be added rather than
multiplied. Furthermore, this strategy can be taken into account when searching
for good differential paths, leading to an even better overall complexity.

We show practical collision attacks on all seven EnRUPT variants, with
complexities ranging from 236 to 240 round computations, depending on the
EnRUPT variant. The memory requirements of our attack are negligible and

KEELOQ 33

parallelisation is possible. For all EnRUPT variants, our attack thus significantly
outperforms a generic birthday attack. To demonstrate the practicality of our
attack, we give an actual collision example for EnRUPT-256. Even though
EnRUPT was patched in response to our analysis, it was not selected for the
second round of the SHA-3 competition.

4.4 KeeLoq

Unlike the other primitives in this chapter, KeeLoq is not a hash function. KeeLoq
is a lightweight block cipher, or alternatively, a suite of authentication protocols
built on this block cipher. KeeLoq technology is (or was) allegedly used by various
car manufacturers in anti-theft mechanisms. It was designed in the 1980’s and sold
to Microchip Inc. in 1995. For a long period of time, the definition of the cipher
was a well-kept secret. The first cryptanalysis results on KeeLoq were published
only in 2007, not long after a confidential document containing a specification of
KeeLoq leaked on the internet.

Our attack on KeeLoq is a practical key recovery attack requiring only 216

known plaintext-ciphertext pairs. While this may seem unrealistic, one of the
protocols built on KeeLoq, the ‘KeeLoq Identify Friend or Foe’ (IFF) protocol,
allows to trivially extract the ciphertexts corresponding to chosen plaintexts from
a device. It is a simple challenge-response protocol in which the transponder chip
responds with the KeeLoq encryption of any challenge it is sent, without any
user interaction whatsoever. In little more than an hour within communication
range of a transponder, the required 216 plaintext-ciphertext pairs can be collected.
Then, our attack requires the time equivalent to about 244.5 KeeLoq encryptions,
compared to the 263 encryptions required for a brute force key search of the 64-bit
secret key. As our attack can be parallelised efficiently, a modestly-sized compute
cluster of 100 CPU cores can find the secret key in only two days.

For a detailed discussion of our attack on KeeLoq, we refer to [32] (see
p. 81). Apart from side-channel attacks [23], which exploit weaknesses in the
implementation rather than the cryptographic algorithm, this is still the best
known attack on KeeLoq.

4.5 Maraca

The cryptographic hash function Maraca was submitted to the NIST SHA-3
competition by Jenkins [44], but it was not accepted to the first round of the
competition, likely due to shortcomings of the submission package. Our analysis
of Maraca predates the announcement of the first-round candidates.

Maraca is based on an 8 × 8 bit S-box with rather remarkable properties.
Typically, an S-box is designed in such a way that all (non-zero) differential
transitions occur with a similar, low probability. The reason for avoiding high-
probability differentials is to resist differential cryptanalysis. Not so in Maraca,

34 ANALYSIS OF CRYPTOGRAPHIC HASH FUNCTIONS

where many transitions are impossible, and others occur with probabilities as high
as 75%. There are also many very good linear approximations for the S-box,
making it vulnerable to linear cryptanalysis as well.

In our analysis [39] (see p. 251) of Maraca, we take advantage of these
weaknesses in the S-box to construct a practical preimage attack on the Maraca
hash function. The starting point of our analysis is the observation that the
S-box can be approximated by a linear function with probability 1, provided that
the input is restricted to an affine subspace of a non-trivial dimension. More so,
there are multiple distinct approximations for which this is possible. By chaining
such approximations together, we managed to construct a similar property for the
entire Maraca hash function. When the input in restricted to a very carefully
chosen affine space, Maraca becomes a simple affine function. Such a function can
be inverted easily, for instance using Gaussian elimination.

This results in a practical preimage attack on Maraca, which can find a message
corresponding to any digest in mere seconds. Practical preimage attacks on hash
functions are relatively rare, especially attacks as powerful as our attack on Maraca.
This clearly shows that Maraca is a very weak hash function.

4.6 RC4-Hash

RC4-Hash [15] is a cryptographic hash function proposal inspired by the RC4
stream cipher. It is an iterated hash function and its chaining value consists of an
array of 256 elements representing a permutation of the integers 0 through 255,
and a pointer to an array element, much like the internal state of the RC4 stream
cipher. The compression function of RC4-Hash processes message blocks of 64
bytes. Each message byte is used four times, in a predefined order, to update the
permutation array and pointer in a similar way as the key scheduling algorithm of
RC4 uses the bytes of the secret key.

In [36] (see p. 125), we show two methods to construct fixed points for
RC4-Hash, and demonstrate how these can be used to construct collisions and
multicollisions following Joux’ technique [45]. The first construction method is
very similar to the so-called ‘Finney states’ [24] in the RC4 stream cipher. In
RC4, the initialisation makes it impossible to ever reach a Finney state. But in
RC4-Hash, the additional message freedom makes this possible, resulting in fixed
points. The second method can be seen as a generalisation of Finney states that
are made possible due to peculiarities in the design of RC4-Hash.

The computational effort required for our attacks is very low at only about 29

compression function evaluations for a single collision, or 27 + k · 28 for a 2k-way
multicollision. This means that our attack is practical, and we show collision
examples.

SHA-2 35

4.7 SHA-2

The SHA-2 hash functions [62] are the most recent, and most sophisticated
members of the MD4 family of hash functions. Four SHA-2 hash functions are
specified in [62], with digest lengths ranging from 224 bits up to 512 bits: SHA-224,
SHA-256, SHA-384 and SHA-512. Compared to SHA-1, the SHA-2 functions
include several additional hurdles for the cryptanalyst. For instance, while the
message expansion of SHA-1 is linear, it contains non-linear operations in SHA-2.
Also the state update transformation is more complex in SHA-2 compared to
SHA-1. The building blocks are still the same — modular additions, bitwise shifts
and rotations, XOR and bitwise Boolean functions — but SHA-2 performs more
operations per step, and updates two state variables instead of just one.

SHA-1 updates only a single state variable per step, and it is straightforward
to re-write SHA-1 using only this single variable in each step. This can be a useful
representation for the cryptanalyst, e.g., see [18]. At first sight, this is no longer
possible in SHA-2. However, in [30] (see p. 71) we are the first to show that
also for SHA-2, such a representation is possible. As an example, [30] uses this
alternative representation of SHA-2 to construct a trivial and practical collision
attack on SHA-256-XOR-24. This is a simplified and reduced variant of SHA-256,
where the number of rounds is reduced from 64 to 24, and all modular additions in
the message expansion are replaced by XOR operations. This makes the message
expansion linear again, similar to SHA-1.

In [33] (see p. 103) we improve upon the analysis of SHA-256 by Nikolić and
Biryukov [65]. We extend the Nikolić-Biryukov attack from collisions for 21-step
SHA-256 to 24-step collisions. An important building block of our improved attack
is the alternative SHA-2 representation that we introduced in [30], which enables
us to convert a 24-step semi-free start collision attack into a real collision attack on
SHA-256 reduced to 24 out 64 steps. Our attack can also be applied to SHA-512
up to 24 (out of 80) steps.

We demonstrate that our attacks are practical by giving example collision pairs
for 23-step and 24-step SHA-256 as well as for 23-step SHA-512. Our attack on 24-
step SHA-512 is on the border of practicality, with an estimated time complexity of
253.0 operations. Additionally, we show a number of weaker attacks, demonstrating
non-random behaviour of the SHA-256 compression function for up to 31 steps.

Later, Sanadhya and Sarkar [81] improved upon our results. They claim
to achieve lower time complexities at the expense of a (very) large memory
requirement for a large look-up table. It is not clear if this really yields any
improvement in reality. Another modification they propose, is the omission of
a step of the attack procedure that was only included in [33] for the sake of
clarity, and does not impact the attack complexity. By using our techniques with
a different local collision, they do achieve a significant improvement for SHA-512,
enabling them to exhibit the first collision example for 24-step SHA-512.

36 ANALYSIS OF CRYPTOGRAPHIC HASH FUNCTIONS

4.8 SHAMATA

The SHA-3 submission SHAMATA [6] is a stream cipher like hash function design
with components from the AES block cipher. It is one of the fastest hash functions
submitted to the SHA-3 competition.

In our attack [34] (see p. 287), we show that SHAMATA is not collision resistant.
SHAMATA is built using operations on blocks of 128 bits. By considering only
a single, special 128-bit difference, that interacts favourably with the various
components of SHAMATA, the search for differential paths can be simplified
tremendously. Furthermore, many conditions imposed by the differential path can
be satisfied directly using a simple, but powerful message modification technique,
similar to the technique introduced by Wang [89] in the context of MD5 and
other hash functions. With the help of techniques from coding theory, we found
a collision differential path for which this message modification technique can be
used to satisfy all conditions, except for a single 128-bit condition in the first step.

Using an efficient guess-and-determine technique, this last condition can also be
satisfied for SHAMATA-256, resulting in a practical collision attack with a time
complexity of 240 operations. We show a collision example for SHAMATA-256
constructed using our attack. For SHAMATA-512, the last condition can only be
satisfied using an exhaustive search phase with complexity 2128 operations. While
no longer practical, this still yields a theoretical collision attack on SHAMATA-512
that is significantly faster than a generic attack.

4.9 Tiger

Tiger [1] is a 192-bit hash function that was designed by Anderson and Biham in
1995. It has been able to withstand cryptanalysis attempts remarkably well. The
most notable aspect of the design of the hash function Tiger, is that it was built to
make efficient use of 64-bit processors. Note that when Tiger was designed, 64-bit
processors were still far from common.

While collision attacks on reduced variants of Tiger had appeared earlier,
our analysis [35] (see p. 57) made a first attempt towards preimage attacks on
Tiger. We show straightforward guess-and-determine preimage attacks on the
compression function of Tiger, reduced to 12 or 13 out of 24 rounds. This requires
a computation of 263.5 or 2127.5 compression function evaluations, respectively.
Moreover, we show how to extend this to first and second preimage attacks on
similarly reduced variants of the Tiger hash function.

Since the publication of [35] in 2007, several more powerful preimage attacks
on Tiger have appeared [42, 55, 86], improving the number of rounds that can be
attacked up to 23 out of 24 rounds. And very recently, Guo et al. [27] claimed the
first preimage attack on full Tiger.

CONCLUSION 37

Table 4.1 – Our cryptanalysis contributions.

Name Variant SHA-3 candidate Attack type Practical

Dynamic SHA all X collision X

all X preimage

Dynamic SHA2 all X collision

EnRUPT all X collision X

KeeLoq key recovery X

Maraca all X preimage X

RC4-Hash all collision X

SHA-256 ≤24 steps collision X

SHA-512 ≤23 steps collision X

24 steps collision

SHAMATA 256 bits X collision X

512 bits X collision

Tiger ≤13 steps preimage

4.10 Conclusion

Table 4.1 gives a summary of our contributions related to cryptanalysis, that were
discussed in this chapter. Several first round SHA-3 candidates were analysed
successfully. As a direct consequence of our analysis, these candidates were
not accepted to the second round of the SHA-3 competition. The majority of
the attacks we presented are efficient enough to be practical, and were fully
implemented and verified.

38 ANALYSIS OF CRYPTOGRAPHIC HASH FUNCTIONS

Chapter 5

Conclusion

Cryptographic hash functions are of critical importance to the security of a
large number of applications. Recent cryptanalytic advances have raised serious
concerns regarding the security of several popular hash functions such as MD5
and SHA-1. Their successors, the SHA-2 hash functions, are not (yet) threatened
by any attack, but they enjoy very little confidence due to their similar design
philosophy. These concerns have caused the National Institute of Standards and
Technology (NIST) to organise the SHA-3 competition, aiming to develop the next
generation cryptographic hash function standard.

There is a strong connection between our research, presented in this
dissertation, and the SHA-3 competition. Firstly, we have designed the
cryptographic hash function Lane, which aims to be secure, easy to understand,
elegant and flexible in implementation. We have submitted Lane as a candidate to
the SHA-3 competition, but it did not advance to the second round of evaluations.

Secondly, we have contributed actively to the evaluation of SHA-3 candidates
through the cryptanalysis of the candidates Dynamic SHA, Dynamic SHA2,
EnRUPT, Maraca and SHAMATA. Apart from the SHA-3 competition, our
cryptanalysis contributions include a practical attack on the block cipher KeeLoq
and attacks on the hash functions RC4-Hash and (reduced) Tiger. Finally, we
have shown practical collision attacks on up to 24 steps of SHA-2, which is still
the highest number of steps ever achieved in a collision attack on SHA-2.

5.1 Directions for Future Research

Research on cryptographic hash functions has certainly gained much momentum
over the past years, but many questions still remain to be answered. We thus
conclude with some directions for future research.

• Find actual collisions for full, unreduced SHA-1. After the announcement of
an attack on full SHA-1 by Wang et al. [88] in 2005, it was generally believed

39

40 CONCLUSION

that an actual collision pair would soon follow. Now, five years later, this still
has not happened. Finding actual collisions in practice may be the only way
to convince industry to migrate away from SHA-1. The SHA-3 competition
seems to have diverted the attention of cryptanalysts away from SHA-1, but
perhaps it is time to have another look at it.

• Analysis of the SHA-2 family of hash functions. Currently, the best collision
attacks target only 24 out of 64 (or 80) steps [33,80] and the best preimage
attack is up to 43 steps [5]. As SHA-2 is being recommended as a replacement
for MD5 and SHA-1, it is important to analyse it thoroughly.

• Select a good hash function as SHA-3. Even though the selection will
ultimately be made by NIST, the cryptologic community has an important
responsibility here to provide NIST with analysis results and detailed,
comprehensive advice, enabling them to make a good selection.

• Several SHA-3 candidates are so-called ARX (Addition, Rotation, XOR)
designs, i.e., they consist (primarily) of these three types of operations. The
second-round candidates that (more or less) fit in this category are BLAKE,
Blue Midnight Wish, CubeHash, Shabal, SIMD and Skein. In general, it is
difficult to analyse ARX designs, and even more challenging to prove bounds
against certain types of attacks.

• Since the beginning of the SHA-3 competition, new attack strategies for
cryptographic hash functions have emerged. The most notable example
is the ‘rebound attack’ [56]. Besides further extending and refining the
methodology, it is an interesting problem to devise ways to defend against
it. Perhaps it is possible to find constructions that can be proven to
resist rebound attacks, much like this is possible for standard differential
cryptanalysis.

• Provable security, the ‘holy grail’ of cryptology. In an ideal world, all security
mechanisms would be based on strong mathematical foundations that allow
to prove their properties. Especially in symmetric cryptology, reality is still
very far away from this utopia.

• Lightweight cryptography is becoming more and more important. Emerging
applications, such as systems using RFID tags, require security. But
standard cryptographic primitives do not fit within the resource constraints.
There is a need for good lightweight primitives, as well as analysis of such
proposals. In the absence of these, industry may resort to ad hoc designs
that are likely to be dreadfully insecure.

• f7c135672b778d22c762859060dd0a47575c89e49797f1166ebfbbfd5a9eb08c∗

∗This is the Lane-256 hash of the most ingenious idea in symmetric cryptology ever, or
perhaps not.

Bibliography

[1] R. J. Anderson and E. Biham. Tiger: A fast new hash function.
In D. Gollmann, editor, Fast Software Encryption, Third International
Workshop — FSE ’96, volume 1039 of Lecture Notes in Computer Science,
pages 89–97. Springer, 1996.

[2] E. Andreeva, C. Bouillaguet, O. Dunkelman, and J. Kelsey. Herding, second
preimage and trojan message attacks beyond merkle-damgård. In M. J.
Jacobson, Jr., V. Rĳmen, and R. Safavi-Naini, editors, Selected Areas in
Cryptography — SAC 2009, volume 5867 of Lecture Notes in Computer
Science, pages 393–414. Springer, 2009.

[3] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir,
and S. Zimmer. Second preimage attacks on dithered hash functions. In N. P.
Smart, editor, Advances in Cryptology — EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 270–288. Springer, 2008.

[4] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-
preserving iterated hashing: ROX. In K. Kurosawa, editor, Advances in
Cryptology — ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer
Science, pages 130–146. Springer, 2007.

[5] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages
for step-reduced SHA-2. In M. Matsui, editor, Advances in Cryptology —
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
578–597. Springer, 2009.

[6] A. Atalay, O. Kara, F. Karakoç, and C. Manap. SHAMATA hash function
algorithm specifications. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

[7] J.-P. Aumasson, O. Dunkelman, S. Indesteege, and B. Preneel. Cryptanalysis
of Dynamic SHA(2). In M. J. Jacobson, Jr., V. Rĳmen, and R. Safavi-Naini,
editors, Selected Areas in Cryptography — SAC 2009, volume 5867 of Lecture
Notes in Computer Science, pages 415–432. Springer, 2009.

41

http://csrc.nist.gov/groups/ST/hash/sha-3/

42 BIBLIOGRAPHY

[8] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In N. Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 1–
15. Springer, 1996.

[9] M. Bellare and T. Ristenpart. Multi-property-preserving hash domain
extension and the EMD transform. In X. Lai and K. Chen, editors, Advances
in Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in
Computer Science, pages 299–314. Springer, 2006.

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[11] R. Benadjila, O. Billet, S. Gueron, and M. J. B. Robshaw. The Intel AES
instructions set and the SHA-3 candidates. In M. Matsui, editor, Advances in
Cryptology — ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 162–178. Springer, 2009.

[12] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
In ECRYPT Hash Workshop. European Network of Excellence in Cryptology
ECRYPT, May 2007.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the
indifferentiability of the sponge construction. In N. P. Smart, editor, Advances
in Cryptology — EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 181–197. Springer, 2008.

[14] E. Biham and O. Dunkelman. A framework for iterative hash functions —
HAIFA. Second NIST Hash Workshop, 2006.

[15] D. Chang, K. C. Gupta, and M. Nandi. RC4-Hash: A new hash function
based on RC4. In R. Barua and T. Lange, editors, Progress in Cryptology
— INDOCRYPT 2006, volume 4329 of Lecture Notes in Computer Science,
pages 80–94. Springer, 2006.

[16] J. Daemen and V. Rĳmen. The design of Rĳndael: AES — the Advanced
Encryption Standard. Springer, 2002.

[17] I. Damgård. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1990.

[18] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General
results and applications. In X. Lai and K. Chen, editors, Advances in
Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2006.

BIBLIOGRAPHY 43

[19] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, Jan. 1999.

[20] D. E. Denning. Cryptography and Data Security, page 100. Addison-Wesley,
1982.

[21] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[22] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strengthened
version of RIPEMD. In D. Gollmann, editor, Fast Software Encryption,
Third International Workshop — FSE ’96, volume 1039 of Lecture Notes in
Computer Science, pages 71–82. Springer, 1996.

[23] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the power of power analysis in the real world: A complete
break of the KeeLoq code hopping scheme. In D. Wagner, editor, Advances
in Cryptology — CRYPTO 2008, volume 5157 of Lecture Notes in Computer
Science, pages 203–220. Springer, 2008.

[24] H. Finney. An RC4 cycle that can’t happen. Newsgroup post in sci.crypt,
Sept. 1994.

[25] P. Flajolet and A. M. Odlyzko. Random mapping statistics. In J.-
J. Quisquater and J. Vandewalle, editors, Advances in Cryptology —
EUROCRYPT ’89, volume 434 of Lecture Notes in Computer Science, pages
329–354. Springer, 1990.

[26] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl — a SHA-3 candidate. Submission
to the NIST SHA-3 competition, Oct. 2008. Available online at http://www.
groestl.info/.

[27] J. Guo, S. Ling, C. Rechberger, and H. Wang. Advanced meet-in-the-middle
preimage attacks: First results on full Tiger, and improved results on MD4
and SHA-2. Cryptology ePrint Archive, Report 2010/016, 2010. http://

eprint.iacr.org/2010/016/.

[28] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized
hashing. In C. Dwork, editor, Advances in Cryptology — CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 41–59. Springer,
2006.

[29] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

[30] S. Indesteege. Trivial collisions for simplified and reduced SHA-2. Technical
report, COSIC, Jan. 2008.

http://www.groestl.info/
http://www.groestl.info/
http://eprint.iacr.org/2010/016/
http://eprint.iacr.org/2010/016/

44 BIBLIOGRAPHY

[31] S. Indesteege, E. Andreeva, C. De Cannière, O. Dunkelman, E. Käsper,
S. Nikova, B. Preneel, and E. Tischhauser. The lane hash function.
Submission to the NIST SHA-3 competition, Oct. 2008.

[32] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A
practical attack on KeeLoq. In N. P. Smart, editor, Advances in Cryptology
— EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2008.

[33] S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger. Collisions and
other non-random properties for step-reduced SHA-256. In R. M. Avanzi,
L. Keliher, and F. Sica, editors, Selected Areas in Cryptography — SAC 2008,
volume 5381 of Lecture Notes in Computer Science, pages 276–293. Springer,
2009.

[34] S. Indesteege, F. Mendel, B. Preneel, and M. Schläffer. Practical collisions
for SHAMATA-256. In M. J. Jacobson, Jr., V. Rĳmen, and R. Safavi-Naini,
editors, Selected Areas in Cryptography — SAC 2009, volume 5867 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2009.

[35] S. Indesteege and B. Preneel. Preimages for reduced-round Tiger. In S. Lucks,
A.-R. Sadeghi, and C. Wolf, editors, Research in Cryptology, Second Western
European Workshop — WEWoRC 2007, volume 4945 of Lecture Notes in
Computer Science, pages 90–99. Springer, 2007.

[36] S. Indesteege and B. Preneel. Collisions for RC4-Hash. In T.-C. Wu, C.-L. Lei,
V. Rĳmen, and D.-T. Lee, editors, Information Security 11th International
Conference — ISC 2008, volume 5222 of Lecture Notes in Computer Science,
pages 355–366. Springer, 2008. Best Student Paper Award.

[37] S. Indesteege and B. Preneel. Coding theory and hash function design. In
B. Preneel, S. Dodunekov, V. Rĳmen, and S. Nikova, editors, Enhancing
Cryptographic Primitives with Techniques from Error Correcting Codes,
volume 23 of NATO Science for Peace and Security Series D — Information
and Communication Security, pages 63–68. IOS Press, 2009.

[38] S. Indesteege and B. Preneel. Practical collisions for EnRUPT. In
O. Dunkelman, editor, Fast Software Encryption, 16th International
Workshop — FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 246–259. Springer, 2009.

[39] S. Indesteege and B. Preneel. Practical preimages for Maraca. In T. Tjalkens
and F. Willems, editors, Proceedings of the 30th Symposium on Information
Theory in the Benelux, pages 119–126. Werkgemeenschap voor Informatie- en
Communicatietheorie, 2009.

BIBLIOGRAPHY 45

[40] S. Indesteege and B. Preneel. Practical collisions for EnRUPT. Journal of
Cryptology, 2010. To appear in print. Published online at http://dx.doi.

org/10.1007/s00145-010-9058-x.

[41] Intel Corporation. Advanced encryption standard (AES) instructions set.
White paper, July 2008. Available online at http://softwarecommunity.

intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf.

[42] T. Isobe and K. Shibutani. Preimage attacks on reduced Tiger and SHA-2.
In O. Dunkelman, editor, Fast Software Encryption, 16th International
Workshop — FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 139–155. Springer, 2009.

[43] ISO/IEC. ISO/IEC 10118-3:2004: Information technology — Security
techniques — Hash-functions — Part 3: Dedicated hash-functions. ISO/IEC,
2004.

[44] R. J. Jenkins Jr. Maraca: Algorithm specification. Submission to the NIST
SHA-3 competition, Oct. 2008. Available online at http://burtleburtle.

net/bob/crypto/maraca/nist/.

[45] A. Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In M. K. Franklin, editor, Advances in Cryptology —
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
306–316. Springer, 2004.

[46] D. Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Scribner, revised edition,
1996.

[47] J. Kelsey and T. Kohno. Herding hash functions and the Nostradamus attack.
In S. Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer,
2006.

[48] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In R. Cramer, editor, Advances in Cryptology —
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 474–490. Springer, 2005.

[49] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires,
IX:5–38, Jan. 1883.

[50] D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical
Algorithms. Addison-Wesley, third edition, 1997.

[51] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and
Searching. Addison-Wesley, second edition, 1998.

http://dx.doi.org/10.1007/s00145-010-9058-x
http://dx.doi.org/10.1007/s00145-010-9058-x
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://burtleburtle.net/bob/crypto/maraca/nist/
http://burtleburtle.net/bob/crypto/maraca/nist/

46 BIBLIOGRAPHY

[52] X. Lai and J. L. Massey. Hash function based on block ciphers. In R. A.
Rueppel, editor, Advances in Cryptology — EUROCRYPT ’92, volume 658
of Lecture Notes in Computer Science, pages 55–70. Springer, 1993.

[53] L. Lamport. Password authentication with insecure communication.
Communcations of the ACM, 24(11):770–772, 1981.

[54] K. Matusiewicz, M. Naya-Plasencia, I. Nikolić, Y. Sasaki, and M. Schläffer.
Rebound attack on the full Lane compression function. In M. Matsui, editor,
Advances in Cryptology — ASIACRYPT 2009, volume 5912 of Lecture Notes
in Computer Science, pages 106–125. Springer, 2009.

[55] F. Mendel. Two passes of Tiger are not one-way. In B. Preneel, editor,
Progress in Cryptology — AFRICACRYPT 2009, volume 5580 of Lecture
Notes in Computer Science, pages 29–40. Springer, 2009.

[56] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The Rebound
attack: Cryptanalysis of reduced Whirlpool and Grøstl. In O. Dunkelman,
editor, Fast Software Encryption, 16th International Workshop — FSE 2009,
volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer,
2009.

[57] A. J. Menezes, S. A. Vanstone, and P. C. van Oorschot. Handbook of Applied
Cryptography. CRC Press, 1996. http://www.cacr.math.uwaterloo.ca/

hac/.

[58] R. C. Merkle. One way hash functions and DES. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 428–446. Springer, 1990.

[59] National Bureau of Standards, U.S. Deparment of Commerce. Data
Encryption Standard. Federal Information Processing Standards Publication
46, 1977.

[60] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[61] National Institute of Standards and Technology. Cryptographic hash
algorithm competition, 2007. http://csrc.nist.gov/groups/ST/hash/

sha-3/.

[62] National Institute of Standards and Technology. Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-3, Oct. 2008.

[63] National Institute of Standards and Technology. Announcement of second
round SHA-3 candidates. E-mail posted to the NIST SHA-3 competition
mailing list, July 2009. Available online at http://csrc.nist.gov/groups/
ST/hash/sha-3/Round2/.

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/

BIBLIOGRAPHY 47

[64] National Institute of Standards and Technology. Digital signature standard
(DSS). Federal Information Processing Standards Publication 186-3, 2009.

[65] I. Nikolić and A. Biryukov. Collisions for step-reduced SHA-256. In K. Nyberg,
editor, Fast Software Encryption, 15th International Workshop — FSE 2008,
volume 5086 of Lecture Notes in Computer Science, pages 1–15. Springer,
2008.

[66] G. Nivasch. Cycle detection using a stack. Information Processing Letters,
90:135–140, 2004.

[67] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In
D. Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729
of Lecture Notes in Computer Science, pages 617–630. Springer, 2003.

[68] S. O’Neil, K. Nohl, and L. Henzen. EnRUPT hash function specification.
Submission to the NIST SHA-3 competition, Oct. 2008. Available online at
http://csrc.nist.gov/groups/ST/hash/sha-3/.

[69] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[70] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In D. R. Stinson, editor, Advances
in Cryptology — CRYPTO ’93, volume 773 of Lecture Notes in Computer
Science, pages 368–378. Springer, 1994.

[71] M. O. Rabin. Digitalized signatures. In R. Lipton and R. DeMillo, editors,
Foundations of Secure Computations, pages 155–168. Academic Press, 1978.

[72] R. L. Rivest. The MD4 message digest algorithm. In A. Menezes and S. A.
Vanstone, editors, Advances in Cryptology — CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages 303–311. Springer, 1991.

[73] R. L. Rivest. The MD4 message-digest algorithm. Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1320, Apr. 1992.

[74] R. L. Rivest. The MD5 message-digest algorithm. Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1321, Apr. 1992.

[75] R. L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast
Software Encryption, Second International Workshop — FSE ’94, volume
1008 of Lecture Notes in Computer Science, pages 86–96. Springer, 1995.

[76] R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin. RC6 as the AES. In Third
AES Candidate Conference, pages 337–342. National Institute of Standards
and Technology, 2000.

http://csrc.nist.gov/groups/ST/hash/sha-3/

48 BIBLIOGRAPHY

[77] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communcations of the ACM,
21(2):120–126, 1978.

[78] P. Rogaway. Formalizing human ignorance. In P. Q. Nguyen, editor,
Progress in Cryptology — VIETCRYPT 2006, volume 4341 of Lecture Notes
in Computer Science, pages 211–228. Springer, 2006.

[79] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In B. K. Roy and W. Meier,
editors, Fast Software Encryption, 11th International Workshop — FSE 2004,
volume 3017 of Lecture Notes in Computer Science, pages 371–388. Springer,
2004.

[80] S. K. Sanadhya and P. Sarkar. New local collisions for the SHA-2 hash family.
In K.-H. Nam and G. Rhee, editors, Information Security and Cryptology
— ICISC 2007, volume 4817 of Lecture Notes in Computer Science, pages
193–205. Springer, 2007.

[81] S. K. Sanadhya and P. Sarkar. New collision attacks against up to 24-step
SHA-2. In D. R. Chowdhury, V. Rĳmen, and A. Das, editors, Progress in
Cryptology — INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer
Science, pages 91–103. Springer, 2008.

[82] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In M. Naor, editor,
Advances in Cryptology — EUROCRYPT 2007, volume 4515 of Lecture Notes
in Computer Science, pages 1–22. Springer, 2007.

[83] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik,
and B. de Weger. Short chosen-prefix collisions for MD5 and the creation
of a rogue CA certificate. In S. Halevi, editor, Advances in Cryptology —
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
55–69. Springer, 2009.

[84] D. R. Stinson. Some observations on the theory of cryptographic hash
functions. Des. Codes Cryptography, 38(2):259–277, 2006.

[85] P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of Cryptology, 12(1):1–28, 1999.

[86] L. Wang and Y. Sasaki. Finding preimages of Tiger up to 23 steps. In S. Hong
and T. Iwata, editors, Fast Software Encryption, 17th International Workshop
— FSE 2010, Lecture Notes in Computer Science. Springer, 2010. To appear.

BIBLIOGRAPHY 49

[87] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash
functions MD4 and RIPEMD. In R. Cramer, editor, Advances in Cryptology
— EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2005.

[88] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In
V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

[89] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[90] S. Wu, D. Feng, and W. Wu. Cryptanalysis of the LANE hash function. In
M. J. Jacobson, Jr., V. Rĳmen, and R. Safavi-Naini, editors, Selected Areas
in Cryptography — SAC 2009, volume 5867 of Lecture Notes in Computer
Science, pages 126–140. Springer, 2009.

[91] Z. Xu. Dynamic SHA. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

[92] Z. Xu. Dynamic SHA2. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

[93] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL — a one-way hashing
algorithm with variable length of output. In J. Seberry and Y. Zheng, editors,
Advances in Cryptology — AUSCRYPT ’92, volume 718 of Lecture Notes in
Computer Science, pages 83–104. Springer, 1993.

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/

50 BIBLIOGRAPHY

Part II

Publications

51

52

List of Publications

International Journals

1. Sebastiaan Indesteege and Bart Preneel. Practical collisions for EnRUPT.
Journal of Cryptology, 2010. To appear in print. Published online at http://
dx.doi.org/10.1007/s00145-010-9058-x.

– See p. 221.

Lecture Notes in Computer Science

1. Sebastiaan Indesteege and Bart Preneel. Preimages for reduced-round
Tiger. In Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf,
editors, Research in Cryptology, Second Western European Workshop —
WEWoRC 2007, volume 4945 of Lecture Notes in Computer Science, pages
90–99. Springer, 2007.

– See p. 57.

2. Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart
Preneel. A practical attack on KeeLoq. In Nigel P. Smart, editor, Advances
in Cryptology — EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2008.

– See p. 81.

3. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian
Rechberger. Collisions and other non-random properties for step-reduced
SHA-256. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography — SAC 2008, volume 5381 of Lecture
Notes in Computer Science, pages 276–293. Springer, 2009.

– See p. 103.

53

http://dx.doi.org/10.1007/s00145-010-9058-x
http://dx.doi.org/10.1007/s00145-010-9058-x

54 LIST OF PUBLICATIONS

4. Sebastiaan Indesteege and Bart Preneel. Collisions for RC4-Hash. In
Tzong-Chen Wu, Chin-Laung Lei, Vincent Rĳmen, and Der-Tsai Lee, editors,
Information Security 11th International Conference — ISC 2008, volume
5222 of Lecture Notes in Computer Science, pages 355–366. Springer, 2008.
Best Student Paper Award.

– See p. 125.

5. Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A differential-
linear attack on 12-round Serpent. In Dipanwita Roy Chowdhury,
Vincent Rĳmen, and Abhĳit Das, editors, Progress in Cryptology —
INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer Science,
pages 308–321. Springer, 2008.

6. Sebastiaan Indesteege and Bart Preneel. Practical collisions for EnRUPT.
In Orr Dunkelman, editor, Fast Software Encryption, 16th International
Workshop — FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 246–259. Springer, 2009.

– See p. 221 for the extended journal version of this article.

7. Jean-Philippe Aumasson, Orr Dunkelman, Sebastiaan Indesteege, and Bart
Preneel. Cryptanalysis of Dynamic SHA(2). In Michael J. Jacobson,
Jr., Vincent Rĳmen, and Reihaneh Safavi-Naini, editors, Selected Areas
in Cryptography — SAC 2009, volume 5867 of Lecture Notes in Computer
Science, pages 415–432. Springer, 2009.

– See p. 263.

8. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin Schläffer.
Practical collisions for SHAMATA-256. In Michael J. Jacobson, Jr., Vincent
Rĳmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography
— SAC 2009, volume 5867 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2009.

– See p. 287.

9. Nicky Mouha, Christophe De Cannière, Sebastiaan Indesteege, and Bart
Preneel. Finding collisions for a 45-step simplified HAS-V. In Heung Youl
Youm and Moti Yung, editors, Information Security Applications, 10th
International Workshop — WISA 2009, volume 5932 of Lecture Notes in
Computer Science, pages 206–225. Springer, 2009.

LIST OF PUBLICATIONS 55

National Conferences

1. Sebastiaan Indesteege and Bart Preneel. Practical preimages for Maraca.
In Tjalling Tjalkens and Frans Willems, editors, Proceedings of the
30th Symposium on Information Theory in the Benelux, pages 119–126.
Werkgemeenschap voor Informatie- en Communicatietheorie, 2009.

– See p. 251.

Book Chapters

1. Sebastiaan Indesteege and Bart Preneel. Coding theory and hash function
design. In Bart Preneel, Stefan Dodunekov, Vincent Rĳmen, and Svetla
Nikova, editors, Enhancing Cryptographic Primitives with Techniques from
Error Correcting Codes, volume 23 of NATO Science for Peace and Security
Series D — Information and Communication Security, pages 63–68. IOS
Press, 2009.

– See p. 143.

2. Sebastiaan Indesteege. ARIA, Keeloq and Tiger. In Henk C. A. van Tilborg
and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security.
Springer, second edition, 2010. To appear.

Technical Reports

1. Sebastiaan Indesteege. Trivial collisions for simplified and reduced SHA-2.
Technical report, COSIC, January 2008.

– See p. 71.

2. Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr
Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar
Tischhauser. The lane hash function. Submission to the NIST SHA-3
competition, October 2008.

– See p. 153.

3. Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr
Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar
Tischhauser. The lane hash function — extended abstract. Technical
report, COSIC, 2008.

– See p. 153 for the full version of this technical report.

56 LIST OF PUBLICATIONS

Publication

Preimages for Reduced-Round
Tiger

Publication Data

Sebastiaan Indesteege and Bart Preneel. Preimages for reduced-round
Tiger. In Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf,
editors, Research in Cryptology, Second Western European Workshop
— WEWoRC 2007, volume 4945 of Lecture Notes in Computer Science,
pages 90–99. Springer, 2007.

Contributions

• Principal author.

57

58 PREIMAGES FOR REDUCED-ROUND TIGER

Preimages for Reduced-Round Tiger

Sebastiaan Indesteege∗ and Bart Preneel

Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

{sebastiaan.indesteege, bart.preneel}@esat.kuleuven.be

Abstract. The cryptanalysis of the cryptographic hash function
Tiger has, until now, focussed on finding collisions. In this paper we
describe a preimage attack on the compression function of Tiger-12,
i.e., Tiger reduced to 12 rounds out of 24, with a complexity of
263.5 compression function evaluations. We show how this can be
used to construct second preimages with complexity 263.5 and first
preimages with complexity 264.5 for Tiger-12. These attacks can also
be extended to Tiger-13 at the expense of an additional factor of 264

in complexity.

Key words: Tiger, hash functions, preimages

1 Introduction

A cryptographic hash function is expected to possess three properties: collision
resistance, preimage resistance and second preimage resistance. While other
properties exist, the above three are the most well known.

Collision resistance: It is difficult to find two distinct messages m 6= m′ that
hash to the same result, i.e., h(m) = h(m′).

Preimage resistance: When given a hash result y (for which it holds that ∃x :
h(x) = y), it is difficult to find a message m which hashes to y, i.e., h(m) = y.

Second preimage resistance: When given a message m, it is difficult to find a
message m′ 6= m that hashes to the same result as the given message, i.e.,
h(m) = h(m′).

There are generic attacks that apply to any hash function and whose time
complexity only depends on the size of the hash result. Collisions for a hash
function with an n-bit result can be found in time 2n/2 using a birthday attack [6,7],
and preimages can be found by brute force in time 2n. Weaker attacks may aim at
finding pseudo-collisions, where slight differences in the hash results are allowed,

∗F.W.O. Research Assistant, Fund for Scientific Research – Flanders (Belgium).

59

mailto:protect T1	extbraceleft sebastiaan.indesteege, bart.preneelprotect T1	extbraceright @esat.kuleuven.be

60 PREIMAGES FOR REDUCED-ROUND TIGER

or pseudo-near-collisions, where differences may also appear in the initial chaining
values.

All attacks on the cryptographic hash function Tiger [1] have so far been
collision attacks. Kelsey and Lucks [3] showed a collision attack on Tiger reduced
to 16 rounds with a complexity of 244 compression function evaluations. Mendel
et al. [4] extended this to a collision attack on 19 rounds of Tiger with a complexity
of 262 compression function evaluations. In both papers some weaker attacks
(e.g. pseudo-collisions) for a larger number of rounds were also shown. These
results were further improved by Mendel et al. [5] towards a pseudo-near-collision
for the full hash function and a pseudo-collision for 23 rounds of Tiger.

We focus on finding preimages for reduced variants of Tiger instead. More
specifically, we describe a method to find first and second preimages for 12 and
13 rounds reduced Tiger. This method is conceptually similar to Dobbertin’s
preimage attack on reduced MD4 [2]. Our attack finds first and second preimages
for Tiger-12 with a complexity of 264.5 and 263.5 compression function evaluations,
respectively. It can be extended to Tiger-13, where the complexities become 2128.5

and 2127.5, respectively. As Tiger has a digest size of 192 bits, the theoretical
complexity for finding first or second preimages is 2192 compression function
evaluations. To the best of our knowledge, this is the first result concerning
preimages for reduced round Tiger.

The structure of the paper is as follows. In Sect. 2, the Tiger hash function
is described, along with the notation that will be used throughout the paper.
Section 3 describes a preimage attack on three rounds of Tiger. The three round
preimage attack is then used as a building block to construct preimages for the
compression function of Tiger-12 and Tiger-13 in Sect. 4. Then, in Sect. 5 it is
shown how first and second preimages for these reduced variants of the Tiger hash
function can be constructed. Finally, Sect. 6 presents our conclusions.

2 Description of Tiger

Tiger [1] is an iterative cryptographic hash function, designed by Anderson and
Biham in 1996. It has an output size of 192 bits. Truncated variants with a digest
size of 160 and 128 bits were also defined. It was designed for 64-bit architectures
and hence all words are 64 bits wide and arithmetic is performed modulo 264.
Tiger uses the little-endian byte ordering.

First, the message to be hashed is padded by appending a single “1”-bit and
as many “0”-bits as necessary to make the message length 64 bits less than the
next multiple of 512 bits. Then the message length (in bits) is appended as a
64-bit unsigned integer. After this procedure, the padded message consists of an
integer number of 512-bit blocks. Then, Tiger’s compression function is applied
iteratively to each 512-bit block of the padded message.

Tiger’s compression function operates on a 192-bit chaining value and a 512-bit
message block. The message block is split into eight 64-bit words Xi. The 192-bit

DESCRIPTION OF TIGER 61

Table 1 – Notations.

X + Y Addition of X and Y modulo 264

X − Y Subtraction of X and Y modulo 264

X × Y Multiplication of X and Y modulo 264

X ⊕ Y Bit-wise exclusive or of X and Y
X Bit-wise complement of X

X ≪ n Logical left bit shift of X by n positions
X ≫ n Logical right bit shift of X by n positions
X||Y The concatenation of X and Y

Xi The i-th expanded message word
Yi The i-th intermediate value of the key schedule algorithm

Ai, Bi, Ci State variables at the output of round i, 0 ≤ i < 24
Ki The round constant used in round i, 0 ≤ i < 24

K−1
i Multiplicative inverse of Ki modulo 264

T1,. . . ,T4 The four 8-to-64-bit S-boxes used in Tiger

chaining value is split into three 64-bit words which are used as the initial state
variables A−1, B−1 and C−1. The compression function consists of three passes
of 8 rounds of a state update transformation (24 rounds in total), each using one
Xi to update the three state variables Ai, Bi and Ci. Table 1 summarises the
notations used in this paper.

The i-th round of Tiger (0 ≤ i < 24) is depicted in Fig. 1. Equivalently, the
state update transformation can be described by the following equations:

Ai = Ki × (Bi−1 + odd (Ci−1 ⊕Xi)) ,
Bi = Ci−1 ⊕Xi ,
Ci = Ai−1 − even (Ci−1 ⊕Xi) .

(1)

In every round, a round constant Ki is used. These constants are given by:

Ki =

5 if 0 ≤ i < 8 ,
7 if 8 ≤ i < 16 ,
9 if 16 ≤ i < 24 .

(2)

The non-linear functions odd(·) and even(·) are defined as follows.

odd(c7|| . . . ||c0) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7] ,
even(c7|| . . . ||c0) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6] .

(3)

Here, ci denotes the i-th byte of a 64-bit word, using the little-endian byte ordering,
i.e., c0 is the least significant byte.1 Both functions use four 8-to-64-bit S-boxes,

1Note that there was a misinterpretation of the byte order in [3, 4]. The attacks described
there can however be modified to overcome this problem. [5]

62 PREIMAGES FOR REDUCED-ROUND TIGER

T1 through T4. Note that both functions only use four out of eight input bytes,
and thus map 32 bits to 64 bits. They are called odd(·) and even(·) because they
operate on the odd, respectively even bytes of the input word.

The first eight message words Xi, 0 ≤ i < 8, are taken directly from the
message block. The message words X8,. . . ,X15 are derived from X0, . . . ,X7

using an algorithm which the designers of Tiger refer to as the key schedule
algorithm [1]. Then, using the same algorithm, X16,. . . ,X23 are determined from
X8,. . . ,X15. This key schedule algorithm consists of two passes, given by the
following equations:

Y0 = X0 − (X7 ⊕ A5 . . . A5x) ,
Y1 = X1 ⊕ Y0 ,
Y2 = X2 + Y1 ,
Y3 = X3 −

(
Y2 ⊕ (Y1 ≪ 19)

)
,

Y4 = X4 ⊕ Y3 ,
Y5 = X5 + Y4 ,
Y6 = X6 −

(
Y5 ⊕ (Y4 ≫ 23)

)
,

Y7 = X7 ⊕ Y6 .

X8 = Y0 + Y7 ,
X9 = Y1 −

(
X8 ⊕ (Y7 ≪ 19)

)
,

X10 = Y2 ⊕X9 ,
X11 = Y3 + X10 ,
X12 = Y4 −

(
X11 ⊕ (X10 ≫ 23)

)
,

X13 = Y5 ⊕X12 ,
X14 = Y6 + X13 ,
X15 = Y7 − (X14 ⊕ 01 . . . EFx) .

(4)

Finally, after 24 rounds, the initial state variables are fed forward, using a
combination of exclusive or, subtraction and addition.

A⋆ = A−1 ⊕A23 ,
B⋆ = B−1 −B23 ,
C⋆ = C−1 + C23 .

(5)

The 192-bit output of the compression function is A⋆||B⋆||C⋆, i.e., the concatena-
tion of A⋆, B⋆ and C⋆.

3 Preimages for Three Rounds of Tiger

In this section we describe a solution due to Mendel et al. [4] to the problem of
finding preimages for three rounds of the state update transformation of Tiger.
There is always exactly one solution, which can be found in constant time.
Although rather straightforward, it will prove to be a useful building block in
preimage attacks on a larger number of Tiger rounds.

More in detail, we are given A−1, B−1, C−1, A2, B2 and C2 and want to
determine the three message words X0, X1 and X2 such that the constraints
originating from the state update transformation are satisfied. Note that, without
knowing any of the message words, all the state variables in these three rounds

PREIMAGES FOR THREE ROUNDS OF TIGER 63

Ai Bi Ci

Ai−1 Bi−1 Ci−1

Xi

Ki

? ? ?

!!!!!!!!!

!!!!!!!!!

````````````````̀

−
?

×
?

+

-

?

�
��
+
?

�

odd� �

even� �

Figure 1 – The state update transformation of Tiger.



64 PREIMAGES FOR REDUCED-ROUND TIGER

can already be determined. Indeed, from (1) it follows that

A1 = C2 + even (B2) ,
B1 =

(
A2 ×K−1

2

)
− odd (B2) ,

B0 =
(
A1 ×K−1

1

)
− odd (B1) ,

A0 = K0 × (B−1 + odd (B0)) ,
C0 = A−1 − even (B0) ,
C1 = A0 − even (B1) .

(6)

Note that each Ki as given in (2) is coprime with 264 so its multiplicative inverse
modulo 264 exists and can be computed easily. Knowing the state variables, it is
trivial to determine X0, X1 and X2.

X0 = C−1 ⊕B0 ,
X1 = C0 ⊕B1 ,
X2 = C1 ⊕B2 .

(7)

This procedure is fully deterministic and always gives exactly one solution. The
time complexity of this procedure is equivalent to three rounds of Tiger.

Of course this can equally be applied to any three consecutive rounds of Tiger,
as part of a larger attack. To conclude, control over three consecutive expanded
message words yields complete control over the intermediate state of Tiger.

4 Preimages for the Compression Function of Tiger-12

In this section, we first describe a method to find preimages for the compression
function of Tiger, reduced to 12 rounds. Then we extend this to Tiger-13, i.e.,
Tiger reduced to 13 rounds.

Given the algorithm from Sect. 3, one can easily find sets of expanded message
words Xi which ensure that the output of the compression function of Tiger (or
a round-reduced version thereof) is equal to some desired value. However, if the
number of attacked rounds is greater than eight there is no guarantee that these
expanded message words satisfy the constraints from the key schedule algorithm.
For eight or less rounds of Tiger, the message expansion becomes trivial, as each
of the first eight expanded message words is under direct control of an adversary.
Hence also finding preimages for these variants of Tiger is trivial by making
arbitrary choices and using the algorithm from Sect. 3 for the last three rounds.

The circular dependency can be broken by guessing some intermediate
variable(s) and later verifying if the guess was correct. If the guess was wrong,
the attack is simply repeated. Hence the time complexity of the attack is highly
dependent on the probability that the correct guess was made. Since we assume
that every value for the guessed variables is equally likely, this probability is equal
to 2−n where n is the total number of guessed bits.



PREIMAGES FOR THE COMPRESSION FUNCTION OF TIGER-12 65

Conceptually, this approach is very similar to the work of Dobbertin [2] on
finding preimages for a reduced variant of MD4. Of course the similarity only
exists on a very high level, due to the fact that MD4 and Tiger are very different
hash functions.

4.1 Algorithm

In this section, a detailed description of the algorithm for finding preimages for
the compression function of Tiger-12 is given. As we are given the desired input
and output chaining values, the feed-forward given in (5) can easily be removed.
Therefore, the state variables A−1, B−1, C−1, A11, B11 and C11 are known at the
beginning of the attack.

1. Make arbitrary choices for the message words used in the four last rounds,
(i.e. X8, X9, X10 and X11). The state update transformation can be used in
the backwards direction to determine A7, B7 and C7, as follows:







Ai−1 = Ci + even (Bi) ,
Bi−1 =

(
Ai ×K−1

i

)
− odd (Bi) ,

Ci−1 = Bi ⊕Xi .
for i = 11, . . . , 8 (8)

2. Guess Y7, an intermediate value of the key schedule algorithm. This 64-bit
guess is the only guess that will be made in the attack. It will be verified in
the final step of the attack.

3. The message words X8 through X11 are normally computed from the key
schedule. These equations can easily be inverted to find the intermediate
values Y0, Y1, Y2 and Y3 for which the values chosen in step 1 will appear:

Y0 = X8 − Y7 ,
Y1 = X9 +

(
X8 ⊕

(
Y7 ≪ 19

))
,

Y2 = X10 ⊕X9 ,
Y3 = X11 −X10 .

(9)

This step is deterministic and always leads to a single solution. Looking
further at the key schedule, the message words X1 through X3 can also be
determined uniquely:

X1 = Y1 ⊕ Y0 ,
X2 = Y2 − Y1 ,
X3 = Y3 +

(
Y2 ⊕

(
Y1 ≪ 19

))
.

(10)

4. Choose X7 (there are 264 choices) and compute X0 using the key schedule:

X0 = Y0 + (X7 ⊕ A5A5A5A5A5A5A5A5x) (11)



66 PREIMAGES FOR REDUCED-ROUND TIGER

5. Now, the first four expanded message words (i.e. X0 through X3) are known.
The state update transformation can thus be used in the forward direction
to calculate A3, B3 and C3.






Ai = Ki × (Bi−1 + odd (Ci−1 ⊕Xi)) ,
Bi = Ci−1 ⊕Xi ,
Ci = Ai−1 − even (Ci−1 ⊕Xi) .

for i = 0, . . . , 3 (12)

Similarly, as X7 is known, the state update transformation can be applied
in the backwards direction to calculate A6, B6 and C6.

A6 = C7 + even (B7) ,
B6 =

(
A7 ×K−1

7

)
− odd (B7) ,

C6 = B7 ⊕X7 .
(13)

6. Note that, because A3, B3, C3, A6, B6 and C6 are now known, the algorithm
from Sect. 3 can be applied to determine the unique solution for X4, X5 and
X6.

A5 = C6 + even (B6) ,
B5 =

(
A6 ×K−1

6

)
− odd (B6) ,

B4 =
(
A5 ×K−1

5

)
− odd (B5) ,

A4 = K4 × (B3 + odd (B4)) ,
C4 = A3 − even (B4) ,
C5 = A4 − even (B5) ,
X4 = C3 ⊕B4 ,
X5 = C4 ⊕B5 ,
X6 = C5 ⊕B6 .

(14)

7. Finally, apply the key schedule, which is given in (4), to compute the correct
value for Y7 from the message words X0 through X7, all of which have now
been determined. Verify if the guess for Y7 made in step 2 is correct. If it
is, a preimage has been found. If not, restart from step 4 with a different
choice for X7.

The probability that the guess for Y7 is correct is 2−64 so we expect to find a
preimage after 264 tries. Note that one attempt requires just 8 rounds of the state
update transformation and 5 equations of the key schedule algorithm, which is
only about 2/3 of the computations of a compression function evaluation. For
simplicity, we assume that every equation of the key schedule algorithm takes
an equivalent amount of work. Hence, the overall complexity of the attack is
equivalent to slightly less than 263.5 evaluations of the compression function.

4.2 Extension to Tiger-13

The attack can be extended to 13 rounds, by additionally guessing the value of
X12 before the attack and verifying if the guess was correct afterwards. This again



FIRST AND SECOND PREIMAGES FOR TIGER-12 67

. . .

. . .

. . . -

-

-
12

rounds
of

Tiger

?

Arbitrary

M
′
n−2 6= Mn−2

-

-

-

+

−

i+

6

6

6

-

-

-
12

rounds
of

Tiger

?

Apply Attack

M
′
n−1

-

-

-

+

−

i+

6

6

6

-

-

-
12

rounds
of

Tiger

?

Copy

M
′
n = Mn (incl. padding)

-

-

-

+

−

i+

6

6

6

-

-

-A
⋆

n

B
⋆

n

C
⋆

n

Figure 2 – Constructing second preimages for Tiger-12.

happens with a probability of 2−64, yielding a total complexity of 2127.5. While
it is theoretically possible to make an extension towards 14 rounds of Tiger, this
hardly has an advantage over a simple exhaustive search.

5 First and Second Preimages for Tiger-12

The technique that has been developed in the previous section will now be
applied to construct first and second preimages for Tiger-12. An extension of
this construction to Tiger-13 is also possible.

5.1 Second Preimages for Tiger-12

Figure 2 shows how second preimages for Tiger-12 can be constructed, for (padded)
messages with at least two message blocks and no padding bits in the first message
block. This is equivalent to the requirement that the given message is at least 512
bits long.

In order to circumvent any issues that arise from the padding (which includes
the message length) we choose the length of the preimage to be equal to that of the
given message. We can hence reuse the last message block from the given message.
All message blocks from the beginning up to the second to last message block can
be chosen arbitrarily. This leaves us with exactly one message block, the central
block in Fig. 2. Because the chaining values are known before and after this block,
the attack from Sect. 4 can be applied. Of course a trivial generalisation where
more than one message block is copied from the given message exists. In this case,
the attack is applied to an earlier message block instead.

This procedure to find second preimages adds negligible overhead to the attack
as described in Sect. 4. Hence, the time complexity remains at 263.5 evaluations
of the Tiger-12 compression function.



68 PREIMAGES FOR REDUCED-ROUND TIGER

. . .

. . .

. . . -

-

-
12

rounds
of

Tiger

?

Arbitrary

Mn−2

-

-

-

+

−

i+

6

6

6

-

-

-
12

rounds
of

Tiger

?

Arbitrary

Mn−1

-

-

-

+

−

i+

6

6

6

-

-

-
12

rounds
of

Tiger

?

Apply Attack

Mn (incl. padding)

-

-

-

+

−

i+

6

6

6

-

-

-A
⋆

n

B
⋆

n

C
⋆

n

Figure 3 – Constructing first preimages for Tiger-12.

5.2 First Preimages for Tiger-12

Finding first preimages is a bit more involved due to the fact that there is no
given message which can be used to easily circumvent issues originating from the
padding. To construct first preimages for Tiger-12, we proceed as follows.

First we choose the message length such that only a single bit of padding will
be placed in X6 of the last message block. This is equivalent to choosing a message
length of k · 512 + 447 bits, where k is a positive integer. Next, as shown in Fig. 3,
all message blocks besides the last one are chosen arbitrarily and the attack is
applied to this last block.

By choosing the message length in this way, X7 of the last message block
contains the message length as a 64-bit integer, which is fixed. Hence we can no
longer choose X7 freely during step 4 of the attack. By using the freedom in the
choice of Y7 in step 2 instead, the attack still works. Because step 3 is now also
repeated, a larger part of the key schedule has to be redone on every attempt.
The complexity figure of 263.5 compression function evaluations can however be
maintained because even with the larger part of the key schedule, the work of
a single attempt does not exceed 70% — a fraction 2−0.5 — of a compression
function evaluation. But additionally, we have to verify if the last bit of X6 is a
“1”, as dictated by the padding rule. This happens with probability 2−1, resulting
in an overall complexity of 264.5 compression function evaluations.

Note that the first preimages constructed in this way do not contain an integer
number of bytes, which may not be acceptable. This problem can be solved by
choosing the message length equal to k ·512+440 bits instead. The only difference
is that X6 of the last message block now contains an entire byte of padding. The
probability that this byte turns out to be correct after executing the attack is
only 2−8, and hence the overall complexity increases to 271.5 compression function
evaluations.



CONCLUSION 69

5.3 Extension to Tiger-13

Both attacks can be extended to Tiger-13, as explained in Sect. 4.2. The
complexities become 2127.5 for second preimages, 2128.5 for first preimages and
2135.5 for first preimages of an integer number of bytes. A similar extension to
Tiger-14 could be made, but as previously explained it does not give any advantage
over an exhaustive search.

6 Conclusion

In this paper we have shown preimage attacks on reduced variants of the Tiger hash
function. A method to find preimages for the compression function of Tiger-12
and Tiger-13 with a complexity of 263.5 and 2127.5, respectively, was described. It
was shown how to construct first and second preimages for these variants of Tiger
based on this method. To the best of our knowledge, this is the first result with
respect to preimages of the Tiger hash function.

Acknowledgements

We would like to thank Florian Mendel, Christian Rechberger, Hirotaka Yoshida
for interesting discussions, and the anonymous reviewers for their helpful
comments.

This work was supported in part by the Concerted Research Action (GOA)
Ambiorics 2005/11 of the Flemish Government, by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), and by the European
Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

[1] R. J. Anderson and E. Biham. Tiger: A fast new hash function. In D. Gollmann,
editor, Fast Software Encryption, Third International Workshop — FSE ’96,
volume 1039 of Lecture Notes in Computer Science, pages 89–97. Springer,
1996.

[2] H. Dobbertin. The first two rounds of MD4 are not one-way. In S. Vaudenay,
editor, Fast Software Encryption, 5th International Workshop — FSE ’98,
volume 1372 of Lecture Notes in Computer Science, pages 284–292. Springer,
1998.

[3] J. Kelsey and S. Lucks. Collisions and near-collisions for reduced-round Tiger.
In M. J. B. Robshaw, editor, Fast Software Encryption, 13th International



70 PREIMAGES FOR REDUCED-ROUND TIGER

Workshop — FSE 2006, volume 4047 of Lecture Notes in Computer Science,
pages 111–125. Springer, 2006.

[4] F. Mendel, B. Preneel, V. Rĳmen, H. Yoshida, and D. Watanabe. Update
on Tiger. In R. Barua and T. Lange, editors, Progress in Cryptology —
INDOCRYPT 2006, volume 4329 of Lecture Notes in Computer Science, pages
63–79. Springer, 2006.

[5] F. Mendel and V. Rĳmen. Cryptanalysis of the Tiger hash function. In
K. Kurosawa, editor, Advances in Cryptology — ASIACRYPT 2007, volume
4833 of Lecture Notes in Computer Science, pages 536–550. Springer, 2007.

[6] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[7] B. Preneel. Cryptographic primitives for information authentication — state
of the art. In B. Preneel and V. Rĳmen, editors, State of the Art in Applied
Cryptography, volume 1528 of Lecture Notes in Computer Science, pages 49–
104. Springer, 1998.



Publication

Trivial Collisions for Simplified
and Reduced SHA-2

Publication Data

Sebastiaan Indesteege. Trivial collisions for simplified and reduced
SHA-2. Technical report, COSIC, January 2008.

Contributions

• Principal author.

71



72 TRIVIAL COLLISIONS FOR SIMPLIFIED AND REDUCED SHA-2



Trivial Collisions for Simplified and Reduced SHA-2

Sebastiaan Indesteege∗

Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be

Abstract. In this report we describe a trivial method to find
collisions for strongly simplified variants of the SHA-2 family of
hash functions. The simplifications include the linearization of the
message expansion by replacing modular addition with XOR, and
the reduction of the number of steps to 24 out of 64 (or 80). These
simplifications allow to find collision pairs for any digest length
with an expected time complexity of just 28 compression function
evaluations. The same method can be applied to 30 steps of SHA-
1, where the expected workload is about 25 compression function
evaluations.

Key words: hash functions, collisions, SHA-2

1 Introduction

This report describes a collision finding attack on simplified variants of the SHA-2
family of hash functions.

The SHA-2 Family. The SHA-2 family consists of several iterated cryptographic
hash functions with different digest sizes built on similar compression functions,
e.g., SHA-256, SHA-384 and SHA-512. For a complete specification of the SHA-2
hash functions, we refer to [4]. Because of the similarity between the members of
the SHA-2 family, we will focus on SHA-256 here. All the results in this paper can
be equally applied to the other members of the SHA-2 family.

Brief Summary of Related Work. Gilbert and Handschuh [1] showed a 9 step
local collision for SHA-256 with probability 2−66. This was improved by Hawkes
et al. [2] to 2−39. In [6], a variant of SHA-256 where all modular additions are
replaced by XOR was studied, resulting in pseudo-collisions for 34 steps of this
variant. Mendel et al. [3] reported collision producing characteristics for step-
reduced, but otherwise unmodified SHA-256, for up to 18 steps.

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

73

mailto:sebastiaan.indesteege@esat.kuleuven.be


74 TRIVIAL COLLISIONS FOR SIMPLIFIED AND REDUCED SHA-2

2 Description of SHA-256

The compression function of SHA-256 consists of a message expansion, which
transforms a 512-bit message block into 64 expanded message words Wi of 32 bits
each, and a state update transformation. The latter updates eight 32-bit state
variables A, . . . ,H in 64 identical steps, each using one expanded message word.
The message expansion can be defined recursively as follows.

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < 64

. (1)

The functions σ0(x) and σ1(x) are given by

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x≫ 3) ,
σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x≫ 10) .

(2)

The state update transformation updates two of the state variables in every step.
It uses the bitwise Boolean functions fIF and fMAJ as well as the GF(2)-linear
functions

Σ0(x) = (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22) ,
Σ1(x) = (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25) .

(3)

The following equations describe the state update transformation, where Ki is a
step constant.

T1 = Hi + Σ1(Ei) + fIF(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fMAJ(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 rounds, the initial state variables are fed forward using word-wise addition
modulo 232.

2.1 A Simplified Variant of SHA-256

The simplified variant studied in this article differs from the real SHA-256 in two
ways. First, all additions modulo 232 in the message expansion are replaced by
XORs, making it GF(2)-linear. Second, the number of steps is reduced to 24.
Hence, the simplified message expansion becomes

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2)⊕Wi−7 ⊕ σ0(Wi−15)⊕Wi−16 for 16 ≤ i < 24

. (5)

We will refer to this variant as SHA-256-XOR-24. The same simplifications can
be applied to the other members of the SHA-2 family.



FINDING COLLISIONS 75

3 Finding Collisions

In this section we describe how collisions for SHA-256-XOR-24 (and other
simplified SHA-2 members like SHA-384-XOR-24 and SHA-512-XOR-24) can be
found using a technique that is very similar to single-message modification. Single-
message modification was first introduced by Wang [5] in collision attacks on MD5,
SHA-0 and others.

3.1 Alternate Description of SHA-256

In SHA-0 and SHA-1, only a single state variable is updated in every step. This
naturally leads to a description where only the first state variable is considered.
Something similar can be done with the SHA-2 hash functions, even though two
state variables are updated in every step.

To accomplish this, we derive from the state update equations (4) a series
of equations which express the inputs of the i-th state update transformation,
Ai, . . . ,Hi, as a function of only Ai through Ai−7.

Bi = Ai−1 ,
Ci = Ai−2 ,
Di = Ai−3 ,
Ei = Ai−4 + Ai − Σ0(Ai−1)− fMAJ(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1 − Σ0(Ai−2)− fMAJ(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2 − Σ0(Ai−3)− fMAJ(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3 − Σ0(Ai−4)− fMAJ(Ai−4, Ai−5, Ai−6) .

(6)

Substituting these into the state update transformation of SHA-256 (4) yields
an alternative description requiring only a single state variable. This description
can be written as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6, Ai−7) + Wi . (7)

The function F (·) encapsulates (4) and (6) except for the addition of the expanded
message word Wi.

Ignoring the message expansion, it is easy to see that control over eight
consecutive expanded message words allows for any difference in the state variables
to be eliminated. This is very similar to the idea of single message modification [5].
Note that this description of SHA-256 is only interesting for analysis purposes, not
for implementation.

3.2 Inserting Odd Additive Differences.

Consider a pair of 32-bit words 〈X,X ′〉 having an XOR difference of 0xffffffff,
i.e., there is a difference in every bit. What are the possible additive differences
that can be achieved by such a pair?



76 TRIVIAL COLLISIONS FOR SIMPLIFIED AND REDUCED SHA-2

Table 1 – The SHA-256-XOR-24 expanded message difference.

∆W0 = 0x56c4b38b ∆W8 = 0xffffffff ∆W16 = 0x00000000

∆W1 = 0x1e01bbe2 ∆W9 = 0xffffffff ∆W17 = 0x00000000

∆W2 = 0x71721c34 ∆W10 = 0xffffffff ∆W18 = 0x00000000

∆W3 = 0x037ab391 ∆W11 = 0xffffffff ∆W19 = 0x00000000

∆W4 = 0x0c28f460 ∆W12 = 0xffffffff ∆W20 = 0x00000000

∆W5 = 0xefbc47ff ∆W13 = 0xffffffff ∆W21 = 0x00000000

∆W6 = 0xfdc03800 ∆W14 = 0xffffffff ∆W22 = 0x00000000

∆W7 = 0x1fffffff ∆W15 = 0xffffffff ∆W23 = 0x00000000

From two’s complement arithmetic, we know that the additive inverse of a
word X can be found as −X = X + 1, where X is the one’s complement of X.
The additive difference of the pair 〈X,X ′〉 is

δX = X ′ −X = X −X = X + (X + 1) = 2X + 1 . (8)

Hence, any odd additive difference can be generated by an appropriate choice of
the word X. There are exactly two possible choices for X for each odd additive
difference as the most significant bit of X does not influence the difference δX.

3.3 The Message Difference

For SHA-256-XOR-24, there exists a message difference that will produce a
difference of 0xffffffff in the eight expanded message words W8 through W15

and a zero difference in W16 through W23. Indeed, since the message expansion of
this simplified SHA-256 variant is GF(2)-linear one can simply use (5) to determine
the differences in the first eight expanded message words. Table 1 shows the
expanded message difference.

3.4 The Collision Search

Putting the pieces together yields a simple collision finding algorithm for SHA256-
XOR-24. The algorithm proceeds as follows:

1. Choose the message words W0 through W7 arbitrarily. Imposing the message
difference from Tbl. 1 allows to compute W ′

0 through W ′
7.

2. For each i, 8 ≤ i < 16,

(a) Determine the additive difference that needs to be introduced in step i
to ensure a zero difference in Ai+1, i.e.,

δWi = W ′
i −Wi

= F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6, Ai−7)
−F (A′

i, A
′
i−1, A

′
i−2, A

′
i−3, A

′
i−4, A

′
i−5, A

′
i−6, A

′
i−7) .

(9)



CONCLUSION 77

(b) With probability 1/2 the difference δWi is odd. In this case, there are
two suitable choices for Wi. In case δWi is even, we start over with a
different choice of W0 through W7.

3. After 16 steps, a zero difference in reached in the internal state. Because
the message difference is zero in the next eight rounds, this zero difference
is maintained with certainty for an additional eight rounds.

Under reasonable independence assumptions, the overall success probability is
2−8, hence we expect to find a collision pair after about 28 attempts. An early
abort strategy and not fully backtracking slightly improves this. An example
collision pair is given in Tbl. 2.

Note that a very similar approach can be applied to 30 steps of SHA-1.

4 Conclusion

We described a trivial method to find collisions for strongly simplified variants
of the SHA-2 family of hash functions. Linearizing the message expansion by
replacing modular addition with XOR and reducing the number of steps to 24
allows to find collision pairs with an expected effort of just 28 compression function
evaluations, for any digest length.

Acknowledgements

This work was supported in part by the Concerted Research Action (GOA)
Ambiorics 2005/11 of the Flemish Government, by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT.

References

[1] H. Gilbert and H. Handschuh. Security analysis of SHA-256 and sisters. In
M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography —
SAC 2003, volume 3006 of Lecture Notes in Computer Science, pages 175–193.
Springer, 2004.

[2] P. Hawkes, M. Paddon, and G. G. Rose. On corrective patterns for the SHA-2
family. Cryptology ePrint Archive, Report 2004/207, 2004. http://eprint.

iacr.org/.

[3] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rĳmen. Analysis of step-
reduced SHA-256. In M. J. B. Robshaw, editor, Fast Software Encryption,

http://eprint.iacr.org/
http://eprint.iacr.org/


78 TRIVIAL COLLISIONS FOR SIMPLIFIED AND REDUCED SHA-2

Table 2 – Example collision pair for SHA-256-XOR-24.

Ai Bi Ci Di Ei Fi Gi Hi Wi

0 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19 6667938f

1 62701bdc 6a09e667 bb67ae85 3c6ef372 ff2f7631 510e527f 9b05688c 1f83d9ab 7bd6934a

2 648a60cf 62701bdc 6a09e667 bb67ae85 3087407e ff2f7631 510e527f 9b05688c 07dc201c

3 d738ee5a 648a60cf 62701bdc 6a09e667 39bdb81e 3087407e ff2f7631 510e527f 2b2fc2a7

4 8d535940 d738ee5a 648a60cf 62701bdc 6c82ebbc 39bdb81e 3087407e ff2f7631 2bf4b111

5 cd9aff09 8d535940 d738ee5a 648a60cf c6baf39c 6c82ebbc 39bdb81e 3087407e 7292120a

6 867e3675 cd9aff09 8d535940 d738ee5a 3d18a3d9 c6baf39c 6c82ebbc 39bdb81e 0b748afe

7 67d3c637 867e3675 cd9aff09 8d535940 86c7ccdb 3d18a3d9 c6baf39c 6c82ebbc 72b15c2c

8 d4490d64 67d3c637 867e3675 cd9aff09 f26a5de3 86c7ccdb 3d18a3d9 c6baf39c 1da9165d

9 92b431e6 d4490d64 67d3c637 867e3675 1ff2b83a f26a5de3 86c7ccdb 3d18a3d9 3a5cf5ca

10 04ef8437 92b431e6 d4490d64 67d3c637 b93eb1b4 1ff2b83a f26a5de3 86c7ccdb 0202394b

11 7719af6b 04ef8437 92b431e6 d4490d64 eb6d55da b93eb1b4 1ff2b83a f26a5de3 10c5f64b

12 5333e55b 7719af6b 04ef8437 92b431e6 509ece8d eb6d55da b93eb1b4 1ff2b83a 3d868320

13 edb1efd1 5333e55b 7719af6b 04ef8437 f7a76eb7 509ece8d eb6d55da b93eb1b4 5a030974

14 011440c7 edb1efd1 5333e55b 7719af6b cc7583d6 f7a76eb7 509ece8d eb6d55da 61aa831e

15 b17ccc81 011440c7 edb1efd1 5333e55b 4fe69182 cc7583d6 f7a76eb7 509ece8d 06e69332

16 7c5b7561 b17ccc81 011440c7 edb1efd1 32f9cff8 4fe69182 cc7583d6 f7a76eb7 729011bf

17 4c06af0f 7c5b7561 b17ccc81 011440c7 6e939fad 32f9cff8 4fe69182 cc7583d6 d2d96dbe

18 eb01f745 4c06af0f 7c5b7561 b17ccc81 bdef5445 6e939fad 32f9cff8 4fe69182 a6774853

19 d1d36374 eb01f745 4c06af0f 7c5b7561 501a063e bdef5445 6e939fad 32f9cff8 86987156

20 7b176155 d1d36374 eb01f745 4c06af0f cc0f6a70 501a063e bdef5445 6e939fad a2c87883

21 40ca974d 7b176155 d1d36374 eb01f745 87d28e05 cc0f6a70 501a063e bdef5445 fa5f5e00

22 288eedac 40ca974d 7b176155 d1d36374 01b7eb18 87d28e05 cc0f6a70 501a063e 3f535b7e

23 582f3054 288eedac 40ca974d 7b176155 647f5ebd 01b7eb18 87d28e05 cc0f6a70 b8c68fad

24 0e108a8a 582f3054 288eedac 40ca974d 1830da87 647f5ebd 01b7eb18 87d28e05

H 781a70f1 1396ded9 64fde11e e61a8c87 693f2d06 ff84c749 213bc4c3 e3b35b1e

A′
i B′

i C ′
i D′

i E′
i F ′

i G′
i H ′

i W ′
i

0 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19 30a32004

1 2caba851 6a09e667 bb67ae85 3c6ef372 c96b02a6 510e527f 9b05688c 1f83d9ab 65d728a8

2 954cfd60 2caba851 6a09e667 bb67ae85 008d7692 c96b02a6 510e527f 9b05688c 76ae3c28

3 1f2514b1 954cfd60 2caba851 6a09e667 b0e0bf6b 008d7692 c96b02a6 510e527f 28557136

4 73d035fb 1f2514b1 954cfd60 2caba851 4a98e779 b0e0bf6b 008d7692 c96b02a6 27dc4571

5 bcd102a2 73d035fb 1f2514b1 954cfd60 9e3ff6d2 4a98e779 b0e0bf6b 008d7692 9d2e55f5

6 f05260e1 bcd102a2 73d035fb 1f2514b1 47a31cbb 9e3ff6d2 4a98e779 b0e0bf6b f6b4b2fe

7 1771d0de f05260e1 bcd102a2 73d035fb 132e2742 47a31cbb 9e3ff6d2 4a98e779 6d4ea3d3

8 e21633c9 1771d0de f05260e1 bcd102a2 dd2570fe 132e2742 47a31cbb 9e3ff6d2 e256e9a2

9 92b431e6 e21633c9 1771d0de f05260e1 9f2d07f4 dd2570fe 132e2742 47a31cbb c5a30a35

10 04ef8437 92b431e6 e21633c9 1771d0de 67afafb8 9f2d07f4 dd2570fe 132e2742 fdfdc6b4

11 7719af6b 04ef8437 92b431e6 e21633c9 ad423400 67afafb8 9f2d07f4 dd2570fe ef3a09b4

12 5333e55b 7719af6b 04ef8437 92b431e6 5e6bf4f2 ad423400 67afafb8 9f2d07f4 c2797cdf

13 edb1efd1 5333e55b 7719af6b 04ef8437 f7a76eb7 5e6bf4f2 ad423400 67afafb8 a5fcf68b

14 011440c7 edb1efd1 5333e55b 7719af6b cc7583d6 f7a76eb7 5e6bf4f2 ad423400 9e557ce1

15 b17ccc81 011440c7 edb1efd1 5333e55b 4fe69182 cc7583d6 f7a76eb7 5e6bf4f2 f9196ccd

16 7c5b7561 b17ccc81 011440c7 edb1efd1 32f9cff8 4fe69182 cc7583d6 f7a76eb7 729011bf

17 4c06af0f 7c5b7561 b17ccc81 011440c7 6e939fad 32f9cff8 4fe69182 cc7583d6 d2d96dbe

18 eb01f745 4c06af0f 7c5b7561 b17ccc81 bdef5445 6e939fad 32f9cff8 4fe69182 a6774853

19 d1d36374 eb01f745 4c06af0f 7c5b7561 501a063e bdef5445 6e939fad 32f9cff8 86987156

20 7b176155 d1d36374 eb01f745 4c06af0f cc0f6a70 501a063e bdef5445 6e939fad a2c87883

21 40ca974d 7b176155 d1d36374 eb01f745 87d28e05 cc0f6a70 501a063e bdef5445 fa5f5e00

22 288eedac 40ca974d 7b176155 d1d36374 01b7eb18 87d28e05 cc0f6a70 501a063e 3f535b7e

23 582f3054 288eedac 40ca974d 7b176155 647f5ebd 01b7eb18 87d28e05 cc0f6a70 b8c68fad

24 0e108a8a 582f3054 288eedac 40ca974d 1830da87 647f5ebd 01b7eb18 87d28e05

H ′ 781a70f1 1396ded9 64fde11e e61a8c87 693f2d06 ff84c749 213bc4c3 e3b35b1e



REFERENCES 79

13th International Workshop — FSE 2006, volume 4047 of Lecture Notes in
Computer Science, pages 126–143. Springer, 2006.

[4] National Institute of Standards and Technology. Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-3, Oct. 2008.

[5] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[6] H. Yoshida and A. Biryukov. Analysis of a SHA-256 variant. In B. Preneel and
S. E. Tavares, editors, Selected Areas in Cryptography — SAC 2005, volume
3897 of Lecture Notes in Computer Science, pages 245–260. Springer, 2006.



80 TRIVIAL COLLISIONS FOR SIMPLIFIED AND REDUCED SHA-2



Publication

A Practical Attack on KeeLoq

Publication Data

Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and
Bart Preneel. A practical attack on KeeLoq. In Nigel P. Smart, editor,
Advances in Cryptology — EUROCRYPT 2008, volume 4965 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2008.

Contributions

• Principal author, except for:

– Appendix A (Related-Key Attacks on KeeLoq).

81



82 A PRACTICAL ATTACK ON KEELOQ



A Practical Attack on KeeLoq

Sebastiaan Indesteege1,∗, Nathan Keller2,†, Orr Dunkelman1, Eli Biham3, and
Bart Preneel1

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

{sebastiaan.indesteege,orr.dunkelman,bart.preneel}@esat.kuleuven.be
2 Einstein Institute of Mathematics, Hebrew University. Jerusalem 91904, Israel.

nkeller@math.huji.ac.il
3 Computer Science Department, Technion. Haifa 32000, Israel.

biham@cs.technion.ac.il

Abstract. KeeLoq is a lightweight block cipher with a 32-bit block
size and a 64-bit key. Despite its short key size, it is widely used
in remote keyless entry systems and other wireless authentication
applications. For example, authentication protocols based on KeeLoq
are supposedly used by various car manufacturers in anti-theft
mechanisms. This paper presents a practical key recovery attack
against KeeLoq that requires 216 known plaintexts and has a time
complexity of 244.5 KeeLoq encryptions. It is based on the slide
attack and a novel approach to meet-in-the-middle attacks. The
fully implemented attack requires 65 minutes to obtain the required
data and 7.8 days of calculations on 64 CPU cores. A variant which
requires 216 chosen plaintexts needs only 3.4 days on 64 CPU cores.
Using only 10 000 euro, an attacker can purchase a cluster of 50 dual
core computers that will find the secret key in about two days. We
investigated the way KeeLoq is intended to be used in practice and
conclude that our attack can be used to subvert the security of real
systems. An attacker can acquire chosen plaintexts in practice, and
one of the two suggested key derivation schemes for KeeLoq allows
to recover the master secret from a single key.

Key words: KeeLoq, cryptanalysis, block ciphers, slide attacks,
meet-in-the-middle attacks.

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).
†This author is supported by the Adams Fellowship Program of the Israel Academy of Sciences

and Humanities.

83

mailto:protect T1	extbraceleft sebastiaan.indesteege,orr.dunkelman,bart.preneelprotect T1	extbraceright @esat.kuleuven.be
mailto:nkeller@math.huji.ac.il
mailto:biham@cs.technion.ac.il


84 A PRACTICAL ATTACK ON KEELOQ

1 Introduction

The KeeLoq technology [13] by Microchip Technology Inc. includes the KeeLoq
block cipher and several authentication protocols built on top of it. The
KeeLoq block cipher allows for very low cost and power efficient hardware
implementations. This property has undoubtedly contributed to the popularity of
the cipher in various wireless authentication applications. For example, multiple
car manufacturers supposedly use, or have used KeeLoq to protect their cars
against theft [5–7,9, 17].4

Despite its design in the 80’s, the first cryptanalysis of KeeLoq was only
published by Bogdanov [6] in February 2007. This attack is based on the slide
technique and a linear approximation of the non-linear Boolean function used in
KeeLoq. The attack has a time complexity of 252 KeeLoq encryptions and requires
16 GB of storage. It also requires the entire codebook, i.e., 232 known plaintexts.

Courtois et al. apply algebraic techniques to cryptanalyse KeeLoq [7, 9].
Although a direct algebraic attack fails for the full cipher, they reported various
successful slide-algebraic attacks. For example, they claim that an algebraic attack
can recover the key when given a slid pair in 2.9 seconds on average. As there is no
way to ensure or identify the existence of a slid pair in the data sample, the attack is
simply repeated 232 times, once for each pair generated from 216 known plaintexts.
They also described attacks requiring the entire codebook, which exploit certain
assumptions with respect to fixed points of the internal state. The fastest of
these requires 227 KeeLoq encryptions and has an estimated success probability of
44% [7].

In [5], Bogdanov published an updated version of his attack. A refined
complexity analysis yields a slightly smaller time complexity, i.e., 250.6 KeeLoq
encryptions while still requiring the entire codebook. This paper also includes an
improvement using the work of Courtois et al. [9] on the cycle structure of the
cipher. We note that the time complexity of the attack using the cycle structure
given in [5] is based on an assumption from an earlier version of [9], that a random
word can be read from 16 GB of memory with a latency of only 1 clock cycle. This
is very unrealistic in a real machine, so the actual time complexity is probably
much higher. In a later version of [9], this assumption on the memory latency was
changed to be 16 clock cycles.

Our practical attack is based on the slide attack as well. However, unlike other
attacks, we combine it with a novel meet-in-the-middle attack. The optimised
version of the attack uses 216 known plaintexts and has a time complexity of 244.5

KeeLoq encryptions. We have implemented our attack and the total running time
is roughly 500 days. As the attack is fully parallelizable, given x CPU cores,
the total running time is only 500/x days. A variant which requires 216 chosen
plaintexts needs only 218/x days on x CPU cores. For example, for 10 000 euro,
one can obtain 50 dual core computers, which will take about two days to find

4We verified these claims to the best of our ability, however, no car manufacturer seems eager
to publically disclose which algorithms are used.



DESCRIPTION AND USAGE OF KEELOQ 85

the key. Another, probably even cheaper, though illegal option would be to rent
a botnet to carry out the computations.

KeeLoq is used in two protocols, the “Code Hopping” and the “Identify Friend
or Foe (IFF)” protocol. In practice, the latter protocol, a simple challenge response
protocol, is the most interesting target to acquire the data that is necessary to
mount the attack. Because the challenges are not authenticated in any way, an
attacker can obtain as many chosen plaintext/ciphertext pairs as needed from
a transponder (e.g., a car key) implementing this protocol. Depending on the
transponder, it takes 65 or 98 minutes to gather 216 plaintext/ciphertext pairs.

Finally, as was previously noted by Bogdanov [5], we show that one of the two
suggested key derivation algorithms is blatantly flawed, as it allows an attacker to
reconstruct many secret keys once a single secret key has been exposed.

Given that KeeLoq is a cipher that is widely used in practice, side-channel
analysis may also be a viable option for attacking chips that implement KeeLoq.
However, we do not consider this type of attack in this paper. One could also
attack the “Identify Friend or Foe (IFF)” protocol itself. For instance, as the
responses are only 32 bits long, one could mount the birthday attack using 216

known challenge/response pairs. This would not recover the secret key, thus posing
less of a threat to the overall security of the system.

Table 1 presents an overview of the known attacks on KeeLoq, including ours.
In order to make comparisons possible, we have converted all time complexities to
the number of KeeLoq encryptions needed for the attack.5

The structure of this paper is as follows. In Sect. 2, we describe the KeeLoq
block cipher and how it is intended to be used in practice. Our attacks are
described in Sect. 3. In Sect. 4 we discuss our experimental results and in Sect. 5
we show the relevance of our attacks in practice. Finally, in Sect. 6 we conclude.
In Appendix A, we explore some related key attacks on KeeLoq that are more of
theoretical interest.

2 Description and Usage of KeeLoq

2.1 The KeeLoq Block Cipher

The KeeLoq block cipher has a 32-bit block size and a 64-bit key. It consists of
528 identical rounds each using one bit of the key. A round is equivalent to an
iteration of a non-linear feedback shift register (NLFSR), as shown in Fig. 1.

More specifically, let Y (i) = (y
(i)
31 , . . . , y

(i)
0 ) ∈ {0, 1}32 be the input to round i

(0 ≤ i < 528) and let K = (k63, . . . , k0) ∈ {0, 1}64 be the key. The input to
round 0 is the plaintext: Y (0) = P . The ciphertext is the output after 528 rounds:

5We list slightly better complexities for the attacks from [7,9] because we used a more realistic
conversion factor from CPU clocks to KeeLoq rounds (i.e., 12 rather than 4 CPU cycles per
KeeLoq round).



86 A PRACTICAL ATTACK ON KEELOQ

Table 1 – An overview of the known attacks on KeeLoq.

Attack Type Complexity Reference
Data Time Memory

Time-Memory Trade-Off 2 CP 242.7 ≈ 100 TB [11]
Slide/Algebraic 216 KP 265.4 ? [7, 9]
Slide/Algebraic 216 KP 251.4 ? [7, 9]
Slide/Guess-and-Determine 232 KP 252 16 GB [6]
Slide/Guess-and-Determine 232 KP 250.6 16 GB [5]
Slide/Cycle Structure 232 KP 239.4 16.5 GB [9]
Slide/Cycle/Guess-and-Det.a 232 KP (237) 16.5 GB [5]
Slide/Fixed Points 232 KP 227 > 16 GB [7]

Slide/Meet-in-the-Middle 216 KP 245.0 ≈ 2 MB Sect. 3.3
Slide/Meet-in-the-Middle 216 KP 244.5 ≈ 3 MB Sect. 3.4
Slide/Meet-in-the-Middle 216 CP 244.5 ≈ 2 MB Sect. 3.5

Time-Memory-Data Trade-Off 68 CP, 34 RK 239.3 ≈ 10 TB [2]

Related Key 66 CP, 34 RK≫ negligible negligible Sect. A.1
Related Key 512 CP, 2 RK≫ 232 negligible Sect. A.1
Related Key/Slide/MitM 217 CP, 2 RK⊕ 241.9 ≈ 16 MB Sect. A.2

Time complexities are expressed in full KeeLoq encryptions (528 rounds).
KP: known plaintexts; CP: chosen plaintexts
RK≫: related keys (by rotation); RK⊕: related keys (flip LSB)

aThe time complexity for this attack is based on very unrealistic memory latency assumptions
and hence will be much higher in practice.

k0k63

-

i+
6

�
�

�
�NLF

?

?????

y
(i)
31 y

(i)
26 y

(i)
20 y

(i)
16 y

(i)
9 y

(i)
1 y

(i)
0

��	�

ϕ(i)

-

Figure 1 – The i-th KeeLoq encryption cycle.



DESCRIPTION AND USAGE OF KEELOQ 87

C = Y (528). The round function can be described as follows (see Fig. 1):

ϕ(i) = NLF
(

y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)

⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64 ,

Y (i+1) = (ϕ(i), y
(i)
31 , . . . , y

(i)
1 ) .

(1)

The non-linear function NLF is a Boolean function of 5 variables with output vector
3A5C742Ex — i.e., NLF(i) is the i-th bit of this hexadecimal constant, where bit
0 is the least significant bit. We can also represent the non-linear function in its
algebraic normal form (ANF):

NLF(x4, x3, x2, x1, x0) = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x0 ⊕ x4x1x0⊕
x4x2 ⊕ x4x0 ⊕ x3x2 ⊕ x3x0 ⊕ x2x1 ⊕ x1x0⊕
x1 ⊕ x0 .

(2)

Decryption uses the inverse round function, where i now ranges from 528 down to
1.

θ(i) = NLF
(

y
(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0

)

⊕ y
(i)
15 ⊕ y

(i)
31 ⊕ ki−1 mod 64 ,

Y (i−1) = (y
(i)
30 , . . . , y

(i)
0 , θ(i)) .

(3)

There used to be some ambiguity about the correct position of the taps. Our
description agrees with the “official” documentation [5–7, 15]. Additionally, we
have used test vectors generated by an actual HSC410 chip [16], manufactured by
Microchip Inc., to verify that our description and implementation of KeeLoq are
indeed correct. Finally, we note that our attacks are unaffected by this difference.

2.2 Protocols Built on KeeLoq

A device like the HCS410 by Microchip Technology Inc. [16] supports two
authentication protocols based on KeeLoq: “KeeLoq Hopping Codes” and
“KeeLoq Identify Friend or Foe (IFF)”. The former uses a 16-bit secret counter,
synchronised between both parties. In order to authenticate, the encoder (e.g.,
a car key) increments the counter and sends the encrypted counter value to the
decoder (e.g., the car), which verifies if the received ciphertext is correct. In
practice, this protocol would be initiated by a button press of the car owner.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [16], is a simple
challenge response protocol. The decoder (e.g., the car) sends a 32-bit challenge.
The transponder (e.g., the car key) uses the challenge as a plaintext, encrypts it
with the KeeLoq block cipher6 under the shared secret key, and replies with the
ciphertext. This protocol is executed without any user interaction whenever the
transponder receives power and an activation signal via inductive coupling from

6This corresponds to what is called the “HOP algorithm” in [16]. The other option, the so-
called “IFF algorithm”, uses a reduced version of KeeLoq with 272 rounds instead of 528. Our
attacks are also applicable to this variant, without any change.



88 A PRACTICAL ATTACK ON KEELOQ

P1
- F -

P2

F - . . . - F - F - C1

P2
- F - F - . . . - F -

C1

F - C2

Figure 2 – A typical slide attack.

a nearby decoder. Hence, no battery or button presses are required. It could for
instance be used in vehicle immobilisers by placing the decoder near the ignition.
Inserting the car key in the ignition would place the transponder within range
of the decoder. The latter would then activate the transponder and execute the
protocol, all completely transparent to the user. The car would then either disarm
the immobiliser or activate the alarm, depending on whether the authentication
was successful.

Of course both protocols can be used together in a single device, thereby
saving costs. For example, the HCS410 chip [16] supports this combined mode
of operation, possibly using the same secret key for both protocols, depending on
the configuration options used.

3 Our Attacks on KeeLoq

This section describes our attacks on KeeLoq. We combine a slide attack with
a novel meet-in-the-middle approach to recover the key from a slid pair. First
we explain some preliminaries that are used in the attacks. Then we proceed to
the description of the attack scenario using known plaintexts and a generalisation
thereof. Finally, we show how chosen plaintexts can be used to improve the attack.

3.1 The Slide Property

Slide attacks were introduced by Biryukov and Wagner [3] in 1999. The typical
candidate for a slide attack is a block cipher consisting of a potentially very large
number of iterations of an identical key dependent permutation F . In other words,
the subkeys are repeated and therefore the susceptible cipher can be written as

C = F (F (. . . F (P )))
︸ ︷︷ ︸

r

= F r(P ) . (4)

This permutation does not necessarily have to coincide with the rounds of the
cipher, i.e., F might combine several rounds of the cipher.

A slide attack aims at exploiting such a self-similar structure to reduce the
strength of the entire cipher to the strength of F . Thus, it is independent of the



OUR ATTACKS ON KEELOQ 89

number of rounds of the cipher. To accomplish this, a so-called slid pair is needed.
This is a pair of plaintexts that satisfies the slide property

P2 = F (P1) . (5)

We depict such a slid pair in Fig. 2. For a slid pair, the corresponding ciphertexts
also satisfy the slide property, i.e., C2 = F (C1). By repeatedly encrypting this slid
pair, we can generate as many slid pairs as needed [4, 10]. As each slid pair gives
us a pair of corresponding inputs and outputs of the key dependent permutation
F , it can be used to mount an attack against F .

KeeLoq has 528 identical rounds, each using one bit of the 64-bit key. After 64
rounds the key is repeated. So in the case of KeeLoq, we combine 64 rounds into
F . However, because the number of rounds in the cipher is not an integer multiple
of 64, a straightforward slid attack is not possible. A solution to this problem is
to guess the 16 least significant bits of the key and use this to strip off the final 16
rounds. Then, a slide attack can be applied to the remaining 512 rounds [6, 7, 9].

In order to get a slid pair, 216 known plaintexts are used. As the block size of
KeeLoq is 32 bits, we expect that a random set of 216 plaintexts contains a slid
pair due to the birthday paradox.7 Determining which pair is a slid pair is done
by the attack itself. Simply put, the attack is attempted with every pair. If it
succeeds, the pair is a slid pair, otherwise it is not.

3.2 Determining Key Bits

If two intermediate states of the KeeLoq cipher, separated by 32 rounds (or less)
are known, all the key bits used in these rounds can easily be recovered. This was
first described by Bogdanov [6], who refers to it as the “linear step” of his attack.

Let Y (i) = (y
(i)
31 , . . . , y

(i)
0 ) and Y (i+t) = (y

(i+t)
31 , . . . , y

(i+t)
0 ) be the two known

states; t ≤ 32. If we encrypt Y (i) by one round, the newly generated bit is

ϕ(i) = NLF
(

y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)

⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64 . (6)

Because of the non-linear feedback shift register structure of the round function
and since t ≤ 32, the bit ϕ(i) is equal to y

(i+t)
32−t , which is one of the bits of Y (i+t)

and thus known. Hence

ki mod 64 = NLF
(

y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)

⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ y

(i+t)
32−t . (7)

By repeating this t times, all t key bits can be recovered. The amount of
computations that need to be carried out is equivalent to t rounds of KeeLoq.
This simple step will prove to be very useful in our attack.

7The probability that a set of 216 random plaintexts contains at least one slid pair is 1 −

`

1 − 2−32
´232

≈ 0.63. Hence, the attack has a success probability of about 63%. With not much
higher data complexity, higher success rates can be achieved.



90 A PRACTICAL ATTACK ON KEELOQ

Pi
- gk̂0

- Xi
- gk̂1

- X⋆
i

gk̂2
P ⋆

j
� gk̂3

� Pj

k̂0 k̂1 k̂2 k̂3 k̂0

Ci
- gk̂1

- C⋆
i

gk̂2
Y ⋆

j
� gk̂3

� Yj � gk̂0
� Cj

Figure 3 – The notation used in the attack.

3.3 Basic Attack Scenario

We now describe the basic attack scenario, which uses 216 known plaintexts. For
clarity, the notation used is shown in Fig. 3 and a pseudocode overview is given in
Fig. 4. We denote 16 rounds of KeeLoq by gk̂, where k̂ denotes the 16 key bits used
in these rounds. The 64-bit key k is split into four equal parts: k = (k̂3, k̂2, k̂1, k̂0),
where k̂0 contains the 16 least significant key bits.

As already mentioned in Sect. 3.1, the first step of the attack is to guess k̂0 —
the 16 least significant bits of the key. This enables us to partially encrypt each
of the 216 plaintexts by 16 rounds (Pi to Xi) and partially decrypt each of the 216

ciphertexts by 16 rounds (Cj to Yj).
Encrypting Xi by 16 more rounds yields X⋆

i . Similarly, decrypting Pj by 16
rounds yields P ⋆

j (see Fig. 3). We denote the 16 most significant bits of X⋆
i by X⋆

i ,
and the 16 least significant bits of P ⋆

j by P ⋆
j . Note that, because X⋆

i and P ⋆
j are

separated by 16 rounds, it holds that X⋆
i = P ⋆

j , provided that Pi and Pj form a
slid pair. This is due to the structure of the cipher.

The next step in the attack is to apply a meet-in-the-middle approach. We
guess the 16-bit value P ⋆

j . For each plaintext Pj we can then determine k̂3 using
the algorithm described in Sect. 3.2. Indeed, as the other bits of P ⋆

j are determined
by Pj , we know all of P ⋆

j when given the plaintext. There is always exactly one
solution per plaintext. Using this part of the key, we can now partially decrypt Yj

to Y ⋆
j . This result is saved in a hash table indexed by the 16-bit value Y ⋆

j . Each

record in the hash table holds a tuple consisting of P ⋆
j , Y ⋆

j and the 16 key bits k̂3.
Now we do something similar from the other side. For each plaintext we use

the algorithm from Sect. 3.2 to determine k̂1. Again this can be done because we
know all of X⋆

i , and there is exactly one solution per plaintext. Knowing k̂1, we
partially encrypt Ci to C⋆

i .
Note that if Pi and Pj are indeed a slid pair their partial encryptions and

decryptions (under the correct key) must “meet in the middle”. More specifically,
it must hold that C⋆

i = Y ⋆
j . So, we look for a record in the hash table for which

such a collision occurs. Because the hash table is indexed by Y ⋆
j this can be done

very efficiently. A slid pair produces a collision, provided the guesses for k̂0 and
P ⋆

j are correct. Therefore, we are guaranteed that all slid pairs are found at some



OUR ATTACKS ON KEELOQ 91

for all k̂0 ∈ {0, 1}16 do
for all plaintexts Pi, 0 ≤ i < 216 do

Partially encrypt Pi to Xi.
Partially decrypt Ci to Yi.

end for
for all P ⋆

j ∈ {0, 1}16 do

for all plaintexts Pj , 0 ≤ j < 216 do

Determine the key bits k̂3.
Partially decrypt Yj to Y ⋆

j .

Save the tuple
〈

P ⋆
j , Y ⋆

i , k̂3

〉

in a table.
end for
for all plaintexts Pi, 0 ≤ i < 216 do

Determine the key bits k̂1.
Partially encrypt Ci to C⋆

i .
for all collisions C⋆

i = Y ⋆
j in the table do

Determine the key bits k̂2 from X⋆
i and P ⋆

j .
Determine the key bits k̂′

2 from C⋆
i and Y ⋆

j .
if k̂2 = k̂′

2 then

Encrypt 2 known plaintexts with the key k = (k̂3, k̂2, k̂1, k̂0).
if the correct ciphertexts are found then

return success (the key is k)
end if

end if
end for

end for
end for

end for
return failure (i.e., there was no slid pair)

Figure 4 – The attack algorithm.



92 A PRACTICAL ATTACK ON KEELOQ

point. Of course, a collision does not guarantee that the pair is actually a slid
pair.

Finally, we check each candidate slid pair found. We determine the remaining
key bits k̂2 from X⋆

i and P ⋆
j and similarly k̂′

2 from C⋆
i and Y ⋆

j . If k̂2 and k̂′
2 are not

equal, the candidate pair is not a slid pair. Note that we can determine the key
bits one by one and stop as soon as there is a disagreement. This slightly reduces
the complexity of the attack.

If k̂2 = k̂′
2, we have found a pair of plaintexts and a key with the property

that encrypting Pi by 64 rounds gives Pj and encrypting Ci by 64 rounds gives
Cj . This is what is expected from a slid pair. It is however possible that the
recovered key is not the correct key, so we can verify it by a trial encryption of
one of the known plaintexts. Even if a wrong key is suggested during the attack,
and discarded by the trial encryption, we are still guaranteed to find the correct
key eventually, provided there is at least one slid pair among the given plaintexts.

Complexity Analysis

Using one round of KeeLoq as a unit, the time complexity of the attack can be
expressed as

216
(
32 · 216 + 216

(
32 · 216 + 216 (32 + Ncoll · V )

))
, (8)

when Ncoll denotes the expected number of collisions for a single guess of k̂0, P ⋆
j

and a given plaintext Pi, and V denotes the average cost of verifying one collision,
i.e., checking if it leads to a candidate key and if this key is correct. This follows
directly from the description of the attack. As the hash table has 216 entries and
a collision is equivalent to a 16-bit condition, Ncoll = 1. In the verification step,
we can determine one bit at a time and stop as soon as there is a disagreement,
which happens with probability 1/2. Only when there is no disagreement after 16
key bits, we do two full trial encryptions to check the recovered key. Of course
the second trial encryption is only useful if the first one gave the expected result.
Hence, due to this early abort technique, the average cost of verifying one collision
is

V = 2 ·
15∑

i=0

2−i + 2−16 ·
(
528 + 528 · 2−32

)
≈ 4 . (9)

Thus the overall complexity of the attack is 254.0 KeeLoq rounds, which amounts
to 245.0 full KeeLoq encryptions.

As mentioned before, the data complexity of the attack is 216 known
plaintexts. The storage requirements are very modest. The attack stores the
plaintext/ciphertext pairs, 216 values for Xi and Yi, and a hash table with 216

records of 80 bits each. This amounts to a bit over 2 MB of RAM.



OUR ATTACKS ON KEELOQ 93

3.4 A Generalisation of the Attack

The attack presented in the previous section can be generalised by varying the
number of rounds to partially encrypt/decrypt in each step of the attack. We
denote by tp the number of rounds to partially encrypt from the plaintext side (left
on Fig. 3) and by tc the number of rounds to partially decrypt from the ciphertext
side (right on Fig. 3). More specifically, encrypting Xi by tp rounds yields X⋆

i ,
encrypting Ci by tp rounds yields C⋆

i . On the ciphertext side, P ⋆
j is obtained by

decrypting Pj by tc rounds and Y ⋆
j by decrypting Yj by tc rounds. Also, the partial

keys k̂0 through k̂3 are adapted accordingly to contain the appropriate key bits.
Let to denote the number of bits that, provided Pi and Pj form a slid pair,

overlap between X⋆
i and P ⋆

j . As X⋆
i and P ⋆

j are separated by 48− tp − tc rounds,
it holds that to = 32− (48− tp − tc) = tp + tc− 16. The to least significant bits of
P ⋆

j are denoted by P ⋆
j and the to most significant bits of X⋆

i are denoted by X⋆
i .

Depending on the choices for the parameters tp and tc, the attack scenario has
to be modified slightly. If tc < to, not all plaintexts necessarily yield a solution for
a given P ⋆

j when determining k̂3 = (k63, . . . , k64−tc
) because to− tc of the guessed

bits overlap with plaintext bits. Similarly, if tc > to, each plaintext is expected to
offer multiple solutions because tc − to extra bits have to be guessed before all of
P ⋆

j is known. From the other side, similar observations can be made.
In Sect. 3.3, the parameters were tp = tc = 16 which results in to = 16. It

is clear that the choice of these parameters influences both the time and memory
complexity of the attack.

Complexity Analysis

The generalisation leads to a slightly more complex formula for expressing the time
complexity of the attack. Because of the duality between guessing extra bits and
filtering because of overlapping bits, all cases can be expressed in a single formula,
which is a generalisation of (8) (i.e., with tp = tc = 16, it reduces to (8)):

216
(
32 · 216 + 2to

(
2tc · 216+tc−to + 216+tp−to (2tp + Ncoll · V )

))
. (10)

In the generalised case, finding a collision is equivalent to finding an entry in a
table of 216+tp−to elements that satisfies a to bit condition, so Ncoll = 216+tc−to/2to .
Verifying a collision now requires an average effort of

V = 2 ·
47−tp−tc∑

i=0

2−i + 2tp+tc−48 ·
(
528 + 528 · 2−32

)
(11)

KeeLoq rounds. Simplification yields that the total complexity is equal to

32 · 232 + 2tc · 232+tc + 2tp · 232+tp + 4 · 280−tp−tc + 528 · 232 . (12)

The optimum is found when tp = tc = 15 and thus to = 14, where the complexity
reduces to 253.524 KeeLoq rounds or 244.5 full KeeLoq encryptions.



94 A PRACTICAL ATTACK ON KEELOQ

The memory requirements in the generalised case can also easily be evaluated.
As before, 216 plaintext/ciphertext pairs and 216 values for Xi and Yi are stored.
The hash table now has 216+tp−to entries of 64 + tp bits each. For tp = tc = 15,
the required memory is still less than 3 MB.

3.5 A Chosen Plaintext Attack

Using chosen plaintexts instead of known plaintexts, the attack can be improved.
Consider the generalised attack from Sect. 3.4 in the case where tc < to (which is
equivalent to tp > 16). In this case, the to− tc least significant bits of the plaintext
Pj are bits (to, . . . , tc + 1) of P ⋆

j . Hence, choosing the 216 plaintexts in such a way
that these to− tc least significant bits are equal to some constant, only 2tc guesses
for P ⋆

j have to be made at the beginning of the meet-in-the-middle step, instead

of 2to .

Complexity Analysis

As chosen plaintexts are only useful for the attack when tc < to, we will only
consider this case. The time complexity of the attack, in KeeLoq rounds, can be
expressed as

216
(
32 · 216 + 2tc

(
2tc · 216 + 216+tp−to (2tp + Ncoll · V )

))
. (13)

The expected number of collisions is Ncoll = 216/2to . The verification cost, V , is
given by (11). Simplification yields

32 · 232 + 2tc · 232+tc + 2tp · 248 + 4 · 280−tp−tc + 528 · 232 . (14)

The optimum is found when tp = 20, tc = 13 and thus to = 17, where the attack
has a time complexity of 253.500 KeeLoq rounds or 244.5 full KeeLoq encryptions.
It is clear that the (theoretical) advantage over the known plaintext attack from
Sect. 3.4 is not significant. However, as is discussed in the next section, the chosen
plaintext variant can provide a significant gain in our practical implementation,
because the verification cost V turns out to be higher there.

The memory complexity is about 2 MB as in Sect. 3.3 because the size of the
hash table is the same. The data complexity remains at 216 plaintext/ciphertext
pairs, but note that we now require chosen plaintexts instead of known plaintexts.

4 Experimental Results

We have fully implemented and tested the attacks, using both simulated data and
real data acquired from a HCS410 chip [16]. We made extensive use of bit slicing to
do many encryptions in parallel throughout the implementation. However, because
this parallelisation is not useful while verifying a collision, this verification step



EXPERIMENTAL RESULTS 95

becomes more expensive in comparison. Hence, the optimal parameters for our
implementation differ slightly from the theoretical ones. For the known plaintext
attack from Sect. 3.4, the optimal parameters for our implementation were found
to be tp = tc = 16. This means that, at least in our implementation, the best
attack is the basic attack from Sect. 3.3. For the chosen plaintext attack, the
optimal parameters are tp = 22 and tc = 13.

If we give the correct values for the 16 least significant key bits, the known
plaintext attack completes in 10.97 minutes on average.8 The chosen plaintext
attack needs just 4.79 minutes to complete the same task.9 This large difference
can be explained by considering the impact of V , the cost of the verification
step, on the time complexity of the attack. If V increases, and tp and tc are
adapted as needed because their optimal values may change, the time complexity
of the known plaintext attack increases much faster than the time complexity
of the chosen plaintext attack does. Hence, even though their theoretical time
complexities are the same, the chosen plaintext attack performs much better in
our practical implementation because V is higher than the theoretical value.

We did not stop either of the attacks once a slid pair and the correct key were
found, so we essentially tested the worst-case behaviour of the attack. This also
explains the very small standard deviations of the measured running times. The
machine used is an AMD Athlon 64 X2 4200+ with 1 GB of RAM (only one of
the two CPU cores was used) running Linux 2.6.17. The attack was implemented
in C and compiled with gcc version 4.1.2 (using the -O3 optimiser flag). Critical
parts of the code are written in assembly. Because the memory access pattern is
random, but predictable to some extent, prefetching helped us to make maximum
use of the cache memory.

The known plaintext attack performs over 288 times faster than the fastest
attack with the same data complexity from [7, 9], although the actual increase
in speed is probably slightly smaller due to the difference in the machines
used. Courtois et al. used (a single core of) a 1.66 GHz Intel Centrino Duo
microprocessor [8]. The chosen plaintext attack performs more than 661 times
faster, but this comparison is not very fair because chosen plaintexts are used. We
note that the practicality of our results should also be compared with exhaustive
key search due to the small key size. For the price of about 10 000 euro, one can
obtain a Copacobana machine [12] with 120 FPGAs which is estimated to take
about 1000 days to find a single 64-bit KeeLoq key.10 Using our attack and 50
dual core computers (which can be obtained for roughly the same price), a KeeLoq
key can be found in only two days.

8We performed 500 experiments. The average running time was 658.15 s and the standard
deviation was 1.69 s.

9We performed 500 experiments. The average running time was 287.17 s and the standard
deviation was 0.55 s.

10The estimate was done by adapting the 17 days (worst case) required for finding a 56-bit DES
key, taking into consideration the longer key size, the fact that more KeeLoq implementations
fit on each FPGA, but in exchange take more clocks to test a key.



96 A PRACTICAL ATTACK ON KEELOQ

5 Practical Applicability of the Attacks

5.1 Gathering Data

One might wonder if it is possible to gather 216 known, or even chosen plaintexts
from a practical KeeLoq authentication system. As mentioned in Sect. 2.2, a device
like the HCS410 by Microchip Technology Inc. [16] supports two authentication
protocols based on KeeLoq: “KeeLoq Hopping Codes” and “KeeLoq Identify
Friend or Foe (IFF)”. As the initial value of the counter used in “KeeLoq Hopping
Codes” is not known, it is not easy to acquire known plaintexts from this protocol
apart from trying all possible initial counter values. Also, since only 216 plaintexts
are ever used, knowing this sequence of 216 ciphertexts suffices to break the system
as this sequence is simply repeated.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [16], is more
appropriate for our attack. It is executed without any user interaction as soon
as the transponder comes within the range of a decoder and is sent an activation
signal. The challenges sent by the decoder are not authenticated in any way.
Because of this, an adversary can build a rogue decoder which can be used to
gather as many plaintext/ciphertext pairs as needed. The plaintexts can be fully
chosen by the adversary, so acquiring chosen plaintexts is no more difficult than
just known plaintexts. The only requirement is that the rogue decoder can be
placed within the range of the victim’s transponder for a certain amount of time.
From the timings given in [16], we can conclude that one authentication completes
within 60 ms or 90 ms, depending on the baud rate used. This translates into a
required time of 65 or 98 minutes to gather the 216 plaintext/ciphertext pairs. As
these numbers are based on the maximum delay allowed by the specification [16],
a real chip may respond faster, as our experiments confirm. No data is given with
respect to the operational range in [16], because this depends on the circuit built
around the HCS410 chip. However, one can expect the range to be short.

5.2 Key Derivation

The impact of the attack becomes even larger when considering the method used to
establish the secret keys, as was previously noted by Bogdanov [5]. To simplify key
management, the shared secret keys are derived from a 64-bit master secret (the
manufacturer’s code), a serial number and optionally a seed value [5, 14, 15]. The
manufacturer’s code is supposed to be constant for a large number of products
(e.g., an entire series from a certain manufacturer) and the serial number of a
transponder chip is public, i.e., it can easily be read out from the chip. The
seed value is only used in the case of so-called “Secure Learning”, and can also
be obtained from a chip with relative ease [5, 14, 15]. The other option, “Normal
Learning”, does not use a seed value.

In both types of key derivation mechanisms, a 64-bit identifier is constructed,
which contains the serial number, the (optional) seed and some fixed padding.



CONCLUSION 97

Then, the secret key is derived from this identifier and the master secret using
one of two possible methods. The first method simply uses XOR to combine the
identifier and the master key. The consequence of this is that once a single key is
known, together with the corresponding serial number and (optional) seed value,
the master secret can be found very easily.

The second method is based on decryption with the KeeLoq block cipher. The
identifier is split into two 32-bit halves which are decrypted using the KeeLoq block
cipher, and concatenated again to form the 64-bit secret key. The master secret
is used as the decryption key. Although much stronger than the first method, the
master secret can still be found using a brute force search. Evidently, once the
master secret is known, all keys that were derived from it are also compromised,
and the security of the entire system falls to its knees. Thus, it is a much more
interesting target than a single secret key. This may convince an adversary to
legitimately obtain a car key, for the sole purpose of recovering the master key
from its secret key.

6 Conclusion

In this paper we have presented a slide and meet-in-the middle attack on
the KeeLoq block cipher which requires 216 known plaintexts and has a time
complexity of 244.5 KeeLoq encryptions, and a variant using 216 chosen plaintexts
with the same theoretical time complexity.

We have fully implemented and tested both attacks. When given 16 key
bits, the known plaintext attack completes successfully in 10.97 minutes. Due
to implementation details, the chosen plaintext attack requires only 4.79 minutes
when given 16 key bits. To the best of our knowledge, this is the fastest known
attack on the KeeLoq block cipher.

Finally, we have shown that our attack can be used to attack real systems using
KeeLoq due to the way it is intended to be used in practice. Moreover, one of
the two suggested ways to derive individual Keeloq keys from a master secret is
extremely weak, with potentially serious consequences for the overall security of
systems built using the Keeloq algorithm.

Acknowledgements

We would like to thank Wim Aerts and Elke De Mulder for their help with the
experiments. Also, we would like to thank the reviewers of EUROCRYPT 2008
for their helpful comments.

This work was supported in part by the Concerted Research Action (GOA)
Ambiorics 2005/11 of the Flemish Government, by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT.



98 A PRACTICAL ATTACK ON KEELOQ

References

[1] E. Biham. New types of cryptanalytic attacks using related keys. Journal of
Cryptology, 7(4):229–246, 1994.

[2] A. Biryukov, S. Mukhopadhyay, and P. Sarkar. Improved time-memory trade-
offs with multiple data. In B. Preneel and S. E. Tavares, editors, Selected Areas
in Cryptography — SAC 2005, volume 3897 of Lecture Notes in Computer
Science, pages 110–127. Springer, 2006.

[3] A. Biryukov and D. Wagner. Slide attacks. In L. R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop — FSE ’99, volume 1636
of Lecture Notes in Computer Science, pages 245–259. Springer, 1999.

[4] A. Biryukov and D. Wagner. Advanced slide attacks. In B. Preneel, editor,
Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 589–606. Springer, 2000.

[5] A. Bogdanov. Attacks on the KeeLoq block cipher and authentication systems.
3rd Conference on RFID Security 2007, 2007.

[6] A. Bogdanov. Cryptanalysis of the KeeLoq block cipher. Cryptology ePrint
Archive, Report 2007/055, 2007. http://eprint.iacr.org/.

[7] N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on
KeeLoq. In K. Nyberg, editor, Fast Software Encryption, 15th International
Workshop — FSE 2008, volume 5086 of Lecture Notes in Computer Science,
pages 97–115. Springer, 2008.

[8] N. T. Courtois. personal communication, May 2007.

[9] N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on
KeeLoq. Cryptology ePrint Archive, Report 2007/062, 2007. http://eprint.
iacr.org/.

[10] S. Furuya. Slide attacks with a known-plaintext cryptanalysis. In K. Kim,
editor, Information Security and Cryptology — ICISC 2001, volume 2288 of
Lecture Notes in Computer Science, pages 214–225. Springer, 2002.

[11] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

[12] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers
with COPACOBANA — a cost-optimized parallel code breaker. In L. Goubin
and M. Matsui, editors, Cryptographic Hardware and Embedded Systems —
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 101–
118. Springer, 2006.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


RELATED-KEY ATTACKS ON KEELOQ 99

P - fk0
-
P ′

fk1
- . . . -

525 rounds

. . . - fk15
- C

P ′ - fk1
- . . . - . . . - fk15

-

C

fk16
- C ′

(K)

(K ′ = K ≫ 1)

Figure 5 – A related-key attack using keys related by rotation.

[13] Microchip Technology Inc. KeeLoq R© authentication products. http://www.

microchip.com/keeloq/.

[14] Microchip Technology Inc. TB001: Secure learning RKE systems using
KeeLoq encoders, 1996. Available online at http://ww1.microchip.com/

downloads/en/AppNotes/91000a.pdf.

[15] Microchip Technology Inc. AN642: Code hopping decoder using a PIC16C56,
1998. Available online at http://www.keeloq.boom.ru/decryption.pdf.

[16] Microchip Technology Inc. HCS410 KeeLoq R© code hopping encoder and
transponder data sheet, 2001. Available online at http://ww1.microchip.

com/downloads/en/DeviceDoc/40158e.pdf.

[17] Wikipedia. KeeLoq. http://en.wikipedia.org/wiki/KeeLoq, Aug. 2007.

A Related-Key Attacks on KeeLoq

Related-key attacks [1] exploit the relations between the encryption processes
under different but related keys.

In this appendix we present two related-key attacks on KeeLoq. The first
attack is a very efficient attack using pairs of keys related by rotation. The second
attack is an improvement of the attack presented in Sect. 3.3 using pairs of keys
related by flipping the least significant bit of the key.

A.1 A Related-Key Attack Using Keys Related by Rotation

The first attack exploits the extremely simple way in which the key is mixed into
the state during encryption.

Denote a full encryption of a plaintext P by KeeLoq with the key K by EK(P ),
and encryption through a single round with the subkey bit k by fk(P ). Consider
a pair (K,K ′) of related-keys, such that K ′ = (K ≫ 1). If for a pair (P, P ′)
of plaintexts we have P ′ = fk0

(P ), where k0 is the LSB of K, then EK′(P ′) =
fk16

(EK(P )). Indeed, in this case the encryption of P ′ under the key K ′ is equal
to the encryption of P under K shifted by one round (see Fig. 5). This property,

http://www.microchip.com/keeloq/
http://www.microchip.com/keeloq/
http://ww1.microchip.com/downloads/en/AppNotes/91000a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/91000a.pdf
http://www.keeloq.boom.ru/decryption.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf
http://en.wikipedia.org/wiki/KeeLoq


100 A PRACTICAL ATTACK ON KEELOQ

which is clearly easy to check, can be used to retrieve two bits of the secret key K.
Consider a plaintext P . We note that there are only two possible values of

fk0
(P ), i.e., 1||(P ≫ 1) and 0||(P ≫ 1). Hence, we ask for the encryption of P

under the key K and for the encryption of the two plaintexts P ′
0 = 0||(P ≫ 1)

and P ′
1 = 1||(P ≫ 1) under the related-key K ′, and check whether the ciphertexts

satisfy the relation EK′(P ′) = fk16
(EK(P )). This check is immediate, since EK(P )

and fk16
(EK(P )) have 31 bits in common. Exactly one of the candidates (P ′

0 or P ′
1)

is expected to satisfy the relation. This pair satisfies also the relation P ′ = fk0
(P ).

At this stage, since P ′ and P are known, we can infer the value of k0

immediately from the update rule of KeeLoq, using the relation P ′ = fk0
(P ).

Similarly, we can retrieve the value of k16 from the relation EK′(P ′) =
fk16

(EK(P )). Hence, using only three chosen plaintexts encrypted under two
related-keys, we can retrieve two key bits with a negligible time complexity.

In order to retrieve additional key bits, we repeat the procedure described above
with the pair of related-keys (K ′,K ′′ = (K ′ ≫ 1)) and one of the plaintexts P ′

0

or P ′
1 examined in the first stage. As a result, we require the encryption of two

additional chosen plaintexts (under the key K ′′), and get two additional key bits:
k′
0 and k′

16, which are equal to k1 and k17.
We can repeat this procedure 16 times to get bits k0, . . . , k31 of the secret

key. Then, the procedure can be repeated with the 16 related keys of the form
(K ≫ 32), (K ≫ 33), . . . , (K ≫ 47) to retrieve the remaining 32 key bits. The
attack then requires 66 plaintexts encrypted under 34 related keys (two plaintexts
under each of 32 keys, and a single plaintext under the two remaining keys), and
a negligible time complexity.

An option to reduce the required amount of plaintexts and related keys in
exchange for a higher time complexity, is to switch to an exhaustive key search
after a suitable number of key bits has been determined. For example, if 32 key
bits remain to be found, a brute force search can be conducted in several hours on
a PC, or even much less on FPGAs.

Another variant of the attack, requiring less related-keys, is the following.
Denote the encryption of a plaintext P through r rounds of KeeLoq with the
key k = (k0, . . . , kr−1) by fr

k (P ). Consider a pair of related-keys of the form
(K,K ′ = K ≫ r). If a pair of plaintexts (P, P ′) satisfies P ′ = fr

k (P ),
then the corresponding ciphertexts satisfy EK′(P ′) = fr

k′(EK(P )), where k′ =
(k16, . . . , k16+r−1). Since EK(P ) and fr

k′(EK(P )) have 32−r bits in common, this
property is easy to check.

However, when r > 1, the task of detecting P ′ such that P ′ = fr
k (P ) is not so

easy. Actually, there are 2r candidates for P ′, and hence during the attack we have
to check 2r candidate pairs. On the other hand, we can reduce the data complexity
of this stage of the attack to 21+r/2 by using structures: The first structure S1

consists of 2r/2 plaintexts, such that the 32 − r least significant bits are equal
to some constant C in all the plaintexts of the structure, and the other bits are
arbitrary. The second structure S2 also consists of 2r/2 plaintexts, such that the
32− r most significant bits are equal to the same constant C in all the plaintexts



RELATED-KEY ATTACKS ON KEELOQ 101

of the structure, and the other bits are arbitrary. By birthday paradox arguments
on the 2r possible pairs (P, P ′) such that P ∈ S1 and P ′ ∈ S2 we expect one pair
for which P ′ = fr

k (P ), and this pair can be used for the attack.
In the attack, we go over the 2r possible pairs and check whether the colliding

bits of the relation EK′(P ′) = fr
k′(EK(P )) are satisfied. If r ≤ 16, this check

discards immediately most of the wrong pairs. After finding the right pair, 2r bits
of the key can be found using the algorithm presented in Sect. 3.2.

By choosing different values of r, we can get several variants of the attack:

1. Using r = 16, we can recover 32 key bits, and then the rest of the key can
be recovered using exhaustive key search. The data complexity of the attack
is 512 chosen plaintexts encrypted under two related-keys (256 plaintexts
under each key), and the time complexity is 232 KeeLoq encryptions.

2. Using r = 8 twice (for the pairs (K,K ≫ 8), and (K ≫ 8,K ≫ 16))
we retrieve 32 key bits, and exhaustively search the remaining bits. The
data complexity of the attack is 64 chosen plaintexts encrypted under three
related-keys (16 plaintexts under two keys, and 32 plaintexts under the third
key), and the time complexity is 232 KeeLoq encryptions.

3. Using r = 8 four times (for the pairs (K,K ≫ 8), (K ≫ 8,K ≫ 16),
(K ≫ 32,K ≫ 40), and (K ≫ 40,K ≫ 48)) we can retrieve the full key.
The data complexity of the attack is 128 chosen plaintexts encrypted under
six related-keys (16 plaintexts under four keys, and 32 plaintexts under two
keys), and the time complexity is negligible.

Other variants are also possible, and provide a trade-off between the number of
chosen plaintexts and the number of related-keys.

A.2 Improved Slide/Meet-in-the-Middle Attack Using Related
Keys

Using a related-key approach, we can improve the attack presented in Sect. 3.3.
Denote the encryption of a plaintext P through 64 rounds of KeeLoq under the key
K by gK(P ). Denote by e0 the least significant bit of a word. We observe that if
two related-keys (K,K ′) satisfy K ′ = K⊕e0, i.e., they differ in the least significant
bit, and two plaintexts (P, P ′) satisfy P ′ = P ⊕e0, then we have gK(P ) = gK′(P ′).
Indeed, in the first round of encryption the key difference and the data difference
cancel each other. As a result, after the first round the intermediate values in
both encryptions are equal, and the key difference is not mixed into the data until
the 65-th round. Thus, the intermediate values after 64 rounds are equal in both
encryptions.

Now, recall that in Sect. 3.1, the pair (Pi, Pj) is called a slid pair if it satisfies
Pj = gK(Pi). The attack searches among 232 candidates for a slid pair, and then
the key can be easily retrieved. Note that by the observation above, if (Pi, Pj) is



102 A PRACTICAL ATTACK ON KEELOQ

a slid pair with respect to K, then the pair (Pi⊕ e0, Pj) is a slid pair with respect
to K ′ = K⊕e0, and thus EK′(Pj) = g(K′≫16)(EK′(Pi⊕e0)). This additional slid
pair can be used to improve the check of candidate slid pairs, and thus to reduce
the time complexity of the attack.

More in detail, (10) can be rewritten as

216
(
48 · 216 + 2to

(
3tc · 216+tc−to + 216+tp−to (3tp + Ncoll · V )

))
. (15)

The expected number of collisions becomes Ncoll = 216+tc−to/22to . Verifying a
collision now costs on average V KeeLoq rounds, where

V =

47−tp−tc∑

i=0

(
2 · 2−2i + 2−2i−1

)
+ 22tp+2tc−96 ·

(
528 + 528 · 2−32

)
. (16)

Simplification yields:

48 · 232 + 3tc · 232+tc + 3tp · 232+tp + 3.33 · 296−2tp−2tc + 528 · 232 . (17)

The optimum is situated at tp = tc = 12 where the time complexity of the attack
is 250.9 KeeLoq rounds, or 241.9 full KeeLoq encryptions.

Summarising the attack, the data complexity is 217 chosen plaintexts encrypted
under two related-keys (216 plaintexts under each key), and the time complexity
is 241.9 KeeLoq encryptions. The memory complexity is about 16 MB.



Publication

Collisions and Other
Non-Random Properties for
Step-Reduced SHA-256

Publication Data

Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian
Rechberger. Collisions and other non-random properties for step-
reduced SHA-256. In Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica, editors, Selected Areas in Cryptography — SAC 2008,
volume 5381 of Lecture Notes in Computer Science, pages 276–293.
Springer, 2009.

Contributions

• Principal author.

103



104 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256



Collisions and Other Non-Random Properties for

Step-Reduced SHA-256

Sebastiaan Indesteege1,2,∗, Florian Mendel3, Bart Preneel1,2, and Christian
Rechberger3

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

3 Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A-8010 Graz, Austria.

Abstract. We study the security of step-reduced but otherwise
unmodified SHA-256. We show the first collision attacks on
SHA-256 reduced to 23 and 24 steps with complexities 218 and 228.5,
respectively. We give example colliding message pairs for 23-step
and 24-step SHA-256. The best previous, recently obtained result
was a collision attack for up to 22 steps. We extend our attacks
to 23 and 24-step reduced SHA-512 with respective complexities of
243.9 and 253.0. Additionally, we show non-random behaviour of the
SHA-256 compression function in the form of free-start near-collisions
for up to 31 steps, which is 6 more steps than the recently obtained
non-random behaviour in the form of a semi-free-start near-collision.
Even though this represents a step forwards in terms of cryptanalytic
techniques, the results do not threaten the security of applications
using SHA-256.

Key words: SHA-256, SHA-512, hash functions, collisions, semi-
free-start collisions, free-start collisions, free-start near-collisions.

1 Introduction

In the light of previous break-through results on hash functions such as MD5 and
SHA-1, the security of their successors, SHA-256 and sisters, against all kinds of
cryptanalytic attacks deserves special attention. This is even more important as
many products and services that used to rely on SHA-1 are now migrating to
SHA-256.

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

105

mailto:sebastiaan.indesteege@esat.kuleuven.be


106 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

1.1 Previous Work on Members of the SHA-2 Family

Below, we briefly discuss existing work. Results on older variants of the larger
MD4 related hash function family, including SHA-1, suggest that the concept of
local collisions might also be important for the SHA-2 family. The first published
analysis on members of the SHA-2 family, by Gilbert and Handschuh [2], goes in
this direction. They show that there exists a 9-step local collision with probability
2−66. Later on, the result was improved by Hawkes et al. [3]. By considering
modular differences, they increased the probability to 2−39. Using XOR differences,
local collisions with probability as high as 2−38 where used by Hölbl et al. [4].
Local collisions with lower probability but with other properties were studied by
Sanadhya and Sarkar in [13].

Now we turn our attention to the analysis of simplified variants of SHA-256.
In [17], Yoshida and Biryukov replace all modular additions by XOR. For this
variant, a search for pseudo-collisions is described, which is faster than brute
force search for up to 34 steps. Matusiewicz et al. [8] analysed a variant of
SHA-256 where all Σ- and σ-functions are removed. The conclusion is that for
this variant, collisions can be found much faster than by brute force search. The
work shows that the approach used by Chabaud and Joux [1] in their analysis
of SHA-0 is extensible to that particular variant of SHA-256. The message
expansion as a building block on its own was studied by Matusiewicz et al. [8]
and Pramstaller et al. [12].

Finally, we discuss previous work that focuses on step-reduced but otherwise
unmodified SHA-256. The first study was done by Mendel et al. [9]. The results
obtained are a practical 18-step collision and a differential characteristic for 19-
step SHA-224 collision. Also, an example of a pseudo-near-collision for 22-step
SHA-256 is given. Similar techniques have been studied by Matusiewicz et al. [8]
and recently also by Sanadhya and Sarkar [15]. Using a different technique, Nikolić
and Biryukov [11] obtained collisions for up to 21 steps and non-random behaviour
in the form of semi-free-start near-collisions for up to 25 steps. Very recently,
Sanadhya and Sarkar [16] extended this, and showed a collision example for 22
steps of SHA-256 in [14].

1.2 Our Contribution

We extend the work of Nikolić and Biryukov [11] to collisions for 23- and 24-
step SHA-256 with respective time complexities of 218 and 228.5 reduced SHA-256
compression function evaluations. These 23- and 24-step attacks are also applied
to SHA-512, with complexities of 243.9 and 253.0 for 23-step SHA-512 and 24-step
SHA-512, respectively. Example collision pairs for 23-step SHA-256 and SHA-512,
and for 24-step SHA-256 are given. The collision attacks presented in this work
do not extend beyond 24 steps, but we investigate several weaker collision style
attacks on a larger number of rounds. Our results are summarised in Table 1.



DESCRIPTION OF SHA-256 107

Table 1 – Comparison of our results with the known results in the
literature. Effort is expressed in (equivalent) calls to the respective
reduced compression functions.

function steps type effort source example

SHA-256 18 collision 20 [9] yes
SHA-256 20 collision 21.58 [11] no
SHA-256 21 collision 215 [11] yes
SHA-256 22 collision 29 [14] yes
SHA-256 23 collision 218 this work yes
SHA-256 24 collision 228.5 this work yes
SHA-512 23 collision 243.9 this work yes
SHA-512 24 collision 253.0 this work no

SHA-256 23 semi-free-start collision 217 [11] yes
SHA-256 24 semi-free-start collision 217 this work no

SHA-224 25 free-start collision 217 this work no

SHA-256 22 free-start near-collision 20 [9] yes
SHA-256 25 semi-free-start near-collision 234 [11] yes
SHA-256 31 free-start near-collision 232, Table 6 this work no

We use the terminology introduced by Lai and Massey [5] for different types of
attacks on (iterated) hash functions. A collision attack aims to find two distinct
messages that hash to the same result. In a semi-free-start collision attack, the
attacker is additionally allowed to choose the initial chaining value, but the same
value should be used for both messages. In a free-start collision attack, a (small)
difference may appear in the initial chaining value. Near-collision attacks relax the
requirement that the hash results should be equal and allow for small differences.

The structure of this paper is as follows. We give a short description of SHA-256
in Sect. 2. Section 3 gives an alternative description of the semi-free-start collision
attack by Nikolić and Biryukov [11], which will make the subsequent description of
the new attacks easier to understand. We then discuss our collision attacks on 23-
and 24-step SHA-256 in Sect. 4. In Sect. 5, we apply our results to step-reduced
SHA-512. Finally, Sect. 6 concludes.

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using the
notation from Table 2. For a detailed specification, we refer to [10].

The compression function of SHA-256 consists of a message expansion, which
transforms a 512-bit message block into 64 expanded message words Wi of 32 bits
each, and a state update transformation. The latter updates eight 32-bit state
variables A, . . . ,H in 64 identical steps, each using one expanded message word.



108 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

Table 2 – The notation used in this paper.

X ≫ s X rotated over s bits to the right
X ≫ s X shifted over s bits to the right

X One’s complement of X
X ⊕ Y Bitwise exclusive OR of X and Y
X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232

Ai, · · · ,Hi State variables at step i, for the first message
A′

i, · · · ,H ′
i Idem, for the second message

Wi i-th expanded message word of the first message
W ′

i Idem, for the second message
δX Additive difference in X, i.e., X ′ −X

δσ0 (X) Additive difference in σ0 (X), i.e., σ0 (X ′)− σ0 (X)

The message expansion can be defined recursively as follows.

Wi =

{
Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 64

. (1)

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3) ,
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10) .

(2)

The state update transformation updates two of the state variables in every step.
It uses the bitwise Boolean functions fch and fmaj as well as the GF(2)-linear
functions Σ0 and Σ1.

fch(X,Y,Z) = XY ⊕XZ ,
fmaj(X,Y,Z) = XY ⊕ Y Z ⊕XZ ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22) ,
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25) .

(3)

Figure 1 describes the state update transformation, where Ki is a step constant.
Equivalently, it is described by the following equations.

T1 = Hi + Σ1(Ei) + fch(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fmaj(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 steps, the initial state variables are fed forward using word-wise addition
modulo 232.



REVIEW OF THE NIKOLIĆ-BIRYUKOV SEMI-FREE-START COLLISION ATTACK 109

Σ0 Σ1

f
m

a
j

f
c
h

+

+

+

+

+

+

+

Ai Bi Ci Di Ei Fi Gi Hi

Ki

Wi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Figure 1 – The state update transformation of SHA-256.

3 Review of the Nikolić-Biryukov Semi-Free-Start
Collision Attack

In this section, we review the 23-step semi-free-start collision attack by Nikolić
and Biryukov [11]. The new results presented in this paper are extensions of this
attack. The notations we use are given in Table 2.

The attack uses a nine step differential, which is presented in Table 3. All
additive differences are fixed, as well as the actual values of some of the internal
state variables. Fixing these values ensures that the differential is followed, as will
be explained later. The constants α, β, γ and ǫ are determined by the attack. The
first difference is inserted via the message word W9. There are no differences in
expanded message words other than those indicated in Table 3, i.e., only W9, W10,
W11, W12, W16 and W17 can have a difference.

The attack algorithm consists of two phases. The first phase finds suitable
values for the constants α, β, γ and ǫ as well as two expanded message words,
W16 and W17. A detailed description of this phase of the attack will be given in
Sect. 3.2, as it is more instructive to describe the second phase first.

3.1 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α, β, γ, ǫ, W16

and W17, a pair of messages and a set of initial values that lead to a semi-free-start
collision for 23 steps of SHA-256. It works by carefully fixing the internal state at
step 11 as indicated in Table 3, and then computing forward and backward. At
each step, the expanded message word Wi is computed such that the differential
from Table 3 is followed. During this, four extra conditions appear, involving only



110 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

Table 3 – A 9-step differential, using additive differences (left) and
conditions on the value (right). Blanks denote zero differences resp.
unconstrained values.

step δA δB δC δD δE δF δG δH δW A B C D E F G H

8 α γ
9 1 α α γ + 1 γ
10 1 1 −1 −1 α α −1 γ + 1 γ
11 1 −1 1 δ1 α −1 α α ǫ −1 γ + 1 γ
12 1 −1 1 δ2 α α −1 α β ǫ −1 γ + 1
13 1 −1 1 α α α −1 β β ǫ −1
14 1 −1 α α α −1 β β ǫ
15 1 α α 0 −1 β β
16 1 1 α −2 0 −1 β
17 1 −1 −2 0 −1
18 −2 0

the constants determined by the first phase of the attack.

σ1 (W16 + 1)− σ1 (W16)− Σ1 (ǫ− 1) + Σ1 (ǫ)

− fch (ǫ− 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 . (5)

σ1 (W17 − 1)− σ1 (W17)− fch (β, ǫ− 1, 0) + fch (β, ǫ,−1) = 0 . (6)

β = α− Σ0 (α) . (7)

fch (β, β, ǫ− 1)− fch (β, β, ǫ) = −1 . (8)

The first phase guarantees that the constants are such that these conditions are
satisfied. The second phase of the attack has a negligible complexity and is
guaranteed to succeed. Since there is still a lot of freedom left, many 23-step
semi-free-start collisions can be found, with only a negligible additional effort, by
repeating this second phase several times. A detailed description of this phase,
including the origins of (5)–(8), is given in Appendix A.

3.2 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for the
constants α, β, γ and ǫ, as well as two expanded message words, W16 and W17.
Suitable values imply that the four conditions (5)–(8) are satisfied. Nikolić and
Biryukov [11] do not give much detail on this procedure, hence we clarify it below.

1. Make a random choice for γ and ǫ and search for a value of W16 such that
condition (5) is satisfied. This condition is of the form σ1 (x + 1)−σ1 (x) = δ.
There exists a simple, generic method to solve equations of this form, which
is described in Appendix B. We note however that for this particular case,
a faster method exists. An exhaustive search over every possible value of x
resulted in the observation that only 6 181 additive differences δ can ever be



OUR COLLISION ATTACKS ON STEP-REDUCED SHA-256 111

achieved. These can be stored in a lookup table, together with one or more
solutions for each difference. Hence, solving an equation of this form can be
done with a simple table lookup.

If no solution exists, simply retry with different choices for γ and/or ǫ. If the
right hand side difference δ is selected uniformly at random, the probability
that the equation has a solution is 2−19.5, so we expect to have to repeat
this step about 219.5 times.

2. Make a random choice for α, and compute β using (7). Now check
condition (8). As described in [11], this equation is satisfied if the bits
of β are zero in the positions where the bits of ǫ−1 and ǫ differ. This occurs
with a probability of approximately 1/3, so this condition is fairly easy to
satisfy.

3. The last condition, (6), is of the same form as the first condition, so it can
be solved in exactly the same way. The expected probability that a solution
exists is again 2−19.5.

Note that, because not all conditions depend on all of the constants determined in
this phase of the attack, the first condition can be treated independently of the last
three. Thus, the first and last step of this phase of the attack are executed about
219.5 times and the second step about 221 times. One of these steps requires much
less work than an evaluation of the compression function of (reduced) SHA-256 —
a bit less than one step. Hence, the overall time complexity of the entire attack,
when expressed in SHA-256 compression function evaluations, is below 217.

4 Our Collision Attacks on Step-Reduced SHA-256

In this section we describe a novel, practical collision attack on SHA-256, reduced
to 23 steps. It has a time complexity of about 218 evaluations of the reduced
SHA-256 compression function. We also extend this to 24 steps of SHA-256, with
an expected time complexity of 228.5 compression function evaluations.

4.1 23-Step Collision

Our collision attack for SHA-256, reduced to 23 steps, consists of two parts. First,
we construct a semi-free-start collision for 23 steps, based on the attack from
Sect. 3. Then we transform this semi-free-start collision into a real collision.

Finding “Good” Constants. Finding a 23 step semi-free-start collision is done
using the same attack as described in Sect. 3, with a slight change to the first
phase. In Sect. 3.2, it was described how to find constants α, β, γ and ǫ such that
there exist values for W16 and W17 ensuring that the conditions (5) and (6) are
satisfied. There are still some degrees of freedom left in this process. Indeed, it is



112 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

possible to determine the constants α, β, γ and ǫ such that there are many values
for W16 and W17 satisfying (5) and (6).

We performed an exhaustive search for such good constants. Condition (5)
depends only on ǫ and γ. An exhaustive search for this condition can be performed
with approximately 237 evaluations of (5), because for each value of ǫ, only some
of the bits in γ can have an influence. We found several values for ǫ and γ for
which more than 229 choices for W16 ensure that (5) is satisfied, for instance

γ = 0000017cx , ǫ = 7f5f7200x . (9)

Conditions (6) and (8) depend on ǫ and β, which in turn depends on α through
(7). An interesting property is that condition (6) becomes independent of ǫ if we
assume that condition (8) is satisfied. Indeed, since this assumption implies that
the bits of β are zero where ǫ and ǫ− 1 differ, (6) reduces to

σ1 (W ′
17 + 1)− σ1 (W ′

17) = β . (10)

Because of this, an exhaustive search for good values of α and β is feasible. There
are many of the optimal values for α and β which are consistent with (several of)
the optimal values for ǫ, thus yielding a global optimum. For instance, with γ and
ǫ as in (9), the following values for α and β are one of many optimal choices:

α = 00b321e3x , β = fcffe000x . (11)

There are 216 possible choices for W17 which satisfy (6) with these constants. Thus,
these values for α, β, γ and ǫ give us an additional freedom of 245 in the choice of
W16 and W17. This phase can be considered a precomputation, or alternatively,
one can reduce the effort spent in this phase by only searching a smaller part of the
available search space, which likely leads to less optimal results. It may however
be a worthwhile trade-off in practice.

Transforming into a Collision. Note that only 7 expanded message words, W11

until W17, are actually fixed to a certain value when constructing a semi-free-
start collision, ignoring the freedom left in W16 and W17 for now. The others
are chosen arbitrarily or computed from the message expansion when necessary.
Using this freedom, it is possible to construct many semi-free-start collisions with
only a negligible additional effort. But it is also possible to use this freedom in a
controlled manner to transform the semi-free-start collision into a real collision.

To this end, we first introduce an alternative description of SHA-256. In older
variants of the same design strategy, like MD5 or SHA-1, only a single state variable
is updated in every step. This naturally leads to a description where only the first
state variable is considered. Something similar can be done with the SHA-2 hash
functions, even though in the standard description, two state variables are updated
in every step.



OUR COLLISION ATTACKS ON STEP-REDUCED SHA-256 113

From the state update equations (4), we derive a series of equations expressing
the inputs of the i-th state update transformation, Ai, . . . ,Hi, as a function of
only Ai through Ai−7.

Ai = Ai , Bi = Ai−1 , Ci = Ai−2 , Di = Ai−3 ,
Ei = Ai−4 + Ai −Σ0(Ai−1)− fmaj(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1−Σ0(Ai−2)− fmaj(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2−Σ0(Ai−3)− fmaj(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3−Σ0(Ai−4)− fmaj(Ai−4, Ai−5, Ai−6) .

(12)

Substituting these into (4) yields an alternative description requiring only a single
state variable. This description can be written concisely as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) + Ai−7 + Wi . (13)

The function F (·) encapsulates (4) and (12), except for the addition of the
expanded message word Wi and the state variable Ai−7. From (12), it is clear that
one can easily transform an internal state in the standard description, 〈Ai, · · · ,Hi〉,
to the corresponding internal state in the alternative description, 〈Ai, · · · , Ai−7〉,
and vice versa. Analogous to what is done for MD5 and SHA-1, the initial values
can be redefined as A−7, · · · , A0.

This alternative description of SHA-256 can be used to transform a 23 step
semi-free-start collision for SHA-256 into a real collision. Since control over one
expanded message word Wi gives full control over one state variable Ai+1, control
over eight consecutive expanded message words gives full control over the entire
internal state.

1. Start from a 23-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values, in the alternative description. Make arbitrary choices
for W0, W1 and W2, and recompute the first three steps.

2. The eight message words W3 until W10 are now modified such that A4 until
A11 remain unchanged. This implies that the internal state at step 11,
〈A11, · · · ,H11〉 does not change, and thus we connect to the rest of the
semi-free-start collision. More specifically, for every step i, 3 ≤ i ≤ 10, the
new value of the i-th message word is computed as

Wi = Ai+1 − F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6)−Ai−7 . (14)

In the message words W9 and W10 there is an additive difference of 1 and
−1, respectively. This does not pose a problem since the construction of the
semi-free-start condition guarantees that these will have the intended effect,
regardless of the values of W9 and W10, see Appendix A.

3. Now we need to verify again if conditions (5) and (6) are still satisfied, since
they depend on W16 and W17, which may have changed. If the conditions are



114 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

Table 4 – Example colliding message pair for 23-step reduced
SHA-256.

M 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d7 3b10201d 39953548 8e127f2b 0304fc01 e7118577 43b12ca7

M ′ 29f1ebfb 4468041a 1e6565b6 4cc17e75 4ea4f993 33a77104 864a828d 1dcec3d2

d33d7b02 bcd4a2d8 3b10201c 3995d548 91129f2a 0304fc01 e7118577 43b12ca7

H c77405ea 8bfe2016 ff0531b6 a89b81f6 e98cf052 491a6c62 fd009a40 3969dc83

not satisfied, simply restart and make different choices for W0, W1 and/or
W2.

Recall however that we have spent extra effort in the first phase of the attack
to choose the constants α, β, γ and ǫ such that there are many values for
W16 and W17 that satisfy the conditions. For the constants given in (9)
and (11), there are 245 allowed values for these two expanded message words.
This translates into a probability of 2−19 that the conditions (5) and (6)
are indeed still satisfied. We hence expect to have to repeat this procedure
about 219 times. Every trial requires an effort equivalent to about 10 steps
of SHA-256.

4. After a successful modification of the first message words, the expanded
message words W18 until W22 need to be recomputed, and also the
corresponding steps need to be redone. The construction of the semi-free-
start collision still guarantees that no differences will be introduced.

If we consider the first phase to be a precomputation, the overall attack complexity
is about 218 evaluations of the compression function of SHA-256 reduced to 23
steps. An example collision pair for 23-step reduced SHA-256 is given in Table 4.

4.2 24-Step Collision

The same approach can be extended to 24 steps of SHA-256, using the 24-step
semi-free-start collision attack given in detail in Sect. 4.3. Simply put, the 23-step
attack is simply shifted down by a single step, and no difference is introduced into
W0 by the message expansion in the backward direction.

When turning the semi-free-start collision into a collision, however, the value
of the expanded message word W16 (which was the non-expanded message word
W15 in the 23-step attack) should not change. In a straightforward extension of
the 23-step collision attack to 24 steps, this extra condition would only be satisfied
with a probability of 2−32. Using the available freedom in a better way, this can
be improved substantially.

1. Start from a 24-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values. Make an arbitrary choice for W0 and recompute the



OUR COLLISION ATTACKS ON STEP-REDUCED SHA-256 115

Table 5 – Example colliding message pair for 24-step reduced
SHA-256.

M 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af09 5b28721d 1be35597 7ff22aa1 e807a758 c1519aaa

M ′ 0187e08e 865cedaf 5b69e21a e0f7485e 50b98993 217e4650 51e3cf65 c2997c68

2c267e16 82ffa4e9 37b5af0a 5b28721c 1be3f597 82f24aa0 e807a758 c1519aaa

H 1584074c 8b810a94 01ea31b1 81bffd02 d29c817d e4e04b51 b9f5ac4f 6b34d1f8

first step. Now, it follows from (4) that (A2 −W1) is a constant:

c1 = A2 −W1 . (15)

2. The new value of W9 is determined from (14), i.e., it depends on A2 through
A10. The state variables A5 through A10 have already been fixed in the
semi-free-start collision. If we additionally fix A4 and A3 to arbitrary values,
it is possible to compute the sum of W9 and A2,

c2 = W9 + A2 = A10 − F (A9, · · · , A3) . (16)

3. Combining (1) and (15)–(16), results in

W16 − σ1(W14)− c2 + c1 −W0 = σ0(W1)−W1 . (17)

It is easy to find a suitable value for W1 that ensures that W16 has the proper
value, if it exists. It suffices to guess the 15 least significant bits of W1 to
compute all 32 bits of W1, satisfying the above condition with probability
2−14. A conservative estimate is that each trial requires an effort equivalent
to one step update of SHA-256.

4. Now all the internal state variables have been fixed. The corresponding
message words can be found from (14) and the message expansion. Just as
in the 23-step collision attack, however, there are still some conditions left.
As explained in Sect. 4.1, these are satisfied with a probability of 2−19.

Hence, the overall expected time complexity is equivalent to about 219 · (214 +
10) SHA-256 step computations, or about 228.5 evaluations of the SHA-256
compression function reduced to 24 steps. An example collision pair for 24-step
reduced SHA-256 is given in Table 5. An extension of this attack method beyond
24 steps fails, because then a difference in the first or in the last message word
becomes unavoidable. In [14], another differential than the one shown in Table 3
is used to find 22-step collisions for SHA-256. We tried to use this differential in
our extended attacks, but even for 23 steps, using this differential fails.



116 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

4.3 Further Extensions

This section discusses further extensions using weaker attack models. The starting
point is the 23-step semi-free-start collision attack of Nikolić and Biryukov [11],
which was described in Sect. 3.

Semi-Free-Start Collisions for 24 Steps of SHA-256. We keep the entire attack
algorithm from Sect. 3 unchanged, but shift everything down by a single step.
Because of this, one more message word, W0, needs to be computed from the
message expansion in the reverse direction. From (1), it follows that the additive
difference in this word is

δW0 = δW16 − δσ1 (W14)− δW9 − δσ0 (W1) . (18)

None of these expanded message words has a difference, so also δW0 = 0. This
yields 24-step semi-free-start collisions of SHA-256 with the same complexity of
217 compression function evaluations.

Free-Start Collisions for 25 Steps of SHA-224. SHA-224 differs from SHA-256
in two ways. First, it has different initial values, and second, the output is
truncated to the leftmost 224 bits. We can thus extend the 24-step semi-free-
start collision of SHA-256 to a 25-step free-start collision of SHA-224 by simply
shifting the same attack down one more step. Now a difference will inevitably
appear in W0, which propagates to the initial value H0. The other initial values,
A0 through G0 still have a zero difference. Because the word H is truncated away
in SHA-224, this results in free-start collisions for 25 steps of SHA-224, with the
same complexity. Note that this attack would not apply if a different method of
truncation would have been chosen in the design of SHA-224.

Free-Start Near-Collisions of SHA-256. Extending the attack to more steps is
possible, provided that some differences are allowed both in the initial value and in
the hash result, i.e., when considering free-start near-collisions. The starting point
is again the 23-step semi-free-start collision attack from Sect. 3. It is extended by
adding a number of extra forward and backward steps.

As explained above, no difference is introduced in the first backward step. Note
that, in general, the diffusion of differences is slower in the backward direction than
in the forward direction. A difference introduced in an expanded message word
Wi affects both Ai+1 and Ei+1 in the forward direction, as opposed to only Hi

in the backward direction. Thus, in the forward direction, all state words can be
affected by a single difference in an expanded message word after only four rounds.
In the backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of 232 reduced
SHA-256 compression function evaluations. The results of our experiments are
summarised in Table 6. The first three columns give the total number of steps,



COLLISION ATTACKS ON STEP-REDUCED SHA-512 117

Table 6 – Experimental results of the free-start near-collision attack
on SHA-256. For each number of steps, only the combination of
forward/backward steps that gave the best results is shown. For
comparison, the expected numbers of solutions for a generic birthday
attack with an equal effort are also given.

steps fwd. bwd. kmin 2-logarithm of the number of solutions with k
≤ 8 ≤ 16 ≤ 24 ≤ 32 ≤ 40 ≤ 48 ≤ 56 ≤ 64

25 1 1 2 31.95 32.00 32.00 32.00 32.00 32.00 32.00 32.00
26 1 2 8 24.17 31.55 31.99 32.00 32.00 32.00 32.00 32.00
27 1 3 11 −∞ 15.41 26.20 30.65 31.89 32.00 32.00 32.00
28 1 4 18 −∞ −∞ 8.77 20.41 27.24 30.63 31.80 31.99
29 1 5 32 −∞ −∞ −∞ 1.58 14.31 22.86 28.19 30.93
30 1 6 43 −∞ −∞ −∞ −∞ −∞ 10.73 19.58 25.68
31 2 6 53 −∞ −∞ −∞ −∞ −∞ −∞ 6.34 15.50

Birthday Attack 57 −143.41 −108.84 −80.49 −56.36 −35.51 −17.37 −1.57 12.14

the number of extra forward and extra backward steps, respectively. The fourth
column gives kmin, the smallest Hamming distance found. The last eight columns
contain the 2-logarithm of the number of solutions with a Hamming distance k of
at most 8, 16, . . . , 64 bits.

For comparison, also the expected values for a generic birthday attack with
an equal effort of 232 is given. For a generic (free-start) near-collision attack on
an ideal n-bit hash function, using the birthday paradox with an effort of 2w

compression function evaluations, the lowest expected Hamming distance is the
lowest k for which

22w ·∑k
i=0 2−n

(
n
i

)
≥ 1 . (19)

For instance, with w = 32 and for SHA-256 (i.e., n = 256), this gives k = 57 bits.
Our attack performs significantly better for up to 30 steps of SHA-256. For 31
steps, we still found 208 free-start near-collisions with a Hamming distance of at
most 57 bits, whereas a birthday attack is only expected to find one with the same
effort.

5 Collision Attacks on Step-Reduced SHA-512

SHA-512 is a 512-bit hash function from the SHA-2 family. Its structure is very
similar to SHA-256. The sizes of all words are increased to 64 bits and the number
of rounds is increased to 80. It uses a different initial chaining value, and different
step constants. Finally, the GF(2)-linear functions are redefined. Refer to [10] for
details on SHA-512. In this section, we extend the collision attacks on SHA-256
that were described in Sect. 4.1 and 4.2 to SHA-512. The first phase of the attacks
needs to be adapted, since an exhaustive search as in Sect 3.2 is no longer feasible.



118 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

Finding “Good” Constants for SHA-512. Recall from Sect. 3.2 that the goal
of the first phase of the attack is to find values for the constants α, β, γ, ǫ such
that the conditions (5)–(8) are satisfied for many values of the expanded message
words W16, W17. Since an exhaustive search for good constants is infeasible, we
suggest the following approach.

1. First, make a list L of additive differences δ for which the equation

σ1 (x + 1)− σ1 (x) = δ (20)

has many solutions x. This can be accomplished by picking several values
for x at random and computing the corresponding δ’s. This procedure is
likely to quickly find the “good” values for δ, since the more x’s correspond
to a δ, the more likely we are to find it. Using Appendix B, the number of
solutions x for a given δ can be counted efficiently.

2. Since all conditions (5)–(8) will need to be satisfied, we can use (10) instead
of (6). Hence, β should preferably be one of the “good” δ’s from the list L.
Knowing the value of β, we need to invert (7) to find α. This can, for instance,
be done by guessing the 36 most significant bits of α and determining the
other bits using (7). A guess succeeds with a probability of about 2−36. Note
that (7) cannot necessarily be inverted for all β’s.

3. Now we make an arbitrary choice for ǫ which satisfies (8). Denote by lβ the
length of the run of least significant “0”-bits in β. Then, (8) is satisfied if
and only if the least significant “1”-bit of ǫ lies within the lβ least significant
bits. Unfortunately, for SHA-512, this condition eliminates the best values
for β.

4. If we choose a “good” value for σ1 (W16 + 1)−σ1 (W16) from the list L, and
since ǫ has already been chosen, (5) can be rewritten as

C − fch (ǫ− 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 , (21)

where C is a known constant. The bits in which ǫ and (ǫ− 1) differ can be
corrected by a proper choice of γ. Hence it is advantageous to choose ǫ with
a long run of least significant “0”-bits. This again constrains β, as explained
above. If no choice for γ can satisfy (21), retry with a different choice for ǫ
and/or β.

Unlike the exhaustive search in Sect. 3.2, this procedure does not guarantee finding
the optimal solution. However, experiments show that we can quickly find many
good solutions. We found many values for the constants α, β, γ and ǫ for which
the conditions (5) and (8) are satisfied for 249.1 and 234 values for W16 and W17,
respectively. Example values are

α = 3891fd20b54a8eb9x , β = 0001200000000000x ,
γ = 00000fff7f7fff46x , ǫ = 0000100000000000x .

(22)



CONCLUSION 119

Table 7 – Example colliding message pair for 23-step reduced
SHA-512.

M 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce69 90561054da994c54 7262751c31b5bdd0

54b1d56610b9e802 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

M ′ 0000000017daf2ec 000000004b7adc8e 000000000d01f49d 54cce0ac731eb4c9

5caf52c6f3e941cd 0224e6b804216305 95bbdc5df5b491c8 9f7f1453e39ee6c0

3e345efecc818058 93dfcee7a268ce6a 90561054da994c53 7266551c31b5bd18

54b0b56610b9e801 7f201dfcfce968c0 2b90cc3824ee5f13 05cfd16a7b4c4ab1

H dd44d89f178803f5 136802b223c880ba bbb80917dda6a3e7 be1f118889bd5415

98adc37a0f32d151 83d35099922ee2c6 670ac37463f224da e0835506fb66503d

23-step Collision. The second phase of the 23-step attack from Sect. 4.1 can
directly be applied to SHA-512. With the constants from (22), a single attempt to
turn a 23-step semi-free-start collision into a 23-step collision will succeed with
an expected probability of 2−44.9 and costs about half of a reduced SHA-512
compression function evaluation. Hence, this results in a collision attack on 23-step
SHA-512 with an expected time complexity of 243.9 reduced compression function
evaluations. An example collision pair for 23-step reduced SHA-512 is given in
Table 7.

24-Step Collision. Also the second phase of the 24-step attack from Sect. 4.2
can be applied to SHA-512. One slight modification is required when determining
a suitable value for W0, due to the redefinition of the σ0-function in SHA-512.
Guessing the 8 least significant bits of W0 allows to compute all of W0,
satisfying (17) with probability 2−8. This results in a collision attack on 24-step
SHA-512 with an expected time complexity of 253.0 reduced compression function
evaluations.

Further Extensions. The attacks on SHA-512 can also be extended, much like
the extensions described for the SHA-256 attacks in Sect. 4.3. Adding more rounds
trivially leads to several (semi-) free-start (near-) collision attacks. One noteworthy
case is a free-start collision attack on 26 steps of SHA-384. It is analogous to the
25-step free-start collision attack on SHA-224 from Sect. 4.3, but as two words are
truncated away in the case of SHA-384, the attack extends to 26 steps.

6 Conclusion

Our results push the limit for cryptanalysis of step reduced but otherwise
unmodified SHA-256; we found practical collisions for up to 24 steps. For almost
half of the steps (31 out of 64) non-random properties of the compression function



120 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

are detectable in practice. The results also apply to SHA-512, albeit with higher
time complexities.

Acknowledgements

The authors would like to thank Vincent Rĳmen for his advice. We acknowledge
the use of the VIC computer cluster of K.U.Leuven, which was used to obtain
most of the experimental results presented in this paper. Finally, thanks to Ralph
Wernsdorf for bringing [14] to our attention.

This work was supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT, and in
part by the Austrian Science Fund (FWF), project P19863. This work was done
during a visit of the first author to the Graz University of Technology.

References

[1] F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes
in Computer Science, pages 56–71. Springer, 1998.

[2] H. Gilbert and H. Handschuh. Security analysis of SHA-256 and sisters. In
M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography —
SAC 2003, volume 3006 of Lecture Notes in Computer Science, pages 175–193.
Springer, 2004.

[3] P. Hawkes, M. Paddon, and G. G. Rose. On corrective patterns for the SHA-2
family. Cryptology ePrint Archive, Report 2004/207, 2004. http://eprint.

iacr.org/.

[4] M. Hölbl, C. Rechberger, and T. Welzer. Searching for messages conforming
to arbitrary sets of conditions in SHA-256. In S. Lucks, A.-R. Sadeghi, and
C. Wolf, editors, Research in Cryptology, Second Western European Workshop
— WEWoRC 2007, volume 4945 of Lecture Notes in Computer Science, pages
28–38. Springer, 2008.

[5] X. Lai and J. L. Massey. Hash function based on block ciphers. In R. A.
Rueppel, editor, Advances in Cryptology — EUROCRYPT ’92, volume 658
of Lecture Notes in Computer Science, pages 55–70. Springer, 1993.

[6] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential
properties of addition. In M. Matsui, editor, Fast Software Encryption,
8th International Workshop — FSE 2001, volume 2355 of Lecture Notes in
Computer Science, pages 336–350. Springer, 2001.

http://eprint.iacr.org/
http://eprint.iacr.org/


REFERENCES 121

[7] H. Lipmaa, J. Wallén, and P. Dumas. On the additive differential probability
of exclusive-or. In B. K. Roy and W. Meier, editors, Fast Software Encryption,
11th International Workshop — FSE 2004, volume 3017 of Lecture Notes in
Computer Science, pages 317–331. Springer, 2004.

[8] K. Matusiewicz, J. Pieprzyk, N. Pramstaller, C. Rechberger, and V. Rĳmen.
Analysis of simplified variants of SHA-256. In C. Wolf, S. Lucks, and P.-
W. Yau, editors, Research in Cryptology, Western European Workshop —
WEWoRC 2005, volume 74 of Lecture Notes in Informatics, pages 123–134.
GI-Edition, 2005.

[9] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rĳmen. Analysis of step-
reduced SHA-256. In M. J. B. Robshaw, editor, Fast Software Encryption,
13th International Workshop — FSE 2006, volume 4047 of Lecture Notes in
Computer Science, pages 126–143. Springer, 2006.

[10] National Institute of Standards and Technology. Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-3, Oct. 2008.

[11] I. Nikolić and A. Biryukov. Collisions for step-reduced SHA-256. In K. Nyberg,
editor, Fast Software Encryption, 15th International Workshop — FSE 2008,
volume 5086 of Lecture Notes in Computer Science, pages 1–15. Springer,
2008.

[12] N. Pramstaller, C. Rechberger, and V. Rĳmen. Preliminary analysis of the
SHA-256 message expansion. First NIST Hash Workshop, Oct. 2005.

[13] S. K. Sanadhya and P. Sarkar. New local collisions for the SHA-2 hash family.
In K.-H. Nam and G. Rhee, editors, Information Security and Cryptology
— ICISC 2007, volume 4817 of Lecture Notes in Computer Science, pages
193–205. Springer, 2007.

[14] S. K. Sanadhya and P. Sarkar. 22-step collisions for SHA-2. arXiv e-print
archive, arXiv:0803.1220v1, Mar. 2008. http://www.arxiv.org/.

[15] S. K. Sanadhya and P. Sarkar. Attacking reduced round SHA-256. In
S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, editors, Applied
Cryptography and Network Security — ACNS 2008, volume 5037 of Lecture
Notes in Computer Science, pages 130–143, 2008.

[16] S. K. Sanadhya and P. Sarkar. Non-linear reduced round attacks against
SHA-2 hash family. In Y. Mu, W. Susilo, and J. Seberry, editors, Information
Security and Privacy — ACISP 2008, volume 5107 of Lecture Notes in
Computer Science, pages 254–266. Springer, 2008.

[17] H. Yoshida and A. Biryukov. Analysis of a SHA-256 variant. In B. Preneel and
S. E. Tavares, editors, Selected Areas in Cryptography — SAC 2005, volume
3897 of Lecture Notes in Computer Science, pages 245–260. Springer, 2006.

http://www.arxiv.org/


122 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

A Detailed Description of the Second Phase of the

Nikolić-Biryukov Attack

This appendix gives a detailed description of the second phase of the Nikolić-
Biryukov attack [11]. When given suitable values for α, β, γ, ǫ, W16 and W17 by
the first phase, as described in Sect. 3.2, it constructs a pair of messages and a set
of initial values that lead to a semi-free-start collision for 23 steps of SHA-256.

1. Start at step 11 by fixing the state variables in this step, A11, · · · ,H11 as
indicated in Table 3. The constants α, β, γ and ǫ are given by the first phase
of the attack.

2. Calculate W11 such that A12 = α and W ′
11 such that A′

12 = α. Now E12 = β
only depends on α, and we find condition (7) from Sect. 3.1.

E12 = α− Σ0 (α) = β . (23)

3. In a similar way, calculate W12 such that E13 = β and W ′
12 such that E′

13 = β.
This also guarantees that A13 = A′

13 because the majority function absorbs
the difference in C12.

4. Calculate W13 such that E14 = −1 and set W ′
13 = W13. Now, see Table 3,

δE14 should be equal to 1. This yields the condition

δE14 = fch (β, β, ǫ− 1)− fch (β, β, ǫ) + 2 = 1 . (24)

It was given before as (8), and is satisfied by the first phase of the attack.
Note that this also ensures that δA14 = 0.

5. Calculate W14 such that E15 = 0 and set W ′
14 = W14. Since the values of E14

and E′
14 were chosen in the previous step to be fixed points of the function

Σ1, δΣ1 (E14) = δE14 = 1 cancels with δH14 = −1. Also, fch absorbs the
difference in E14, so no new differences are introduced.

6. Calculate W15 such that E16 = −2 and set W ′
15 = W15. The difference in

F15 is absorbed by fch.

7. The value for W16 is computed in phase one of the attack. The difference
δW16 = 1 is cancelled by the output of fch. Indeed, since the binary
representation of E16 = −2 is 111 · · · 10b, the fch function passes only the
difference in the least significant bit.

8. Also the value for W17 is computed in phase one of the attack. The difference
δW17 = −1 cancels with δH17 = 1, thereby eliminating the final difference
in the state variables. Thus, a collision is reached.



SOLVING L(X + δ) = L(X) + δ′ 123

9. Now, go back to step 11 and proceed in the backward direction. Make an
arbitrary choice for W10. The differential from Table 3 is followed because
of the careful choice of the state variables in step 11.

10. Make an arbitrary choice for W9, and proceed one step backward. The
difference δW9 = 1 cancels with δA10 and with δE10 such that there is a
zero difference in the state variables A9 through H9. Now randomly choose
W8 down to W2 and calculate backward. Because no new differences appear
in these expanded message words, there is also a zero difference in the state
variables A2 through H2.

11. It is not possible to freely choose W0 or W1 as 16 expanded message words
have already been chosen, i.e., W2 until W17. Hence, these are computed
using the message expansion in the backward direction. Although some
of the message words used to compute W0 and W1 have differences, these
differences always cancel out.

12. Continuing forward from step 18 again, note that the collision is preserved
as long as no new differences are introduced via the expanded message words.
From the message expansion, it follows that

δW18 = σ1 (W16 + 1)− σ1 (W16)− Σ1 (ǫ− 1) + Σ1 (ǫ)

− fch (ǫ− 1, 0, γ + 1) + fch (ǫ,−1, γ + 1) = 0 . (25)

This is condition (5), which is satisfied by the first phase of the attack.

13. Similarly, in step 19, we require that δW19 = 0, which results in

σ1 (W17 − 1)− σ1 (W17)− fch (β, ǫ− 1, 0) + fch (β, ǫ,−1) = 0 . (26)

This condition was given in (6), and is also satisfied by the first phase of the
attack.

14. In steps 20–22, the message expansion guarantees that no new differences
are introduced. In step 23, however, a difference of 1 is impossible to avoid,
hence the attack stops after 23 steps.

Every step in this procedure is guaranteed to succeed, provided that the first phase
of the attack supplied suitable constants. Thus, the complexity of the second phase
of the attack is negligible. Since there is still a lot of freedom left, many 23-step
semi-free-start collisions can be found, with only a negligible additional effort, by
repeating this second phase several times.

B Solving L(x + δ) = L(x) + δ′

This appendix describes a generic method to solve equations of the form L(x+δ) =
L(x) + δ′ where δ and δ′ are given n-bit additive differences, and L is an n-bit



124 COLLISIONS AND OTHER NON-RANDOM PROPERTIES FOR STEP-REDUCED SHA-256

to n-bit GF(2)-linear transformation. This is similar to the problems studied by
Lipmaa and Moriai [6] and Lipmaa et al. [7].

Consider the modular addition x + δ and let ∆ = (x + δ)⊕ x. This addition is
described by the following equations, where xi is the i-th bit of x and the ci’s are
the carry bits:

(x + δ)i = xi ⊕ δi ⊕ ci

ci+1 = fmaj(xi, δi, ci)
c0 = 0

⇔
ci = δi ⊕∆i

ci+1 = fmaj(xi, δi, δi ⊕∆i)
c0 = 0

. (27)

Hence, once we fix both the additive difference δ and the XOR difference ∆, all the
carries ci are fixed. Some of the xi’s are also fixed: when ∆i = 1 and i < n− 1, it
must hold that xi = ci+1 = δi+1 ⊕∆i+1. The other xi’s can be chosen arbitrarily.
Thus, the allowed values for x lie in an affine space. Note that not all additive
differences are consistent with all XOR differences, i.e., the following conditions
must be satisfied

{
c0 = δ0 ⊕∆0 = 0
δi = δi+1 ⊕∆i+1 when ∆i = 0 and i < n− 1

. (28)

Solving an equation of the form L(x + δ) = L(x) + δ′ can be done as follows.
Let ∆′ = (L(x) + δ′)⊕L(x), i.e., the XOR-difference associated with the modular
addition L(x)+δ′. Since L(x+δ) = L(x)+δ′ and L is GF(2)-linear, it follows that
∆′ = L(∆). We can thus simply enumerate all the XOR-differences ∆ consistent
with the given additive difference δ, compute ∆′ = L(∆) and check if this is
consistent with the other additive difference δ′. If it is, both additions restrict
x to a (different) affine space. The intersection of these spaces, which can be
computed by solving a system of linear equations over GF(2), gives the solutions
x for the chosen XOR-difference ∆. Note that this intersection may be empty.
If no solutions are found for any value of the XOR-difference ∆, the equation
L(x + δ) = L(x) + δ′ has no solutions. Note that the number of solutions of the
equation can be counted efficiently using this method, as the number of solutions
of a linear system over GF(2) is straightforward to compute.

The time complexity of this method is proportional to the minimum of the
number of XOR differences consistent with the given additive differences δ or δ′.
This follows from the fact that one can easily modify the method to choose ∆′

instead of ∆.



Publication

Collisions for RC4-Hash

Publication Data

Sebastiaan Indesteege and Bart Preneel. Collisions for RC4-Hash.
In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rĳmen, and Der-Tsai
Lee, editors, Information Security 11th International Conference —
ISC 2008, volume 5222 of Lecture Notes in Computer Science, pages
355–366. Springer, 2008. Best Student Paper Award.

Contributions

• Principal author.

125



126 COLLISIONS FOR RC4-HASH



Collisions for RC4-Hash

Sebastiaan Indesteege1,2,∗ and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

{sebastiaan.indesteege,bart.preneel}@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. RC4-Hash is a variable digest length cryptographic hash
function based on the design of the RC4 stream cipher. In this paper,
we show that RC4-Hash is not collision resistant. Collisions for any
digest length can be found with an expected effort of less than 29

compression function evaluations. This is extended to multicollisions
for RC4-Hash. Finding a set of 2k colliding messages has an expected
cost of 27 + k · 28 compression function evaluations.

Key words: RC4-Hash, hash functions, collisions, multicollisions.

1 Introduction

Cryptographic hash functions have been receiving much attention from the
cryptologic community recently, as several of the widely used hash functions like
MD5, SHA-0 and SHA-1, have been broken, or at least shown to be weaker than
expected [3, 9–11]. This is a motivation for the design of new hash functions,
based on different design principles. One such proposal is RC4-Hash, which was
introduced by Chang, Gupta and Nandi [1] in 2006. The design is inspired by the
RC4 stream cipher. The latter was designed by Ron Rivest in 1987, but remained
a trade secret until it leaked out in 1994 [8]. The motivation for basing a hash
function design on RC4, which is well studied, is to be able to use existing results
on RC4 in the security analysis of RC4-Hash [1]. Concerning the performance
of RC4-Hash, the designers claim that SHA-1 is roughly 1, 5 times faster than
RC4-Hash [1].

We focus on the collision resistance of RC4-Hash. Informally, collision
resistance means that it should be hard to find two distinct messages m 6= m′

that hash to the same value, i.e., h(m) = h(m′). We show that RC4-Hash is
not collision resistant, and give a method to find colliding message pairs with an
expected time complexity of less than 29 compression function evaluations. We
also extend this to multicollisions.

This paper is organised as follows. In Sect. 2, a short description of the
RC4-Hash family of cryptographic hash functions is given. Section 3 introduces

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

127

mailto:protect T1	extbraceleft sebastiaan.indesteege,bart.preneelprotect T1	extbraceright @esat.kuleuven.be


128 COLLISIONS FOR RC4-HASH

two distinct methods to construct fixed points of the internal state of RC4-Hash.
This is then used in Sect. 4 to construct colliding message pairs for RC4-Hash.
In Sect. 5, extensions of the attack, as well as ways to mitigate it, are discussed.
Section 6 concludes.

2 Description of RC4-Hash

RC4-Hash follows the “wide pipe” hash function design principle proposed by
Lucks [7], which implies that the intermediate state size is (much) larger than
the digest size. More specifically, RC4-Hash consists of a compression function
C : {0, 1}w × {0, 1}m 7→ {0, 1}w, and an output transformation gn : {0, 1}w 7→
{0, 1}n. The intermediate state size w is (much) larger than the digest length
n. The compression function C is applied iteratively for every (padded) message
block of length m, starting from an initial value. Then, the output transformation
g compresses the large internal state down to the required digest length n.

In RC4-Hash, the intermediate state consists of an array S of 256 bytes and a
pointer into this array, denoted by j. The array S always represents a permutation
of the numbers 0 to 255. The size of the internal state is thus log2(2

8!) + 8 ≈
1692 bits. The digest length is variable from 16 bytes to 64 bytes, which is much
shorter than the internal state size. The length of the message blocks is fixed to
64 bytes.

Padding Rule. A message M is padded in the following way. The 8-bit binary
representation of the digest length n (in bytes), bin8(n), is prepended to the
message. A single “1” bit, v “0” bits and the 64-bit binary representation of the
original message length (in bits), bin64(|M |), are appended to the message. The
number v is the least non-negative integer such that |M | + 73 + v ≡ 0 mod 512.
This ensures that the padded message length is an integer multiple of 512 bits, the
message block length. Hence, the padded message can be split into t blocks of 512
bits each, denoted by M1 through Mt.

pad(M) = bin8(n) ||M || 1 || 0v ||bin64(|M |) = M1||M2|| · · · ||Mt . (1)

Compression Function. The compression function of RC4-Hash, which is
denoted by C

(
〈S, j〉 ,X

)
, is described in Fig. 1. It updates the internal state

〈S, j〉 in 256 steps. In every step, the pointer j is updated using one byte of the
message block X. Then, two elements of the array S are swapped. Each of the 64
bytes of the message block is used in four steps. The order in which they are used
is given by the message reordering r(·), see Table 5. This compression function
is applied iteratively for every message block M1 through Mt, starting from the
initial state

〈
SIV, 0

〉
. The initial value permutation SIV is given in Table 6.



FIXED POINTS OF THE COMPRESSION FUNCTION C 129

Input: Internal state 〈S, j〉, 64-byte message block X.
Output: The updated internal state 〈S, j〉.

1: for i = 0 to 255 do
2: j ← j + S[i] + X[r(i)]
3: swap(S[i], S[j])
4: end for
5: return 〈S, j〉

Figure 1 – The compression function of RC4-Hash, C
(
〈S, j〉 ,X

)
.

All arithmetic is done modulo 256.

Output Transformation. After every block of the padded message has been
processed, an output transformation gn

(
〈S, j〉

)
is applied. This transformation

generates the message digest of the required length n from the internal state.
First, the permutation S is composed with the initial value permutation SIV. The
resulting permutation is saved as T1. Then, two blank iterations of the compression
function C, i.e., using a zero message block, are applied, resulting in T2. Finally, S
is replaced by a composition of the two saved permutations, T1 ◦ T2 ◦ T1, and the
message digest is generated using an algorithm similar to RC4’s pseudo-random
byte generation.

Figure 2 shows the definition of the entire output transformation. In the
original description of RC4-Hash [1], the output transformation was further
partitioned into the algorithms OWT (“one way transformation”) and HBG (“hash
byte generation”). These correspond to lines 2–9 and 10–15 of the algorithm in
Fig. 2, respectively.

3 Fixed Points of the Compression Function C
In this section, we describe how to construct two distinct types of fixed points for
a certain number of iterations of the RC4-Hash compression function C. Each of
these constructions is based on one of two types of “partial state rotations”, which
are introduced in two lemmata, Lemma 1 and Lemma 3.

3.1 Fixed Points of Type I

Lemma 1 (Partial state rotations of type I). Consider an internal state 〈S, 0〉
of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉 the internal state
reached after applying the compression function C using the message block X =
{x, x, . . . , x} with x = 1− s0 mod 256:

〈S′, j′〉 = C
(
〈S, j〉 ,X

)
. (2)



130 COLLISIONS FOR RC4-HASH

Input: Internal state 〈S, j〉 after processing the entire padded
message.

Output: The message digest H.
1: S ← SIV ◦ S
2: // OWT (one way transformation)
3: T1 ← S
4: for i = 0 to 511 do
5: j ← j + S[i]
6: swap(S[i], S[j])
7: end for
8: T2 ← S
9: S ← T1 ◦ T2 ◦ T1

10: // HBG (hash byte generation)
11: for i = 0 to n do
12: j ← j + S[i]
13: swap(S[i], S[j])
14: H[i]← S[S[i] + S[j]]
15: end for
16: return H

Figure 2 – The output transformation of RC4-Hash, gn

(
〈S, j〉

)
. All

arithmetic is done modulo 256.



FIXED POINTS OF THE COMPRESSION FUNCTION C 131

Now, it holds that

j′ = 0 and S′[i] =







s0 i = 0

si+1 1 ≤ i < 255

s1 i = 255

. (3)

Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th step of

the compression function C. First, we prove by induction that for every i < 256 it
holds that {

j(i) = i + 1 mod 256 , and
S(i)[i + 1 mod 256] = s0 .

(4)

It is clear that this holds before the first step, i.e., for i = −1, since j(−1) = 0
and S(−1)[0] = S[0] = s0. Assume that the condition holds after step i (i < 255).
Then, the update of the pointer j in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + X[r(i + 1)] mod 256
= (i + 1) + s0 + (1− s0) mod 256
= i + 2 mod 256 .

(5)

Thus, S(i+1) is found by swapping the (i + 1)-th and (i + 2)-th element of S(i).
Hence, S(i+1)[i + 2 mod 256] = S(i)[i + 1 mod 256] = s0, i.e., the condition also
holds after step i + 1.

After 255 steps, all the elements of S have been circularly shifted over one
position, i.e., S(254) = {s1, s2, . . . , s255, s0}. In the final step, the first and the last
element of S(254) are swapped since j(255) = 0, resulting in

S(255) = S′ = {s0, s2, s3, . . . , s254, s255, s1} . (6)

From this, the lemma follows.

Table 1 gives a detailed illustration of Lemma 1. The first column of this table
gives the step number i, the second column gives the new value of the pointer j,
computed in this step. The last column contains the array S after the step, where
the elements that were just swapped are encircled.

Based on this first type of partial state rotations, it is straightforward to
construct fixed points for 255 iterations of the compression function C as is shown
in the next theorem.

Theorem 1 (Fixed points of type I). Consider an internal state 〈S, 0〉 of RC4-Hash
with S = {s0, s1, . . . , s255}. After 255 iterations of the compression function C,
each using the same message block X = {x, x, . . . , x} with x = 1 − s0 mod 256,
the same state is reached:

〈S, 0〉 = C255
(
〈S, 0〉 ,X

)
. (7)



132 COLLISIONS FOR RC4-HASH

Table 1 – Partial state rotations of type I.

step i j(i) S(i)

0 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 1 s1 s0 s2 s3 s4 · · · s253 s254 s255

1 2 s1 s2 s0 s3 s4 · · · s253 s254 s255

2 3 s1 s2 s3 s0 s4 · · · s253 s254 s255

3 4 s1 s2 s3 s4 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

254 255 s1 s2 s3 s4 s5 · · · s254 s255 s0

255 0 s0 s2 s3 s4 s5 · · · s254 s255 s1

Proof. The repeated application of Lemma 1 proves the theorem.

Note that the only requirement for the construction of a fixed point of type I is
that the pointer j has to be zero in the starting state. There are no conditions on
the contents of the array S. Also, when given a suitable starting state, constructing
a fixed point requires only a negligible amount of work, i.e., one subtraction modulo
256 to compute the message byte x = 1− s0 mod 256.

3.2 Fixed Points of Type II

The message reordering r(·) has an interesting property which allows for another
type of partial state rotations.

Lemma 2. The message reordering r(·) does not reorder message bytes with an
even index to odd-numbered positions, or vice versa. In other words,

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod 2) . (8)

Proof. The lemma follows in a straightforward way from the definition of r(·) in
Table 5.

Lemma 3 (Partial state rotations of type II). Consider an internal state 〈S, 1〉
of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉 the internal state
reached after applying the compression function C using the message block X =
{x0, x1, x0, x1, . . . , x0, x1} with x0 = 1− s0 mod 256 and x1 = 1− s1 mod 256:

〈S′, j′〉 = C
(
〈S, j〉 ,X

)
. (9)

Now, it holds that

j′ = 1 and S′[i] =







si 0 ≤ i < 2

si+2 2 ≤ i < 254

si−252 254 ≤ i < 256

. (10)



FIXED POINTS OF THE COMPRESSION FUNCTION C 133

Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th step of

the compression function C. Note that, because of Lemma 2 and the definition
of X, X[r(i)] = xi mod 2 = 1 − si mod 2. First, we prove by induction that for
every i < 256 it holds that







j(i) = i + 2 mod 256 , and
S(i)[i + 1 mod 256] = si+1 mod 2 , and
S(i)[i + 2 mod 256] = si mod 2 .

(11)

It is clear that this holds before the first step, i.e., for i = −1, since j(−1) = 1,
S(−1)[0] = S[0] = s0 and S(−1)[1] = S[1] = s1. Assume that the condition holds
after step i (i < 255). Then, the update of the pointer j in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + X[r(i + 1)] mod 256
= (i + 2) + si+1 mod 2 + (1− si+1 mod 2) mod 256
= i + 3 mod 256 .

(12)

Thus, S(i+1) is found by swapping the (i + 1)-th and (i + 3)-th element of S(i).
Hence, S(i+1)[i + 3 mod 256] = S(i)[i + 1 mod 256] = si+1 mod 2. Of course,
S(i+1)[i + 2 mod 256] = S(i)[i + 2 mod 256] = si mod 2. This implies that the
condition also holds for step i + 1.

After 254 steps, all the elements of S have been circularly shifted over two
position, i.e., S(253) = {s2, s3, s4, . . . , s255, s0, s1}. Since j(254) = 0 and j(255) = 1,
the swaps made in the last two steps result in the following state

S(255) = S′ = {s0, s1, s4, . . . , s255, s2, s3} . (13)

From this, the lemma follows.

Table 2 gives a detailed illustration of Lemma 3. The notations are the same
as in Table 1. Based on this type of partial state rotations, fixed points for 127
iterations of the compression function C can be constructed, as is shown in the
next theorem.

Theorem 2 (Fixed points of type II). Consider an internal state 〈S, 1〉 of
RC4-Hash with S = {s0, s1, . . . , s255}. After 127 iterations of the compression
function C, each using the same message block X = {x0, x1, x0, x1, . . . , x0, x1}
with x0 = 1− s0 mod 256 and x1 = 1− s1 mod 256, the same state is reached:

〈S, 1〉 = C127
(
〈S, 1〉 ,X

)
. (14)

Proof. The repeated application of Lemma 3 proves the theorem.

Note that, as for fixed points of type I, the only requirement for the construction
of a fixed point of type II is that the j pointer has a certain value in the starting
state. There are no conditions on the contents of the array S. Constructing a fixed



134 COLLISIONS FOR RC4-HASH

Table 2 – Partial state rotations of type II.

step i j(i) S(i)

1 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 2 s2 s1 s0 s3 s4 · · · s253 s254 s255

1 3 s2 s3 s0 s1 s4 · · · s253 s254 s255

2 4 s2 s3 s4 s1 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

253 255 s2 s3 s4 s5 s6 · · · s255 s0 s1

254 0 s0 s3 s4 s5 s6 · · · s255 s2 s1

255 1 s0 s1 s4 s5 s6 · · · s255 s2 s3

point of type II, when given a suitable starting state, also requires only a negligible
amount of work, i.e., two subtractions modulo 256 to compute the message bytes
x0 = 1− s0 mod 256 and x1 = 1− s1 mod 256.

One could try to further generalise this to longer cyclic patterns. However, the
message byte reordering r(·) prevents this as there is no p > 2 for which it holds
that

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod p) . (15)

3.3 Relation to Finney States

A Finney state [4] is an RC4-state where j = i+1 and S[i] = 1. From the definition
of the RC4 stream cipher, see Fig. 5, it follows that if the current state is a Finney
state, the next state must also be a Finney state. Similarly, a Finney state can
only arise from a Finney state. In a Finney state, the element “1” is simply moved
to the next position in the array S and j is incremented. The initialisation of the
RC4 pseudo-random byte generator, see Fig. 5, ensures that the initial state is not
a Finney state. Hence, Finney states can never occur in RC4.

In RC4-Hash, however, we can achieve a similar pattern. This is exactly what
is done in the case of partial state rotations of type I. The extra freedom coming
from the message input is exploited to ensure that the element S[i] is always moved
to the next position, such that it is again used to update j in the next iteration.
Partial state rotations of type II are a generalisation of this, using two elements
in an alternating way.

4 Collisions for RC4-Hash

This section describes how to use fixed points for a number of iterations of the
compression function C to construct colliding message pairs for RC4-Hash. In



COLLISIONS FOR RC4-HASH 135

〈
SIV, 0

〉

bin8(n)||P

C 〈S0, 0〉

C

M0,1

〈S1, 0〉 C C · · · C

FP type I; 255×M1,1

︷ ︸︸ ︷

C C · · · C

︸ ︷︷ ︸

FP type I; 255×M0,0

〈S0, 0〉

M0,1

C

〈S1, 0〉

padding

C g H

Figure 3 – A collision pair for RC4-Hash using fixed points of type I.

order to be able to construct fixed points, the value of the pointer j in the internal
state of RC4-Hash has to be equal to zero (for fixed points of type I) or one (for
fixed points of type II), as described in Sect. 3. Although the initial value of j is
zero, we cannot make use of the first block because we do not have control over
its first byte, which contains the digest length.

Consider fixed points of type I, i.e., we want j = 0. Since j can only take 28

possible values, we can simply search for a prefix block P which leads to a suitable
internal state:

〈S0, 0〉 = C
( 〈

SIV, 0
〉
,bin8(n)||P

)
. (16)

We expect to find a suitable prefix block after about 28 random trials. At this point,
we can easily construct a fixed point for this state 〈S0, 0〉 by applying Theorem 1.
Denote by M0,0 the message block that is used 255 times in this fixed point.

Then, we search for an additional message block M0,1 which transforms the
state 〈S0, 0〉 into 〈S1, 0〉:

〈S1, 0〉 = C
(
〈S0, 0〉 ,M0,1

)
. (17)

Again, the only condition on M0,1 is that the value of the j pointer is not changed
by the compression function C. The expected number of random trials required
to find a suitable message block is again about 28. For the state 〈S1, 0〉, it is also
possible to construct a fixed point of type I, using Theorem 1. Denote the message
block used in this fixed point by M1,1. Now, consider the following two messages:

M = P ||M0,1||
255

︷ ︸︸ ︷

M1,1|| · · · ||M1,1 ,
M⋆ = P ||M0,0|| · · · ||M0,0

︸ ︷︷ ︸

255

||M0,1 .
(18)

As shown in Fig. 3, these messages form a collision. Indeed, after processing the
257-th block, the internal state of RC4-Hash is 〈S1, 0〉 for both messages, i.e., an



136 COLLISIONS FOR RC4-HASH

〈
SIV, 0

〉

bin8(n)||P

C 〈S0, 1〉

C

M0,1

〈S1, 1〉 C C · · · C

FP type II; 127×M1,1

︷ ︸︸ ︷

C C · · · C

︸ ︷︷ ︸

FP type II; 127×M0,0

〈S0, 1〉

M0,1

C

〈S1, 1〉

padding

C g H

Figure 4 – A collision pair for RC4-Hash using fixed points of type II.

internal state collision is reached. The extra padding block containing the message
length and the output transformation maintain the collision. The expected total
time complexity is only 29 evaluations of the compression function C. Note that
verifying the collision requires about the same effort, since hashing M and M⋆

requires two times 258 calls to the compression function C.
Using fixed points of type II, collisions can be found in a completely similar

way, as Fig. 4 illustrates. The only differences are that we now require j = 1, and
that the fixed points only contain 127 iterations of the compression function C.
The expected time complexity is also 29. If we do not fix in advance which type
of fixed points to use, but let this depend on which kind of prefix block is found
first, the expected time complexity can be lowered slightly to 27 + 28 compression
function evaluations.

There is no need to restrict the prefix block P or the message block M0,1 to
be only a single block. Using multiple blocks does not (significantly) increase the
expected time complexity for finding a collision pair, if only the last block of P ,
resp. M0,1, is varied in order to obtain the desired value for the pointer j. Of
course, a colliding message pair can always be extended with an equal suffix.

Tables 3 and 4 give examples of colliding message pairs for RC4-Hash64,
constructed using fixed points of type I and type II, respectively. Additional
constraints were imposed to arrive at meaningful messages.

5 Discussion

Kelsey-Schneier Second Preimages. Since fixed points of the compression
function of RC4-Hash can be constructed very easily, one may consider to use
them to mount a Kelsey-Schneier second preimage attack [6]. This involves
building expandable messages, i.e., messages of varying length, which all collide
on the intermediate hash result immediately after processing the message. The
main problem which makes the Kelsey-Schneier second preimage attack fail for



DISCUSSION 137

Table 3 – Example collision pair for RC4-Hash64, using fixed points
of type I.

M M⋆

block 1 s. IndestEEGE AnD B. pReNeEl - 

(63 bytes) cosIc - cOlLisIoNS FoR rC4-Hash.

block 2 thiS MEssAgE Is pArT oF a colLis AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(64 bytes) ion EXaMpLe for RC4-HASH. COSIC. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

blocks 3–256 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(254 × 64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

...
...

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

block 257 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa thiS MEssAgE Is pArT oF a colLis

(64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ion EXaMpLe for RC4-HASH. COSIC.

RC4-Hash64(M) = 0093b4baefdc64f93d7081978808c49d1286523696e6d4a35ab64f1e42695aff

RC4-Hash64(M
⋆) 79ce81eae91cb47673c4989238fab010f47466906fa65bed88753802c71ae82bx

Table 4 – Example collision pair for RC4-Hash64, using fixed points
of type II.

M M⋆

block 1 s. IndesTeEGE ANd b. pREneEl - 

(63 bytes) cosIc - colLISioNS For Rc4-hAsH.

block 2 thiS MesSagE IS pArT of a collis aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(64 bytes) ioN EXAmPle FOr rc4-HASH. COSIC. aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

blocks 3–128 abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(126 × 64 bytes) abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

...
...

abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

block 129 abababababababababababababababab thiS MesSagE IS pArT of a collis

(64 bytes) abababababababababababababababab ioN EXAmPle FOr rc4-HASH. COSIC.

RC4-Hash64(M) = 0023dd337650ef0d9b5e77be533ea644198ff0d8f1d8190628d95b9dd04dadf5

RC4-Hash64(M
⋆) d9cd2c1ad8adc8555f03ea3819df4128bc96462a53c7e0cc1afffe78db3bd652x



138 COLLISIONS FOR RC4-HASH

RC4-Hash, is the very large internal state of RC4-Hash. Because of this, the
Kelsey-Schneier attack is much slower than exhaustive search in this case.

Multicollisions. A multicollision is a (large) set of messages that all hash to the
same value. Multicollisions and their applications were described by Joux [5],
although Coppersmith already used them in 1985 [2]. In order to obtain
multicollisions for RC4-Hash, we simply concatenate the method from Sect. 4
several times. Concatenating it k times yields 2k colliding messages. Actually,
only part of the method needs to be repeated k times. Indeed, as the value of
the pointer j is maintained by the fixed points, only the search for message blocks
M0,1 has to be repeated. Thus, the expected time for finding 2k colliding messages
for RC4-Hash is 27 + k · 28 compression function evaluations. Naturally, also the
method of Kelsey and Schneier [6] to construct multicollisions can be applied, and
both methods can even be combined.

Mitigating the Attack. The collision attack described in this paper is built on the
existence of two types of fixed points of the compression function of RC4-Hash,
which were described in Sect 3. These fixed points use patterns where all the
(reordered) message bytes are equal (type I) or alternate between two values
(type II). Replacing the message reordering r(·) with a message expansion that
guarantees that such patterns can never occur foils the attack. Another approach
would be to introduce asymmetry, for instance using intermediate rounds.

6 Conclusion

We have shown that RC4-Hash is not collision resistant. There exist two distinct
types of fixed points for a number of iterations of the RC4-Hash compression
function C. These can be used to construct colliding message pairs with an
expected effort of less than 29 compression function evaluations. This also leads to
multicollisions, yielding 2k colliding messages with an expected effort of 27 + k · 28

compression function evaluations.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

References

[1] D. Chang, K. C. Gupta, and M. Nandi. RC4-Hash: A new hash function
based on RC4. In R. Barua and T. Lange, editors, Progress in Cryptology



REFERENCES 139

— INDOCRYPT 2006, volume 4329 of Lecture Notes in Computer Science,
pages 80–94. Springer, 2006.

[2] D. Coppersmith. Another birthday attack. In H. C. Williams, editor,
Advances in Cryptology — CRYPTO ’85, volume 218 of Lecture Notes in
Computer Science, pages 14–17. Springer, 1985.

[3] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General
results and applications. In X. Lai and K. Chen, editors, Advances in
Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2006.

[4] H. Finney. An RC4 cycle that can’t happen. Newsgroup post in sci.crypt,
Sept. 1994.

[5] A. Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In M. K. Franklin, editor, Advances in Cryptology —
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
306–316. Springer, 2004.

[6] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In R. Cramer, editor, Advances in Cryptology —
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 474–490. Springer, 2005.

[7] S. Lucks. A failure-friendly design principle for hash functions. In B. K. Roy,
editor, Advances in Cryptology — ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 474–494. Springer, 2005.

[8] B. Schneier. Applied Cryptography. John Wiley & Sons, second edition, 1996.

[9] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In
V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

[10] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[11] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0.
In V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621
of Lecture Notes in Computer Science, pages 1–16. Springer, 2005.



140 COLLISIONS FOR RC4-HASH

Table 5 – The message reordering r(·).

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57,
48, 39, 30, 21, 12, 3, 58, 49, 40, 31, 22, 13, 4, 59, 50, 41,
32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61, 52, 43, 34, 25,
16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9,

0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23,
16, 9, 2, 59, 52, 45, 38, 31, 24, 17, 10, 3, 60, 53, 46, 39,
32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19, 12, 5, 62, 55,
48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7,

0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1,
48, 31, 14, 61, 44, 27, 10, 57, 40, 23, 6, 53, 36, 19, 2, 49,
32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37, 20, 3, 50, 33,
16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

Table 6 – The initial value permutation SIV.

145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248,
236, 218, 192, 217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12,
233, 189, 159, 169, 240, 156, 184, 200, 209, 173, 20, 252, 96, 211, 143, 101,
44, 223, 118, 1, 232, 35, 239, 9, 114, 109, 161, 183, 88, 66, 219, 78,

157, 174, 187, 193, 199, 99, 52, 120, 89, 166, 18, 76, 241, 13, 225, 6,
146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19, 91, 108, 186,
116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179, 175,
251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230,
58, 153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152,

165, 235, 227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94,
42, 243, 228, 87, 82, 27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92,

198, 172, 170, 55, 115, 30, 107, 17, 56, 31, 135, 229, 40, 111, 37, 222,
182, 25, 43, 119, 244, 191, 122, 102, 21, 93, 97, 131, 164, 10, 130, 47,
176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48, 142, 73, 123, 204,
206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254, 90,
194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110,



REFERENCES 141

Input: Key K consisting of κ bytes.
Output: Initial internal state of RC4, 〈S, i, j〉.

1: // RC4 Key Scheduling Algorithm (KSA)
2: S ← {0, 1, · · · , 255}
3: j ← 0
4: for i = 0 to 255 do
5: j ← j + S[i] + K[i mod κ]
6: swap(S[i], S[j])
7: end for
8: return 〈S, 0, 0〉

Input: RC4 internal state 〈S, i, j〉.
Output: One byte of keystream, updated internal state.

1: // RC4 pseudo-random byte generation (PRBG)
2: i← i + 1
3: j ← j + S[i]
4: swap(S[i], S[j])
5: return S[S[i] + S[j]]

Figure 5 – The RC4 stream cipher. It consists of a key scheduling
algorithm (top) and a pseudo-random byte generator (bottom). All
arithmetic is done modulo 256. [8]



142 COLLISIONS FOR RC4-HASH



Publication

Coding Theory and Hash
Function Design

Publication Data

Sebastiaan Indesteege and Bart Preneel. Coding theory and hash
function design. In Bart Preneel, Stefan Dodunekov, Vincent Rĳmen,
and Svetla Nikova, editors, Enhancing Cryptographic Primitives with
Techniques from Error Correcting Codes, volume 23 of NATO Science
for Peace and Security Series D — Information and Communication
Security, pages 63–68. IOS Press, 2009.

Contributions

• Principal author.

143



144 CODING THEORY AND HASH FUNCTION DESIGN



Coding Theory and Hash Function Design

A Case Study: The Lane Hash Function

Sebastiaan Indesteege∗ and Bart Preneel

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. We illustrate how coding theory was applied in the design
of the cryptographic hash function Lane [4]. The generic structure
of the Lane compression function could potentially be vulnerable to
a class of meet-in-the-middle attacks. While difficult to avoid at first
sight, restating the problem in the domain of error correcting codes
naturally leads to a simple and elegant solution. This ensures that
these attacks do not apply to Lane.

Key words: Hash Function Design, Coding Theory, Minimum
Distance, Lane.

1 Introduction

Cryptographic hash functions map an input message m of variable length to a fixed
length output h(m). They are required to satisfy certain security properties such
as collision resistance and preimage resistance. Collision resistance means that it
should be difficult to find two distinct messages m 6= m′ that hash to the same
result, i.e., h(m) = h(m′). There exists a generic attack based on the birthday
paradox that can find collisions for any hash functions with an attack complexity
of O(2w/2). Here, w is the length of the hash output in bits. Preimage resistance
implies that, when given a hash result y (for which it holds that ∃x : h(x) = y),
it is difficult to find a message m which hashes to y, i.e., h(m) = y. Here, the
best generic attack is an exhaustive search, which has a complexity of O(2w). For
a secure hash function, there should exist no attacks that are significantly better
than generic attacks.

Many hash functions are iterative hash functions. They apply a fixed input
length compression function iteratively to process variable length input messages,
for instance using the popular Merkle-Damgård construction [2, 6]. For this
construction it can be proven that the iterated hash function is collision resistant
if the compression function is collision resistant.

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

145

mailto:sebastiaan.indesteege@esat.kuleuven.be


146 CODING THEORY AND HASH FUNCTION DESIGN

Recent advances in the cryptanalysis of hash functions have shown that widely
used hash functions, such as MD5, SHA-0 and SHA-1, are not as secure as they
were expected to be [3, 10–12]. In response to this, the National Institute of
Standards in Technology (NIST) has started an international competition to design
a new hash function standard, the SHA-3 competition [9].

1.1 Our Contribution

In this paper, we outline a design strategy for a compression function based on
parallel permutations. This design strategy was used in the Lane hash function [4],
which was submitted as a candidate to the NIST SHA-3 competition [9].

We show that, in order to avoid meet-in-the-middle style attacks on the
compression function, we need one of its components to satisfy a certain property.
Restating this problem in the domain of error correcting codes yields a simple and
elegant solution: a simple requirement on the minimum distance of a linear code.

1.2 Related Work

Several parallelisable compression functions exist in the literature, among which
the most famous example is the block cipher based construction MDC-2 [1, 7].
While it was originally defined for use with the DES block cipher, MDC-2 can be
instantiated with any block cipher. The MDC-2 compression function contains two
parallel block cipher encryptions and can be seen as a two-way parallel extension
of the Matyas-Meyer-Oseas (MMO) mode [5]. Another such compression function
construction, which was proposed by Nandi et al. [8], maps 3n bits to 2n bits and
contains three parallel functions which each map 2n bits to n bits.

We consider another type of compression function construction which also
consists of several parallel building blocks. In contrast to the designs mentioned
above, we use permutations as building blocks rather than block ciphers or
compressing functions. For a detailed discussion of the rationale behind this design,
we refer to [4], which describes the design of the Lane hash function.

2 A New Parallel Compression Function Design

We propose a new type of compression function, based on parallel permutations.
The structure of our compression function design is shown in Figure 1. It consists of
three layers: the message expansion layer, the permutation layer and the output
layer. The message expansion takes the chaining value and a message block as
inputs, which we will treat uniformly as the k input blocks Xi. The outputs of the
message expansion are the n expanded message blocks Wi, which form the inputs
to the n permutations Pi. For simplicity, we will assume a simple output layer,
consisting of exclusive OR operations. Note that a more complex output layer is
used in the actual Lane hash function [4].



A NEW PARALLEL COMPRESSION FUNCTION DESIGN 147

X0 · · · Xk−1

Message Expansion

W0 W1 · · · Wn−2 Wn−1

P0 P1 · · · Pn−2 Pn−1

· · ·+ + +

Figure 1 – A compression function design based on parallel
permutations.



148 CODING THEORY AND HASH FUNCTION DESIGN

The ample parallelism offered by this compression function design allows for
flexibility in implementation. It can use instruction level parallelism (ILP) and/or
vector instructions (SIMD) in software. For hardware implementations, there is a
straightforward area–speed tradeoff. At the same time, the memory requirements
for a completely serial implementation remain reasonable.

The use of permutations ensures that internal state collisions can only occur in
the output layer. Establishing such a collision is equivalent to satisfying a linear
condition on the outputs of several permutations. Similarly, the message expansion
imposes relations on the inputs of the permutations. The rationale is that, while
such conditions are very simple, it is hard to maintain or even track them through
the non-linear permutations.

A similar rationale applies to finding preimages for the compression function.
Straightforward inversion attempts fail, as one has to ensure that the linear
conditions imposed by the message expansion hold. This is again considered to
be very difficult. However, as will be discussed in Sect. 3.1, this construction is
potentially vulnerable to a meet-in-the-middle preimage attack. A well designed
message expansion can prevent this, as will be shown in Sect. 3.2.

3 Designing the Message Expansion

In this section, we analyse the general compression function construction that was
presented in Sect. 2. We show that a meet-in-the-middle preimage attack could
apply, and present a simple, coding theory based method to design a message
expansion which precludes such attacks.

3.1 A Meet-in-the-Middle Preimage Attack

A preimage attack on the compression function is given an output of the
compression function (for which at least one input exists), and aims to find a
corresponding compression function input. The best generic attack is exhaustive
search, which has a complexity of O(2w) for a compression function with a w-bit
output.

Consider the case where the number of permutations n is two. If the inputs to
the two permutations can be chosen independently, the following simple meet-in-
the-middle preimage attack would apply:

1. Let H be the desired w-bit output of the compression function.

2. Choose 2w/2 random values for the first permutation input W0, compute the
permutation output P0(W0) and store the tuple 〈W0, P0(W0)〉 in a list L,
which is sorted by the second element of the tuples.

3. Choose 2w/2 random values for the second permutation input W1 and
compute the permutation output P1(W1).



DESIGNING THE MESSAGE EXPANSION 149

4. For each value of W1, search in the list L for a tuple containing the value
H ⊕ P1(W1). If such a tuple is found, this gives the desired preimage.

This procedure allows an attacker to check 2w compression function inputs with an
effort of just O(2w/2). As the probability that a single compression function input
maps to the desired output H is 2−w, we expect to find one preimage. Hence, this is
a preimage attack with a complexity of O(2w/2) compression function evaluations,
which is significantly faster than the O(2w) offered by a generic attack.

This can be generalised to the case where the number of permutations n is
greater than two. If an adversary can pick two non-overlapping, independent
groups of permutations, and keep the inputs to the other permutations (if any)
constant, the same meet-in-the-middle principle can be applied to construct a
preimage attack with a complexity of just O(2w/2). Also, if the number of input
values to each group of permutations an attacker can choose is smaller than 2w/2,
the attack still applies, but the attack complexity increases. In the extreme case,
where the list L contains only a single value, the attack reduces to a generic,
exhaustive search attack with complexity O(2w).

3.2 Mitigating the Attack

We now show how the theory of error correcting codes provides us with a simple
and elegant way to preclude these attacks. We map every w-bit input and output
block of the message expansion to an element of GF(2w). Then we use an (n, k, d)
linear code over GF(2w) for the message expansion. The dimension k of the linear
code is equal to the number of w-bit inputs to the message expansion. The code
length n is equal to the number of parallel permutations.

In order to be able to apply the meet-in-the-middle preimage attacks from
Sect. 3.1, an adversary needs to be able to find two non-overlapping sets of
permutations which are independent. As the linear code used for the message
expansion has minimum distance d, each such set needs to consist of at least d
permutation inputs. Indeed, any two valid expanded messages will differ in at
least d blocks.

Now, if it holds that d > n/2, i.e., the minimum distance is strictly greater
than half the number of permutations, it is impossible to find two non-overlapping,
independent sets of permutations. Hence, if we use a linear code with minimum
distance d > n/2 for the message expansion, these attacks no longer apply.

3.3 Assessing Resistance against Differential Cryptanalysis

This construction also provides a useful way to assess the resistance of the
compression function against differential cryptanalysis. In a differential collision
attack, a collision is searched among the set of pairs of messages which have a
specific difference. This difference propagates through the hash function and, with
a certain probability, results in a zero output difference. If this probability is too
small, however, differential collision attacks will fail.



150 CODING THEORY AND HASH FUNCTION DESIGN

If a linear code with minimum distance d is used for the message expansion,
we are ensured that in a differential attack at least d permutations will be active,
i.e., have an input difference. The resistance of the compression function against
differential cryptanalysis can then be assessed by combining this simple bound
can with an analysis of the resistance against differential attacks offered by the
permutations themselves.

4 Application: the Lane Hash Function

Lane is a cryptographic hash function which was proposed as a candidate for
the NIST SHA-3 competition [9] by Indesteege et al. [4]. Lane is an iterated
hash function supporting multiple digest sizes, which uses a compression function
designed according to the principles outlined in this paper. Note however that the
output layer in Lane is more complex that the simple XOR used in this paper.
For a complete description of the Lane hash function, we refer to [4]. Here, we
focus on the message expansion of Lane.

The message expansion of Lane-256 takes three blocks of 256 bits as inputs
and outputs six blocks of 256 bits. Instead of using a linear code over GF(2256), it
is based on a (6,3,4) linear code over GF(4) which is known as the hexacode. The
generator matrix of this code, in a standard polynomial representation of GF(4)
using X2 + X + 1 as the primitive polynomial, is given by

G =





1 X X 1 0 0
X 1 X 0 1 0
X X 1 0 0 1



 . (1)

The message expansion of Lane-256 simply consists of 128 parallel applications
of this code, where each application of the code uses two bits from each 256-bit
block.

This offers the same guarantees as the more general approach of using an
arbitrary (6,3,4) linear code over GF(2256) but avoids the need for arithmetic in a
large finite field, which can be costly in implementation. The Lane-256 message
expansion can be computed using only XOR operations on blocks of 128 bits,
which can be done very efficiently. Lane-512 is completely analogous to Lane-256,
except that all word sizes are doubled.

5 Conclusion

We have demonstrated how the theory of error correcting codes was applied
successfully in the design of the cryptographic hash function Lane. A simple
requirement on the minimum distance of a linear code ensures that the Lane

compression function is resistant to a class of meet-in-the-middle attacks.



REFERENCES 151

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II. The
information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

References

[1] B. Brachtl, D. Coppersmith, M. Hyden, S. Matyas, C. Meyer, J. Oseas,
S. Pilpel, and M. Schilling. Data authentication using modification detection
codes based on a public one-way encryption function. US Patent #4 908 861,
1990.

[2] I. Damgård. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1990.

[3] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General
results and applications. In X. Lai and K. Chen, editors, Advances in
Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2006.

[4] S. Indesteege, E. Andreeva, C. De Cannière, O. Dunkelman, E. Käsper,
S. Nikova, B. Preneel, and E. Tischhauser. The lane hash function.
Submission to the NIST SHA-3 competition, Oct. 2008.

[5] S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with
cryptographic algorithm. IBM Technical Disclosure Bulletin, 27(10A):5658–
5659, 1985.

[6] R. C. Merkle. One way hash functions and DES. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 428–446. Springer, 1990.

[7] C. Meyer and M. Schilling. Secure program load with modification detection
code. In Proc. 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM ’88), pages 111–130, 1988.

[8] M. Nandi, W. Lee, K. Sakurai, and S. Lee. Security analysis of a 2/3-rate
double length compression function in the black-box model. In H. Gilbert
and H. Handschuh, editors, Fast Software Encryption, 12th International
Workshop — FSE 2005, volume 3557 of Lecture Notes in Computer Science,
pages 243–254. Springer, 2005.



152 CODING THEORY AND HASH FUNCTION DESIGN

[9] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[10] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In
V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

[11] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[12] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0.
In V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621
of Lecture Notes in Computer Science, pages 1–16. Springer, 2005.



Publication

The Lane Hash Function

Publication Data

Extended abstract:

Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr
Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar
Tischhauser. The lane hash function — extended abstract. Technical
report, COSIC, 2008.

Full version, submitted to the NIST SHA-3 competition (included here):

Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr
Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar
Tischhauser. The lane hash function. Submission to the NIST SHA-3
competition, October 2008.

Contributions

• Designer of Lane.

• Principal author of

– Sect. 1 (Introduction),

– Sect. 2 (Specification), and

– Sect. 3 (Design Rationale).

• Significant contributions to

– Sect. 4 (Security Analysis), and

– Sect. 5 (Implementation Aspects).

153



154 THE LANE HASH FUNCTION



The Lane Hash Function

Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr
Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar Tischhauser

Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

{sebastiaan.indesteege,bart.preneel}@esat.kuleuven.be

1 Introduction

In this document, we propose the cryptographic hash function Lane as a candidate
for the SHA-3 competition organised by NIST [46]. Lane is an iterated hash
function supporting multiple digest sizes. Components of the AES block cipher [19,
45] are reused as building blocks. Lane aims to be secure, easy to understand,
elegant and flexible in implementation.

The structure of this document is as follows. In Section 2, we give a
full specification of the Lane hash function. The design rationale, including
motivations for all important design choices, is discussed in Section 3. Section 4
contains an extensive security analysis, investigating the resistance of Lane against
a variety of attacks. Finally, implementation aspects of Lane form the subject of
Section 5.

2 Specification

2.1 Introduction

Lane is an iterated cryptographic hash function, supporting digest sizes of 224,
256, 384 and 512 bits. These four variants of Lane are referred to as Lane-224,
Lane-256, Lane-384 and Lane-512, respectively. The Lane hash function
reuses components from the AES block cipher [19, 45]. After introducing some
preliminaries and conventions in Sect. 2.2, the building blocks are described in
Sect. 2.3.

Optionally, a salt value S, can be used while computing the digest. When
used, the size of this salt is 256 bits for Lane-224 and Lane-256, and 512 bits for
Lane-384 and Lane-512. Refer to Table 1 for a comparison of the parameters of
the various Lane variants.

Hashing a message is performed in three steps. In the first step, which is
described in Sect. 2.4, the message is padded and split into message blocks of
equal length. Also, the initial chaining value H−1 is set to the initial value IVn,S ,
which depends on the digest size n and the (optional) salt value S.

155



156 THE LANE HASH FUNCTION

Table 1 – Parameters of the Lane hash functions.

Lane-224 Lane-256 Lane-384 Lane-512

Digest length n 224 bits 256 bits 384 bits 512 bits
Blocksize b 512 bits 512 bits 1024 bits 1024 bits

Size of chaining value 256 bits 256 bits 512 bits 512 bits
Salt length |S| 256 bits 256 bits 512 bits 512 bits

In the second step, a compression function f(·, ·, ·) is applied iteratively:

Hi = f (Hi−1,Mi, Ci) . (1)

Each compression function call uses a message block Mi to update the chaining
value Hi−1 to Hi. A counter Ci, which indicates the number of message bits
processed so far, including the message bits in the block Mi which is currently
being processed, is also input into the compression function. The compression
function of Lane is described in Sect. 2.5.

The third and final step is the output transformation, described in Sect. 2.6.
In this step, the digest is derived from the final chaining value, using the message
length l and the (optional) salt value S as additional inputs. It consists of a single
compression function call and, depending on the digest length, a truncation of the
result.

Note that Lane supports hashing in ‘one-pass’ streaming mode. There is no
need to buffer the entire message, and one can start hashing as soon as the first
complete message block has been received. This property is similar to the hash
functions of the SHA-family [48].

2.2 Preliminaries

This section introduces the preliminaries and conventions that will be used in this
specification. For reference, the notations used in this section are summarised in
Table 2.

2.2.1 Bit Strings, Bytes and States

Definition 1. A bit string is an ordered sequence of binary digits of arbitrary
length. A bit string is written from left to right, i.e., the leftmost bit is the first
bit of the sequence.

Definition 2. A byte is a bit string consisting of eight bits. A byte can represent
an integer in the range from 0 to 28 − 1. The big-endian convention is used, i.e.,
the first (leftmost) bit of a byte is the most significant bit.



SPECIFICATION 157

Table 2 – The notation used in the specification of Lane.

0⋆ A number of zero bits, required to pad a bit string
to a given length.

⊕ Exclusive or (XOR).
|| Concatenation of bit strings.

x≫ i Bitwise right-shift of the word x over i bits.
bin32(·) or bin64(·) Big-endian representation of a number in 32 or

64 bits, respectively.
. . . x A number in hexadecimal notation.

φ The flag byte used in the output transformation
and the derivation of IVn,S .

b The blocksize.
Ci Counter indicating the number of message bits

(excluding padding) in message blocks 0 up to
and including i.

f (Hi−1,Mi, Ci) The Lane compression function.
Hi Chaining value after processing message block i.

IVn,S or IVn The initial value for digest length n and salt S (if
applicable).

l Message length in bits.
ki A 32-bit Lane constant.
M A message.
Mi Padded message block i.
n Digest length, i.e., 224, 256, 384 or 512 bits.

Pi, Qi The permutations (lanes) used in Lane in the
first and second layer, respectively.

r The full round number.
S Salt value.

W0,. . . ,W5 Expanded message blocks.
xi A column of an AES state, consisting of four

bytes.



158 THE LANE HASH FUNCTION

Definition 3. An AES state is a 4×4 array of bytes, corresponding to an internal
state of the AES block cipher [19, 45]. A sequence of 16 bytes can be mapped to
an AES state, and vice versa. The sequence of 16 bytes y0 || · · · || y15 is mapped
to the AES state







y0 y4 y8 y12

y1 y5 y9 y13

y2 y6 y10 y14

y3 y7 y11 y15







. (2)

Definition 4. A Lane state is the state used inside the Lane compression
function. In Lane-224 and Lane-256, a state of 256 bits is used, which corresponds
to two AES states. In Lane-384 and Lane-512, the state is 512 bits in size,
corresponding to four AES states.

A sequence of 32 or 64 bytes can be mapped to two or four AES states,
depending on the Lane variant. The sequence is split into 16-byte parts, each
of which is mapped to an AES state as described above. The AES states are
ordered in the same way as the 16-byte parts in the original byte sequence, i.e.,
the leftmost AES state contains the first 16 bytes of the sequence.

2.2.2 The Finite Field GF(28)

As Lane is based on components of the AES block cipher, it also uses arithmetic
operations in the finite field GF(28). Elements of the finite field GF(28) can be
represented in several ways, but all representations are isomorphic, i.e., they are
simply different ways of representing the same finite field with 28 elements [35]. In
this document, we adopt the same representation as commonly used to describe
the AES block cipher [19,45].

A byte is used to represent an element of the finite field GF(28). It is useful to
view the byte, consisting of bits b0b1b2b3b4b5b6b7 as a polynomial with coefficients
0 or 1:

b0X
7 + b1X

6 + b2X
5 + b3X

4 + b4X
3 + b5X

2 + b6X + b7 . (3)

The addition of two elements of GF(28), represented as polynomials, is defined
as component-wise addition modulo two. On the byte level, this corresponds to
exclusive or (XOR). The neutral element with respect to addition is the byte 00x,
and every element is its own additive inverse.

The multiplication of two elements of GF(28) is defined as the the multiplication
of polynomials, reduced modulo an irreducible polynomial m(X),

m(X) = X8 + X4 + X3 + X + 1 . (4)

The byte 01x is the neutral element with respect to multiplication. Every nonzero
byte has a multiplicative inverse, which can be computed using the extended
Euclidean algorithm.



SPECIFICATION 159

2.3 Building Blocks

The Lane hash functions reuse several components from the AES block cipher [19,
45]. In particular, the SubBytes, ShiftRows and MixColumns transformations are
also part of Lane. In Lane, however, they are used several times in parallel, due
to the larger state size.

2.3.1 SubBytes

The SubBytes transformation in Lane is identical to the corresponding component
of the AES block cipher, except that it operates on a larger state. Figure 1
illustrates this for Lane-224 and Lane-256. The same non-linear substitution
(S-box) is applied to each of the state bytes independently. This substitution
consists of the composition of the following operations:

1. The inverse operation in the finite field GF(28), defined by the irreducible
polynomial m(X), given in (4). The zero element is mapped to itself.

2. An affine mapping over GF(2), defined by















b′7
b′6
b′5
b′4
b′3
b′2
b′1
b′0















=















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1















·















b7

b6

b5

b4

b3

b2

b1

b0















+















1
1
0
0
0
1
1
0















. (5)

Here, b0,. . . ,b7 denote the bits of a byte representing an element of GF(28), where
b0 is the most significant bit. This is the same S-box as the one used in the AES
block cipher [19,45]. It is given in Table 3.

2.3.2 ShiftRows

The ShiftRows transformation cyclically shifts the bytes of the rows of each of
the AES states that comprise the Lane state. The first, i.e., topmost row is not
shifted. The second, third and fourth row are cyclically shifted to the left over
one, two and three byte positions, respectively. This is identical to the ShiftRows
transformation in the AES block cipher, except that it is applied two or four times
in parallel, depending on the Lane variant. Figure 2 illustrates ShiftRows for
Lane-224 and Lane-256.



160 THE LANE HASH FUNCTION

Table 3 – The AES S-box, in hexadecimal format.

 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

0  63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1  ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2  b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3  04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4  09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5  53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6  d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7  51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8  cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9  60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a  e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b  e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c  ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d  70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e  e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f  8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

S-box
S-box

Figure 1 – The SubBytes transformation in Lane-224 and
Lane-256.



SPECIFICATION 161

rotate
left

0 bytes
rotate

left
2 bytes

rotate
left
1 byte rotate

left
3 bytes

Figure 2 – The ShiftRows transformation in Lane-224 and
Lane-256.

2.3.3 MixColumns

The MixColumns transformation operates on the columns of the state. Each
column is viewed as a polynomial over GF(28), i.e., a polynomial of degree three
with coefficients in GF(28):







y0

y1

y2

y3






↔ y3 · Y 3 + y2 · Y 2 + y1 · Y + y0 . (6)

Then, this polynomial is multiplied modulo Y 4 +1 with the fixed polynomial c(Y ),

c(Y ) = 03Y 3 + 01Y 2 + 01Y + 02 . (7)

Even though Y 4 + 1 is not an irreducible polynomial over GF(28), implying
that multiplication with a fixed polynomial is not necessarily invertible, the
polynomial c(Y ) is such that MixColumns is an invertible operation. Equivalently,
this operation can be written as a matrix multiplication







y′
0

y′
1

y′
2

y′
3







=







02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x






·







y0

y1

y2

y3







. (8)

Again, this is identical to the MixColumns transformation used in the AES block
cipher. Figure 3 illustrates MixColumns for Lane-224 and Lane-256.



162 THE LANE HASH FUNCTION

⊗ c(Y ) ⊗ c(Y )

Figure 3 – The MixColumns transformation in Lane-224 and
Lane-256.

2.3.4 AddConstants

The AddConstants transformation adds a 32-bit constant ki to each column of
the state. These constants ki are generated using a linear feedback shift register
(LFSR), which is described in pseudocode in Figure 4. Table 14 in Appendix A
contains the values of the constants used in Lane, found using this algorithm.

Which constants are added to the state depends on the full round number r,
which is given as a parameter to AddConstants. For Lane-224 and Lane-256,
AddConstants is defined as

AddConstants (r, x0 ||x1 || · · · ||x7) =

x0 ⊕ k8r ||x1 ⊕ k8r+1 || · · · ||x7 ⊕ k8r+7 . (9)

For Lane-384 and Lane-512, AddConstants is similarly defined as

AddConstants (r, x0 ||x1 || · · · ||x15) =

x0 ⊕ k16r ||x1 ⊕ k16r+1 || · · · ||x15 ⊕ k16r+15 . (10)

Figure 5 shows the AddConstants transformation for Lane-224 and Lane-256.

2.3.5 AddCounter

The AddCounter transformation adds part of the counter to the state. The 64-bit
counter C is split into two 32-bit words c0 and c1, where c0 is the most significant
and c1 the least significant word, i.e., following the big endian convention.

Depending on the round parameter r, AddCounter adds one of these words
to the fourth column of the first AES state. More formally, for Lane-224 and



SPECIFICATION 163

1: k0 ← 07fc703dx

2: for i = 1 to 272 (resp. 768 for Lane-384 and Lane-512) do
3: ki = ki−1 ≫ 1
4: if ki−1 ∧ 00000001x then
5: ki = ki ⊕ d0000001x

6: end if
7: end for

Figure 4 – Pseudocode for generating the Lane constants.

+

+

+

+

+

+

+

+

k8i

k8i+1

k8i+2

k8i+3

k8i+4

k8i+5

k8i+6

k8i+7

Figure 5 – The AddConstants transformation in Lane-224 and
Lane-256.



164 THE LANE HASH FUNCTION

+ci mod 2

Figure 6 – The AddCounter transformation in Lane-224 and
Lane-256.

Lane-256 it is given by

AddCounter (r, x0 ||x1 || · · · ||x3 || · · · ||x7) =

x0 ||x1 || · · · ||x3 ⊕ cr mod 2 || · · · ||x7 . (11)

Figure 6 shows the AddCounter transformation for Lane-224 and Lane-256. For
Lane-384 and Lane-512, AddCounter is defined by

AddCounter (r, x0 ||x1 || · · · ||x3 || · · · ||x15) =

x0 ||x1 || · · · ||x3 ⊕ cr mod 2 || · · · ||x15 . (12)

2.3.6 SwapColumns

The SwapColumns transformation takes a Lane state, and reorders the columns.
It ensures that the AES states that comprise the Lane state are mixed among
themselves. For Lane-224 and Lane-256 it is given by

SwapColumns (x0 ||x1 || · · · ||x7) =

x0 ||x1 ||x4 ||x5 ||x2 ||x3 ||x6 ||x7 . (13)

Figure 7 shows the SwapColumns transformation for Lane-224 and Lane-256. It
can be viewed as a matrix transposition of a 2× 2 matrix, where the elements are
formed by pairs of state columns. For Lane-384 and Lane-512, SwapColumns is
defined by

SwapColumns (x0 ||x1 || · · · ||x15) =

x0 ||x4 ||x8 ||x12 ||x1 ||x5 ||x9 ||x13 ||x2 ||x6 ||x10 ||x14 ||x3 ||x7 ||x11 ||x15 .
(14)



SPECIFICATION 165

Figure 7 – The SwapColumns transformation in Lane-224 and
Lane-256.

Figure 8 shows the SwapColumns transformation for Lane-384 and Lane-512.
Similar to Lane-256 and Lane-224, SwapColumns can be seen as a matrix
transposition, now of a 4 × 4 matrix, where the elements are the columns of the
state.

2.4 Preprocessing

Before hashing a message using Lane, two preprocessing steps are carried out:
message padding, and setting the initial chaining value.

2.4.1 Message Padding

Lane processes a message in blocks of a fixed size, the blocksize. For Lane-224
and Lane-256, the blocksize is 512 bits, and for Lane-384 and Lane-512, the
blocksize is 1024 bits. To support any message length up to 264−1 bits (included),
zero bits are appended to the message until its length is an integer multiple of the
blocksize.

More formally, a message M of length l is padded as follows. Let b be the
blocksize and let κ be the smallest positive integer, 0 ≤ κ < b, such that

l + κ ≡ 0 (mod b) . (15)

Now, the padded message is computed as

pad (M) = M || 0κ . (16)

This padding rule ensures that the padded message can be split into an integer
number of blocks of b bits. Note that, if the message length l already is an integer



166 THE LANE HASH FUNCTION

Table 4 – The flag byte φ.

No salt used Salt used

Output transformation 00x 01x

Derivation of IVn,S 02x 03x

multiple of the blocksize b, no padding bits are added. The empty string is a
particular example of this; no padding bits are added to it. Thus, when hashing the
empty string, no message blocks are to be processed, and one proceeds immediately
with the output transformation.

2.4.2 Setting the Initial Chaining Value

Every digest size supported by Lane uses a different initial value IVn,S , which
also depends on the (optional) salt. These are defined using the Lane compression
function f(H,M,C) itself, which will be defined in detail in Sect. 2.5.

Let n be the digest size in bits, i.e., n is 224, 256, 384 or 512. Let S be the salt
value, or zero if no salt is used. The initial value IVn,S is then given by the output
of the following compression function call using a zero input chaining value and a
zero counter value:

IVn = f (0, φ || bin32(n) || 0⋆ ||S, 0) . (17)

Here, bin32(n) is the digest length n in bits, represented as a 32-bit big-endian
integer. The flag byte φ indicates whether or not a salt value is used; see Table 4.
If a salt value is not used, φ = 02x and the salt S is filled with zero bits. If a
salt value is used, φ = 03x. The size of the salt S is 256 bits for Lane-224 and
Lane-256, and 512 bits for Lane-384 and Lane-512, as indicated in Table 1. Note
that generalisations of Lane to other digest lengths can be defined in a similar
way, if desired.

If no salt is being used, the initial values can also be precomputed for each
digest size. Table 5 lists the initial values for supported digest sizes.

2.5 The Lane Compression Function

This section describes the Lane compression function f(Hi−1,Mi, Ci). This
function takes the following three inputs:

• The input chaining value Hi−1 is equal to the output of the previous
compression function call, or, for the first compression function call, the
initial value IVn,S . In Lane-224 and Lane-256, the size of the chaining
value is 256 bits. In Lane-384 and Lane-512, a 512-bit chaining value is
used.



SPECIFICATION 167

Figure 8 – The SwapColumns transformation in Lane-384 and
Lane-512.

Table 5 – The Lane initial values IVn, in big-endian notation, if no
salt is used.

Lane-224 c8245a868d733102314ddcb9f60a7ef4x

57b8c917eefeaec2ff4fc3be87c4728ex

Lane-256 be292e17bb541ff2fe54b6f730b1c96ax

7b2592688539bdf397c4bdd649763fb8x

Lane-384 148922ce548c300176978bc8266e008cx

3dc60765d85b09d94cb1c8d8e2cab952x

db72be8e685f0783fa436c3d4b9acb90x

5088dd47932f55a9a0c415c6db6dd795x

Lane-512 9b6034811d5a931b69c4e6e0975e2681x

b863ba538d1be11b77340080d42c48a5x

3a3a1d611cf3a1c4f0a303477e56a44ax

9530ee60dadb05b63ae3ac7cd732ac6ax



168 THE LANE HASH FUNCTION

• The message block Mi holds part of the padded message. Each message block
is of a fixed size, the blocksize, which is indicated in Table 1. In Lane-224
and Lane-256, the blocksize is 512 bits. In Lane-384 and Lane-512, the
blocksize is 1024 bits.

• The counter Ci holds the number of message bits hashed so far, including the
message bits in the current message block Mi. The counter Ci is represented
as a 64-bit unsigned integer in big-endian notation.

The structure of the Lane compression function is shown in Figure 9. It
consists of a message expansion, eight permutation lanes, arranged in two layers,
and three XOR combiners. Section 2.5.1 describes the message expansion. The
permutation lanes are discussed in Sect. 2.5.2.

2.5.1 The Message Expansion

The message expansion of Lane takes the message block Mi and the input chaining
value Hi−1, and expands them into six expanded message blocks, W0, . . . ,W5.

In Lane-224 and Lane-256, the six expanded message words, W0, . . . ,W5, are
all 256 bits long. They are computed as follows. Split the 512-bit message block
Mi into four 128-bit parts, m0, . . . ,m3:

m0 ||m1 ||m2 ||m3 ←Mi . (18)

Similarly, split the 256-bit input chaining value Hi−1 into two 128-bit parts, h0

and h1:
h0 ||h1 ← Hi−1 . (19)

Then, compute the six expanded message words, W0, . . . ,W5 as

W0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 || h1 ⊕m0 ⊕m2

W1 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 || h0 ⊕m1 ⊕m2

W2 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 || h0 ⊕m0 ⊕m3

W3 = h0 || h1

W4 = m0 || m1

W5 = m2 || m3

. (20)

The message expansion in Lane-384 and Lane-512 is completely analogous.
The only difference is that all sizes are doubled, i.e., the 1024-bit message block
Mi is split into four 256-bit parts, m0, . . . ,m3 and the 512-bit input chaining value
Hi−1 is split into two 256-bit parts. Then, (20) is used to compute the six 512-bit
expanded message words W0, . . . ,W5.

2.5.2 The Permutations

The Lane compression function contains eight permutations, arranged in two
layers. Each permutation consists of a number of rounds, where the number of



SPECIFICATION 169

Hi−1 Mi

Message Expansion

P0 P1 P2 P3 P4 P5

+ +

Q0 Q1

+

Hi

Figure 9 – The Lane compression function.



170 THE LANE HASH FUNCTION

function Round(r, X)
1: X ← SubBytes(X)
2: X ← ShiftRows(X)
3: X ← MixColumns(X)
4: X ← AddConstants(r,X)
5: X ← AddCounter(r,X)
6: X ← SwapColumns(X)
7: return X

function LastRound(X)
1: X ← SubBytes(X)
2: X ← ShiftRows(X)
3: X ← MixColumns(X)
4: X ← SwapColumns(X)
5: return X

Figure 10 – Pseudocode for the Lane permutation rounds.

Table 6 – Number of rounds in the Lane permutations.

Lane-224 Lane-256 Lane-384 Lane-512

P0, . . . , P5 6 6 8 8
Q0, Q1 3 3 4 4

rounds is different for the two layers: the permutations in the first layer have twice
as many rounds as those in the second layer. In the rest of the document, we use
“lane” as a synonym for a single Lane permutation.

The rounds of the permutations use the building blocks described in Sect. 2.3.
More in detail, a full permutation round consists of the following sequence of
transformations: SubBytes, ShiftRows, MixColumns, AddConstants, AddCounter
and SwapColumns. The last round of each permutation omits AddConstants and
AddCounter. Figure 10 gives a pseudocode description of the Lane permutation
rounds.

Note that a permutation round can be seen as two, for Lane-224 and Lane-256,
or four, for Lane-384 and Lane-512, parallel invocations of a round of the AES
block cipher [19, 45], where the appropriate constants and counter word are used
as a round key, followed by SwapColumns.

In Lane-224 and Lane-256, the first layer permutations, P0 until P5, consist
of six rounds each. The second layer permutations, Q0 and Q1, have three rounds
each. In Lane-384 and Lane-512, the number of rounds in increased to eight
rounds for the Pi’s and four rounds for the Qi’s. Table 6 summarises the number
of rounds in the permutations.

A round number r is assigned to each of the full rounds across all permutations,
to specify the constants and counter to use in each round. The permutations are
taken in the order P0, P1, . . . , P5, Q0, Q1 and only the full rounds are counted, i.e.,
the last round of each permutation is ignored. Table 7 lists the round numbers r
in each of the permutations. Each full round is given its round number r as an
extra parameter, as indicated in Figure 10. This parameter is then passed on to
the AddConstants and AddCounter transformations, described in Sect. 2.3.4 and
Sect. 2.3.5, respectively.



SPECIFICATION 171

Table 7 – The full round number r.

Lane-224 Lane-256 Lane-384 Lane-512

P0 0—4 0—4 0—6 0—6
P1 5—9 5—9 7—13 7—13
P2 10—14 10—14 14—20 14—20
P3 15—19 15—19 21—27 21—27
P4 20—24 20—24 28—34 28—34
P5 25—29 25—29 35—41 35—41

Q0 30—31 30—31 42—44 42—44
Q1 32—33 32—33 45—47 45—47

A pseudocode description of the permutations used in Lane-224 and Lane-256
is given in Figure 11, including an exact expression to compute the full round
number r for each round. Figure 12 describes the permutations used in Lane-384
and Lane-512.

2.6 The Output Transformation

The output transformation of Lane takes as input the chaining value after all
padded message blocks have been processed, and returns the message digest. It
also includes the message length l, and the (optional) salt S, if one was used.

The transformation consists of two parts. First, a single additional compression
function call is done. The counter C is set to zero, and the message input is set to

φ || bin64(l) || 0⋆ ||S . (21)

Here, bin64(l) is the (unpadded) message length l in bits, represented as a 64-bit
big-endian integer. The flag byte φ indicates whether or not a salt value is used;
see Table 4. If a salt value is not used, φ = 00x and the salt S is filled with zero
bits. If a salt value is used, φ = 01x. The size of the salt S is 256 bits for Lane-224
and Lane-256, and 512 bits for Lane-384 and Lane-512, as indicated in Table 1.

In the second part of the output transformation, a truncation is applied to
compute the final message digest. No output truncation is required for Lane-256
and Lane-512, as the size of the chaining value is equal to the required digest size.
In Lane-224 and Lane-384, however, this is not the case. The digest of Lane-224
is found by taking only the first, i.e., leftmost 224 bits of the last 256-bit chaining
value. Similarly, in Lane-384, only the first 384 bits of the last 512-bit chaining
value are used.

More formally, the truncation operation for Lane-224 is given by

Trunc224 (x0 ||x1 || · · · ||x6 ||x7) = x0 ||x1 || · · · ||x6 . (22)



172 THE LANE HASH FUNCTION

function Pj(X)
1: for i = 0 to 4 do
2: r ← 5j + i
3: X ← Round (r,X)
4: end for
5: X ← LastRound(X)
6: return X

function Qj(X)
1: for i = 0 to 1 do
2: r ← 30 + 2j + i
3: X ← Round (r,X)
4: end for
5: X ← LastRound(X)
6: return X

Figure 11 – Pseudocode for the permutations in Lane-224 and
Lane-256.

function Pj(X)
1: for i = 0 to 6 do
2: r ← 7j + i
3: X ← Round (r,X)
4: end for
5: X ← LastRound(X)
6: return X

function Qj(X)
1: for i = 0 to 2 do
2: r ← 42 + 3j + i
3: X ← Round (r,X)
4: end for
5: X ← LastRound(X)
6: return X

Figure 12 – Pseudocode for the permutations in Lane-384 and
Lane-512.

For Lane-384, the truncation is defined similarly as

Trunc384 (x0 ||x1 || · · · ||x11 || · · · ||x15) = x0 ||x1 || · · · ||x11 . (23)

Note that generalisations of Lane to other digest lengths can be defined using a
similar truncation, if desired.

3 Design Rationale

This section discusses the rationale behind the design of Lane. All of the
important design decisions are explained. The discussion of the rationale is
structured by components of the Lane hash function. The advantages and
disadvantages of Lane are also discussed in this section.

3.1 The Iteration Mode

The iteration mode used in Lane was designed to be easy to understand and
implement. It is based on the well-known Merkle-Damgård construction [20, 41].
For this construction, it can be proven that if the compression function is collision
resistant, so is the iterated hash function built on it.

The same iteration mode supports multiple digest lengths. One simply needs to
compute the initial chaining value, which depends on the digest length, and after



DESIGN RATIONALE 173

the iteration apply a suitable truncation to the message digest. The derivation of
the initial chaining value is based on the Lane compression function, for ease of
implementation.

3.1.1 The Message Padding

The message padding is simplified when compared to plain Merkle-Damgård,
as used in the SHA family of hash functions [48]. As Lane uses an output
transformation, which is simply an additional compression function call, it is
natural to include the message length, i.e., the Merkle-Damgård strengthening,
in this extra block.

Because of this extra block, one can now simply pad a message with zero
bits until the next block boundary. It no longer depends on the exact message
length whether or not an extra padding block has to be introduced. This greatly
simplifies implementation, and still results in an efficient iteration mode. If no salt
is used, the initial chaining value can be precomputed, and the total number of
compression function calls, including the output transformation, is

#calls to f =

⌈
l

b

⌉

+ 1 . (24)

For plain Merkle-Damgård, assuming that the representation of the message length
in the padding uses 64 bits, this is

#calls to f =

⌈
l + 65

b

⌉

. (25)

This means that the Lane iteration mode uses at most one additional compression
function call compared to plain Merkle-Damgård, but has the advantage that there
is always one extra compression function call, i.e., the Lane output transformation,
whose ‘message’ input is not under the control of the adversary, except very limited
influence via choosing the message length. In plain Merkle-Damgård, an adversary
could choose the message length such that almost all of the padded message bits
in the last block can be chosen freely.

3.1.2 The Use of a Counter

Additionally, the Lane mode of iteration borrows the idea of including a bit
counter in every compression function call from the ‘HAsh Iterative FrAmework’
(HAIFA) of Biham and Dunkelman [10]. This stops several attacks on the
iteration, at only a very modest cost. If no counter is used, a fixed point of the
compression function, if found, can be concatenated to itself to form an expandable
message [21, 30], i.e., a set of message patterns of different lengths, all leading to
the same internal hash state. Such an expandable message can for instance be
used to construct efficient second preimage attacks on long messages [30]. Due to
the use of a bit counter, however, it is no longer possible to concatenate a fixed
point to itself, as it will only be a fixed point for a specific counter value [10].



174 THE LANE HASH FUNCTION

3.1.3 The Output Transformation

An output transformation is used to offer an additional layer of protection against
(first) preimage attacks. For simplicity, this output transformation is constructed
based on the Lane compression function, with a message block of a fixed structure.
It is straightforward to see that this structure imposed on the message block used
in the output transformation drastically limits the freedom of an adversary seeking
a preimage.

The output transformation also serves to protect against length-extension
attacks, as it is impossible to simulate the effect of the output transformation
using a regular message block. Indeed, the output transformation takes a zero
counter as input, which according to the specification is not possible in a normal
message block.

The output transformation also offers additional protection against distinguish-
ing attacks, as any potential bias in the compression function is expected to be
destroyed by the output transformation.

3.1.4 The Use of a Salt Value

Lane supports the use of a salt value, if this is desirable for the application. A
well-known example of such an application is password hashing. If a different
salt is used for every stored password, it is no longer possible to attack multiple
targets in parallel in a dictionary attack or an exhaustive search. Digital signatures
are another application where a salt provides a benefit. This is referred to as
randomised hashing, after the work of Halevi and Krawczyk [27]. Consider the
scenario where an attacker constructs two colliding messages, and asks the victim
to sign the first message. Because the second message has the same message digest
as the first, the signature is also valid for the second message. If the victim chooses
a random salt before signing the message, however, the collision that was carefully
crafted by the attacker is destroyed with an overwhelming probability.

When a salt is used in Lane, this salt value is included in the derivation of
the initial chaining value as well as in the output transformation. Both of these
operations are simply Lane compression function calls with a specific message
block and a zero counter input. Apart from the salt value, this message block also
includes a flag byte φ. The purpose of this byte is to provide domain separation.
More specifically, the only compression function calls in Lane that use a zero
counter C occur exactly in the derivation of the initial chaining value and in the
output transformation. Hence, it is impossible to simulate these calls using a
normal message block. In order to provide a similar separation for the four cases
that do have a zero counter C, i.e., initial value derivation with or without salt,
and output transformation with or without salt, the flag byte φ is used.



DESIGN RATIONALE 175

3.1.5 A Parallel Iteration Mode

The iteration mode used by Lane is inherently sequential. Hence, it is not possible
to benefit from having multiple CPU cores to accelerate the hashing of a single,
long message. There is small-scale parallelism available inside the compression
function, which can be used by a single CPU, as will be explained in Sect. 3.2. But
this parallelism is too fine-grained to offset the synchronisation overhead required
when using multiple independent CPU cores.

In many high-performance applications, this is not a problem. Indeed, often
there are many smaller messages that need to be hashed. Consider for example
a web server using TLS with HMAC-Lane for data authentication. The server
needs to hash every packet it sends to and receives from the network. A machine
with multiple CPU cores can process all of these independent messages in parallel.

For applications that do require parallelisable hashing of a single, long message,
it is beneficial to use a separate parallel iteration mode. We propose a simple and
easy to implement parallel mode that is built on top of the normal, sequential
Lane. This mode is based on the seminal work of Damgård [20].

Let T be the desired level of parallelism, i.e., up to T CPU cores can be utilised.
Let bint be the interleave factor, which defines the size of the blocks in which the
message will be split. It is logical to choose bint to be a multiple of the blocksize b
of the underlying hash function, although this is not strictly required. Parse the
message M into blocks of bint bits:

m0 ||m1 || . . .←M . (26)

Then assign the blocks in turn to T streams M0,. . . ,MT−1:

M0 = m0 ||mT ||m2·T || . . .
...

Mi = mi ||mT+i ||m2·T+i || . . .
...

MT−1 = mT−1 ||mT+T−1 ||m2·T+T−1 || . . .

. (27)

Finally, compute the digest of the message M as

Lane

(

Lane (M0) ||Lane (M1) || · · · ||Lane (MT−1)
)

. (28)

There are T inner hash functions, all of which are independent and can thus be
evaluated in parallel. When the message M is long, the cost of the final hash
function, which combines the results from the T streams, is negligible.

Note that this mode is not interoperable with the ‘normal’ mode of Lane, as
the computed message digest is different. Also, different values for the interleave
factor bint and the parallelisation degree T result in a different message digest.



176 THE LANE HASH FUNCTION

3.2 The Compression Function

The Lane compression function was designed to be simple to understand and easy
to analyse. This aim for simplicity can be found in virtually every aspect of the
design.

The use of permutations ensures that internal collisions can only occur in
certain places, i.e., at the XOR combiners. Establishing such an internal collision is
equivalent to satisfying a linear condition on the outputs of several permutations.
Similarly, the message expansion imposes linear relations on the inputs of the
permutations. The rationale is that, while such conditions are very simple, it is
hard to maintain or even track them through the rounds of the permutations.

A similar rationale applies to the problem of finding (second) preimages for
the compression function. Straightforward inversion attempts fail, as one has to
ensure that the linear conditions imposed by the message expansion hold. This is
again considered to be very difficult.

As described in detail in Sect. 4.4.1, having only a single layer of permutations
would allow for a class of distinguishers for the compression function, based on
limiting the permutation inputs to a small set. The second layer of permutations
not only prevents that, but also has a beneficial effect on the resistance to
differential cryptanalysis. Indeed, in a collision differential, either the entire second
layer must be activated, or an internal collision must be reached simultaneously
on both of the XOR combiners after the first layer, i.e., on a value twice the size
of the chaining value.

The ample parallelism provided by the Lane compression function allows for
flexibility in implementation. In software implementations, Lane offers many
opportunities for instruction level parallelism (ILP), which can be used by modern
pipelined and superscalar CPU’s. Also, as the same operations are carried out on
many independent data values in parallel, it is possible to use vector instructions,
i.e., Single Instruction Multiple Data (SIMD) instructions. On the other end of
the spectrum, it is equally possible to implement Lane in a completely serial way.
In such implementations, the memory requirements are kept minimal. Hardware
designers implementing Lane are offered an area-speed tradeoff, making Lane

suitable for both resource-constrained and very high-speed applications.

3.2.1 The Message Expansion

Even more so than other components of Lane, the message expansion was chosen
to be very simple and light. Its main purpose is to introduce dependencies
between the inputs of the various permutation lanes, such that they cannot be
chosen independently. It also precludes straightforward inversion attempts, as it
is conjectured that, however simple the linear conditions imposed by the message
expansion, it is not feasible to satisfy them when only having direct control over
the permutation outputs.



DESIGN RATIONALE 177

A similar structure, with four parallel branches, is found in the Rumba20
compression function [8]. In Rumba20, constants are used at the input to prevent
finding preimages by inverting individual branches. The (linear) relations between
the inputs of the various lanes of the first layer serve a similar purpose in Lane.

The message expansion is based on a (6,3,4) linear code over GF(4). The
minimum distance property of this code ensures that, in a differential attack, at
least four out of the six lanes in the first layer will be active, i.e., have a difference at
the input as well as output. This property is described in more detail in Sect. 4.2.1.

Provable resistance is offered against meet-in-the-middle preimage attacks, as
detailed in Sect. 4.9. In short, it is not possible to construct two independent sets
of permutation lanes to use in such an attack. This follows from the minimum
distance property of the linear code on which the message expansion is based.

Also for implementors, the message expansion has several interesting properties.
Each output of the message expansion can be computed independently of the
others, and read-only access to the current message block suffices. This implies
that the message buffer can be shared with another application, eliminating the
need for extra memory and costly data copying.

Finally, note that the inputs of the permutation lanes P4 and P5 only depend
on the message block input, and not on the chaining value. This implies that
those lanes can already be computed while the previous chaining value is not yet
known, e.g., in parallel with the second layer of the previous compression function
call. This implementation approach is described in more detail in Sect. 5.1.1. If
two (or more) CPU cores are available, it is also possible to let one CPU core
precompute P4

(
Mh

)
⊕P5

(
M l
)
, while the second CPU core takes care of the rest

of the lanes. In this setting the synchronisation overhead between the CPU cores
is manageable.

3.2.2 The Permutations

The permutations used in Lane are built using components of the AES block
cipher [19, 45]. One motivation for this choice is that these components and their
properties are well studied and hence well understood. This allows to build on
existing work on the security of these components to analyse Lane.

Reusing AES components also has several practical benefits. Much effort has
already been spent on efficient implementations of the AES on a wide variety
of platforms. Since Lane is based on the AES, these techniques can equally
be applied to Lane. Another benefit lies in resource constrained environments,
requiring both a hash function and a block cipher. Using Lane together with the
AES allows large parts of the implementation to be shared, yielding a substantial
overall improvement.

For simplicity and ease of (parallel) implementation, all permutations in
Lane are built in the same way. Different constants are thus required in each
permutation lane, to ensure that any attack based on maintaining symmetry across
several permutation rounds is avoided.



178 THE LANE HASH FUNCTION

The permutations are keyed using the bit counter input to the compression
function. This is a natural way of including the bit counter, as it is very simple
and lightweight, but achieves the goal of making the whole compression function
dependent on this counter. Even though scenarios where the compression function
is attacked by introducing differences via the bit counter are of no immediate
concern, the method by which the counter is included provides resistance against
such attacks. The rationale is that the bit counter can only influence a small part of
the state in each round, and those influences cannot be cancelled out immediately
in the next round, but instead diffuse to affect the whole state. The fact that
the same counter value is used many times in the compression function serves to
further complicate such cryptanalytic attempts.

The number of rounds in the permutations in the first layer was chosen to
be six rounds for Lane-224 and Lane-256, and eight rounds for Lane-384 and
Lane-512. The rationale behind this choice is to use as few rounds as possible, for
performance reasons, but still enough rounds to offer an adequate security margin.
We refer to the discussion of truncated differential analysis in Sect. 4.3 for a more
detailed analysis concerning the required number of rounds in the first layer.

Concerning the number of rounds in the second layer of permutations, recall
that the main purpose of the second layer is to preclude higher order differential
distinguishers, such as the distinguishers described in Sect. 4.4. Such distinguishers
are based on detecting the balancedness of the intermediate values after the
first layer, which is a very fragile property. Almost any non-invertible and non-
linear second layer would suffice to this end, but it is reasonable to ensure that
every input bit influences every output bit, i.e., to achieve full diffusion. It is
also a logical choice to use the same type of permutations as in the first layer.
Achieving full diffusion requires a minimum of three rounds. Hence, the second
layer permutations are defined to have half as many rounds as the first layer
permutations.

Unlike in the AES block cipher, the linear diffusion layer is not omitted in the
last rounds of the permutations, even though its impact on the security of Lane

is limited. Doing these extra operations simply makes many implementations
faster and easier, both in high-performance software and hardware. Namely, we
avoid handling a special case which would otherwise require multiplexers on the
critical path in hardware, or extra tables or masking instructions in software. Only
in applications where the MixColumns operation has to be computed explicitly,
for instance in embedded software implementations, would omitting MixColumns
offer a performance benefit. In the AES, another reason to omit these operations,
besides a performance gain in embedded implementations, is to achieve a similar
structure for the inverse cipher. But as the permutations in Lane are only ever
evaluated in the forward direction, this argument does not apply to Lane.



DESIGN RATIONALE 179

3.2.3 The Constants

The constants serve to diversify the permutations, in order to avoid any attack
based on the similarity of the parallel permutation lanes. An important design goal
is that it should be possible to generate the constants on-the-fly in an inexpensive
way. This avoids the need for large tables of constants in implementations where
memory is limited.

A linear feedback shift register (LFSR) is a natural choice for generating
constants. It is simple, and can be implemented using only very limited resources.
Even though its output stream does not possess any strength in the cryptographic
sense, the statistical properties are sufficiently good for the purposes of Lane. A
32-bit LFSR was chosen to match the size of the columns. The feedback polynomial
is a primitive polynomial, ensuring a cycle length of 232 − 1.

The only security-related requirement on the constants is that the constants
used in different permutation lanes should be different. The first constant, used
to initialise the LFSR, was chosen such that no two constant bytes used in the
same position of two different lanes are equal. Additionally, the number of times
that two constant bytes, used in the same position in a different lane, are the
one’s complement of each other was minimised. An exhaustive search resulted
in the conclusion that this complement property cannot be avoided. There exist
ten starting states for which this happens in only a single byte. Of these ten, we
picked the starting state with the lowest numerical value. The source code for this
search is included in the submission package.

3.3 Advantages and Limitations of Lane

3.3.1 Advantages

• Lane design is simple. This makes Lane easy to understand and implement.
Also, simplicity is an important advantage for cryptanalysis. Complex
designs are often hard, or even impossible to analyse in a structured way.
The design of Lane, on the other hand, allows for a relatively easy analysis
of its security.

• Lane incorporates several features that can greatly improve its security, at
only a modest cost in performance. In particular, Lane offers the possibility
of using a salt value, uses a counter and has an output transformation.

• Components from the AES block cipher [19,45] are reused as building blocks
in Lane. As discussed above, this allows existing cryptanalytic results on
the AES to be used in the security analysis of Lane. Also, implementations
of Lane can benefit from existing work on the implementation of the AES on
a wide variety of platforms. In particular, Lane can benefit from dedicated
hardware support intended to accelerate the AES, like for instance the Intel
AES-NI instruction set [28].



180 THE LANE HASH FUNCTION

• One of the design goals of Lane was to provide a high degree of parallelism
in the compression function. At the same time, care was taken to keep the
memory requirements modest for a serialised implementation. Thus, Lane

is flexible in implementation and scales well across a wide range of platforms
and applications.

• Lane can easily be extended to support any digest length up to 512 bits.
One simply needs to derive the initial chaining value for the desired digest
length, and apply a suitable truncation at the end.

• There is a clear and detailed rationale, which was presented in this section,
supporting every design decision.

3.3.2 Limitations

• The iteration mode is not parallelisable. For most applications, this is not a
problem. For applications where a parallelisable iteration mode is important,
we suggest to use the parallel mode described in Sect. 3.1.5.

• Because the size of the intermediate chaining values was chosen to be equal
to the digest length, Joux’ multicollision attack [29] can be applied to Lane.
Refer to Sect. 4.12 for a more in-depth treatment of multicollisions.

4 Security Analysis

In this section, we discuss the security of the Lane construction in general, as well
as of the hash functions Lane-256 and Lane-512 in particular. We list known
bounds on security and present attacks on reduced versions of the hash functions.

In Sect. 4.1, we suggest ways in which Lane could be reduced, to perform
cryptanalysis. Sections 4.2, 4.3 and 4.4 address differential attacks and their
applicability to weakened versions of Lane. As the Lane compression function
shares a certain similarity with wide-block Rĳndael, Sect. 4.5 summarises
cryptanalytic results on Rĳndael, and their relevance to Lane. Sect. 4.6 is
dedicated to algebraic attacks.

Sections 4.8–4.12 discuss the resistance of Lane to various generic attacks.
Sect. 4.13 summarises security arguments on the mode of operation; a technical
report detailing these results is included as a separate document [1]. Sect. 4.14
concludes with a statement on the expected security of the Lane hash functions.

4.1 Reduced Versions of Lane for Cryptanalysis

This section discusses various ways in which Lane could be reduced, in order to
construct weakened variants. Such variants can be useful in cryptanalysis, as they
allow one to understand the margin offered by the full Lane against a particular
type of attack.



SECURITY ANALYSIS 181

A first, obvious way to reduce Lane is to vary the number of rounds used
in the permutations. For example, lowering the number of rounds increases the
probability of (truncated) differentials. The number of rounds in the first layer
(Pi) and second layer (Qi) can be varied independently.

Another option is to reduce the number of lanes in the first layer. A variant
where a single lane is removed from the first layer, for instance, would be based
on a (5,3,3) linear code, which is simply a shortening of the original code. The
number of lanes can be reduced further, but then the property that in a differential
attack, always more than half of the lanes are active, is lost.

Finally, Lane could be reduced by omitting the entire second layer, i.e., the
Qi permutations. The compression function output would then be found as the
XOR of all six lanes, P0 to P5.

4.2 Standard Differential Cryptanalysis

Differential cryptanalysis was originally introduced by Biham and Shamir [11] as
a means to cryptanalyse symmetric encryption primitives (block ciphers). It has
also been used with success to break hash functions, e.g. [13,22].

In a differential attack, collisions are determined by considering pairs of
messages, which have a fixed difference, i.e., the input difference of the
characteristic. This condition strongly reduces the search space in which the
attacker looks for collisions. It is hoped that the fraction of the collisions that
lies within this reduced search space is larger and/or easier to find than in the
unrestricted search space.

An important difference between differential cryptanalysis of hash functions
and differential cryptanalysis of block ciphers is stated in the following fact.

Fact 1. The absence of secret keys in hash functions can be exploited by the
cryptanalyst in order to reduce the complexity of a differential attack.

For instance, instead of choosing inputs (‘plaintexts’), the cryptanalyst can
choose any intermediate state, and compute backwards to determine the inputs.
The effect is that a number of active S-boxes can be ‘bypassed’, resulting in a
decrease of the complexity of a differential attack.

We consider differential attacks with nonzero differences in the message only.
Since each individual lane of Lane implements a permutation in the space of n-bit
message inputs, collisions can be obtained only in the XOR combiners. In order
to obtain a collision at the output of the compression function, either a collision
must be obtained in both of the XOR combiners at the input of the second layer,
or both of the lanes in the second layer will be active.

We discuss only the resistance against differential attacks provided by the first
layer of lanes. If the lanes of the second layer are active, then they will increase
the security against differential attacks.



182 THE LANE HASH FUNCTION

4.2.1 Active Lanes in the First Layer

This section describes a property of the Lane message expansion which ensures
that, in a differential attack, at least four lanes in the first layer will be active, i.e.,
have a difference. To this end, we first introduce an alternative description of the
Lane message expansion, based on a linear code over GF(4).

We adopt the standard polynomial representation of GF(4) using X2 + X + 1
as a primitive polynomial to define the multiplication of field elements. A string
of two bits b0b1, where b0 is the most significant bit, can now be mapped to an
element in GF(4), and vice versa

b0b1 ↔ b0 ·X + b1 . (29)

An alternative description of the Lane message expansion. The message
expansion of Lane is based on a linear (6,3,4)-code over GF(4) which is known as
the hexacode. Its generator matrix is given by

G =





1 X X 1 0 0
X 1 X 0 1 0
X X 1 0 0 1



 . (30)

This code has length 6, dimension 3 and minimum distance 4. The minimum
distance property can be easily verified by exhaustively listing all 64 codewords.

We now describe the construction of the Lane message expansion. The input
chaining value H and the message block M = Mh ||M l are mapped to elements
of GF(4) as follows, where 0 ≤ i < n/2:

ηi
0 ↔ (H)i ·X + (H)i+n/2

ηi
1 ↔ (Mh)i ·X + (Mh)i+n/2

ηi
2 ↔ (M l)i ·X + (M l)i+n/2

. (31)

Here, (H)i, (Mh)i and (M l)i denote the i-th bit of H, Mh and M l, respectively,
where bit 0 is the most significant bit. Now, for each i, encode

[
ηi
0 ηi

1 ηi
2

]

using the linear code described in (30):

[
µi

0 µi
1 µi

2 µi
3 µi

4 µi
5

]
=
[

ηi
0 ηi

1 ηi
2

]
·G . (32)

Finally, the elements of GF(4) µi
0,. . . ,µi

5 are mapped back to the n-bit expanded
message words W0,. . . ,W5 in the same way:

µi
0 ↔ (W0)i ·X + (W0)i+n/2

...
µi

5 ↔ (W5)i ·X + (W5)i+n/2

. (33)



SECURITY ANALYSIS 183

This entire procedure can be written as a simple partitioned matrix multiplication
over GF(2), where I denotes the n/2× n/2 unity matrix:

[W0 ||W1 || . . . ||W5] =
[
H ||Mh ||M l

]
·











I 0 I I I I I 0 0 0 0 0
0 I I 0 I 0 0 I 0 0 0 0
I I I 0 I I 0 0 I 0 0 0
I 0 0 I I 0 0 0 0 I 0 0
I I I I I 0 0 0 0 0 I 0
I 0 I 0 0 I 0 0 0 0 0 I











. (34)

It is easy to see that this is equivalent to (20), which was used to define the message
expansion in Sect. 2.5.1.

Minimum distance and active lanes. The Lane message expansion can thus be
seen as a parallel application of a linear (6,3,4)-code over GF(4) to n/2 ‘slices’. The
values in each such slice must form a valid codeword. Note that the six elements
of GF(4) that comprise a codeword are each input to a different first-layer lane.

Consider two different inputs to the message expansion, which yield two
different sets of expanded message words, 〈W0, · · · ,W5〉 and 〈W ′

0, · · · ,W ′
5〉. In

differential cryptanalysis terminology, we say that there is at least one active ‘slice’,
i.e., at least one ‘slice’ has a difference.

As the minimum distance of the message expansion code is four, the Hamming
distance between the two codewords in any active ‘slice’ must be at least four.
This implies that at least four expanded words must have a difference. Hence, in
a differential attack, there are always at least four active lanes. This property
always holds, even when the difference is only in the chaining value.

4.2.2 Active S-boxes per Lane

Next we determine the minimum number of active S-boxes in an active lane. Each
active S-box decreases the probability by a factor of at least 26. The input to one
lane can be seen as two AES states for Lane-256, or four for Lane-512. If these
states were processed independently by six, resp. eight rounds of the AES, then
the minimum number of active S-boxes in one lane would be 30 resp. 50. This is
the minimum for six resp. eight rounds of the AES block cipher, and could thus
be achieved by only activating a single AES state.

But as the SwapColumns operation, see Sect. 2.3.6, mixes the AES states
together, the minimum number of active S-boxes is in fact higher. There appears
to be no elegant formula to compute the minimum number of active S-boxes. A
computer search for Lane-256 and Lane-512 resulted in the lower bounds given
in Table 8. The figures for 7 and 8 rounds in Lane-256 are of theoretical interest
only, since we use 6 rounds only.



184 THE LANE HASH FUNCTION

Table 8 – Lower bounds on the number of active S-boxes in one lane
for Lane-256 and Lane-512.

Rounds Lane-256 Lane-512

1 1 1
2 5 5
3 9 9
4 25 25
5 34 41
6 45 60
7 (52) 64
8 (65) 80

4.2.3 Breaking Reduced Versions

We describe a structure for a hypothetical differential collision attack that targets
a collision at the XOR combiners after the first layer and hence will apply to
Lane up to a certain number of rounds per first-layer permutations Pi, but with
an arbitrary number of rounds per second-layer permutations Qj . It is intended
to demonstrate Fact. 1, i.e., that the absence of a secret key in a hash function,
allows an attacker to reduce the complexity of a differential attack.

Let ∆ = (∆0 ||∆1) be any n-bit difference, where n is the digest length.
Introducing the difference (0,∆,∆) at the inputs (H,Mh,M l) of the Lane

compression function yields the differences (0,∆′,∆′, 0,∆,∆) at the inputs to the
six lanes, where ∆′ = (∆0⊕∆1) ||∆0. Given two suitable single-lane characteristics
C0, C1 transforming ∆′ into ∆′

o with probability p and ∆ into ∆o with probability
q, the differences at the two XOR’s after the first layer cancel, causing the output
difference of the compression function to be zero, see Figure 13. Not that this
can be extend to a larger number of compatible characteristics, i.e., characteristics
that have the same input and output difference, but differ in the intermediate
differences. In this more general case, the probabilities of all such characteristics
should be added together. For the sake of simplicity, we will describe the case
where only a single characteristic is used.

A randomly chosen pair of compression function inputs simultaneously follows
all four active parallel branches of such a differential with probability p2 · q2.
Assume for now that this probability is large enough for a right pair to exist
amongst the set of all possible inputs (see Sect. 4.2.4 for further discussion on the
satisfiability of differential characteristics in Lane). Fact 1 then suggests that the
complexity p−2q−2 of finding the right pair could be reduced by imposing control
over the intermediate state of some lanes.

More specifically, any choice of inputs to some three lanes determines a valid
input to the message expansion. For instance, the attacker can fix an intermediate
state in lanes P4 and P5 and, calculating backwards and forwards, find Mh and



SECURITY ANALYSIS 185

M l in such a way that the layer of S-boxes at the round where the attacker fixes
the intermediate state is passed with probability 1. If the round with the greatest
number of active S-boxes within the characteristic is chosen as the starting point,
this can considerably reduce the complexity of finding a right pair. Also note that
the attacker can deal with P4 and P5 independently. For fixed Mh,M l, P2 becomes
invertible with respect to the chaining value H, allowing exactly the same approach
for finding a right pair for this lane. If this procedure for P2, P4, P5 is repeated k
times, and k right pairs are found for each of these three lanes, the attacker can
generate k3 input pairs by forming all combinations of the independently obtained
values for H, Mh and M l. As soon as k3 exceeds p−1, one can expect to find a
right pair for P1, which is then simultaneously a right pair for all four active lanes
by construction.

As outlined in section 4.2.2, the probability of a single-lane characteristic is
upper bounded by 2−6a, where a is the minimum number of active S-boxes for the
number of rounds per lane. During the process of finding a right pair for P4, P5 and
P2, a certain number of active S-boxes can be disregarded. However, the attacker
has no further control over the input to the fourth active lane P1, implying that
the complexity of this attack is lower bounded by the expected complexity 26a of
finding a right pair for P1 amongst the set of k3 ≥ 26a available inputs.

For the six rounds employed in Lane-256, the complexity of such an attack is
at least 26·45 = 2270; for Lane-512 with eight rounds, the work factor is at least
26·62 = 2372. Both values are well above the respective birthday bounds of 2128

and 2256.
This attack, however, breaks Lane variants faster than a standard birthday

approach in case of up to 3 rounds per P -lane for the digest size n = 256 bits and
up to 5 rounds per P -lane for the 512-bit digest version.

4.2.4 Maximum Probability of a Trail

In Section 4.2.3, we described an efficient method to determine right pairs for
characteristics over reduced versions of Lane. This method works, provided that
such right pairs exist. In this section, we show that for the full versions of Lane,
the overwhelming majority of the characteristics does not exhibit a right pair.

We adopt the usual hypotheses of independence and stochastic to bound the
probability of characteristics equivalence [34]. The message expansion ensures that
there are always at least 4 active lanes, see Sect. 4.2.1. Each active lane has at least
45 active S-boxes for Lane-256, or at least 80 active S-boxes for Lane-512. Each
active S-box has probability at most 2−6. This results in the following bounds for
the probability of a characteristic Q:

Lane-256: Pr(Q) ≤
(
2−6
)4·45

= 2−1080 , (35)

Lane-512: Pr(Q) ≤
(
2−6
)4·80

= 2−1920 . (36)



186 THE LANE HASH FUNCTION

+ +

+

0 ∆ ∆

0 ∆′ ∆′ 0 ∆ ∆

0 ∆′

o ∆′

o 0 ∆o ∆o

0 0

0 0

0

Figure 13 – A collision differential for Lane.



SECURITY ANALYSIS 187

Since the Lane-256 and Lane-512 compression functions take only 512 + 256 +
64, respectively 1024 + 512 + 64, bits as input, the probability that, for a given
characteristic Q, a right pair exists, is upper bounded by

Lane-256: 2−1080 · 2832 = 2−248 , (37)

Lane-512: 2−1488 · 21600 = 2−320 . (38)

This suggests that for the full versions of Lane-256 and Lane-512, even with the
best possible message modification techniques, it is not feasible to find a right pair,
simply because with very high probability, there exists no right pair.

4.3 Truncated Differential Cryptanalysis

In the previous section, we have analysed the probability that a pair of message
blocks with a fixed difference follows a single predefined characteristic. However,
due to the fact that the operations used in Lane are all byte-oriented, we are
likely to find a very large number of different characteristics with a comparable
probability and the same or similar input and output differences. In a typical
attack, each of these characteristics will be equally useful, and hence it makes sense
to analyse the probability that a message pair satisfies any of them. Truncated
differential cryptanalysis [31] is a technique which does exactly that.

4.3.1 Truncated Differentials

Instead of imposing specific differences in every round, a truncated differential
only specifies where these differences should be zero. An example of a truncated
differential for a single lane of Lane-256 is shown in Fig. 14(a). For each round,
except the last one, the figure depicts the differences in the AES states before
the ShiftRows transformation, after the ShiftRows transformation, and after the
MixColumns transformation. Byte positions where differences are allowed are
marked in grey. Since byte-equalities are preserved by all operations, except for the
MixColumns transformation, this is the only stage where a reduction in probability
can take place. In our example, we end up with a total probability of 2−96. Note
that the MixColumns transformation in the last round can be moved behind the
XOR’s which combine the lanes, and is therefore irrelevant if we intend to force
collisions in those XOR’s. This is why the last round is omitted.

4.3.2 Identifying the Optimal Truncated Differential

The probability of a truncated differential is, on its own, not a very good measure
for its usefulness. As a trivial example, consider a truncated differential without
any zero differences, which, despite its probability of 1, is clearly useless. To be
of any use, a truncated differential should demonstrate that a pair satisfying the
input difference is significantly more likely to result in the desired output difference
than a random pair. In Fig. 14(a), for instance, a consistent input pair is expected



188 THE LANE HASH FUNCTION

↓

1

2−32

2

3

2−64

4

5

(a)

↑ 1

264

↓

2

3

2−64

4

5

(b)

Figure 14 – Truncated differentials in one lane of Lane-256.



SECURITY ANALYSIS 189

↓

1

2−96

2

3

2−96

4

5

2−96

6

7

(a)

↑ 1

232

↓

2

3

2−96

4

5

2−96

6

7

(b)

Figure 15 – Truncated differentials in one lane of Lane-512.



190 THE LANE HASH FUNCTION

to result in 16 equal bytes at the output with a probability of 2−96, versus 2−128

for a random pair. In fact, it can be shown by computer search that this factor of
232 is the highest attainable gain for a single lane of Lane-256.

Another property that influences the usefulness of a truncated differential is the
number of degrees of freedom that are left at the input. Without any additional
restrictions, these degrees of freedom could be used to reduce the effort of finding
right pairs. Consider for instance the set of all 264 input states which are constant
(say, zero) in all but the 8 grey bytes at the input of Fig. 14(a). By sorting the 264

corresponding output states and returning all pairs which have equal values in the
rightmost AES state, we would in effect have checked in the order of 2128 pairs.
Hence, we expect to find about 232 right ones, and this with an effort of only 264.

An additional optimisation which can be applied if the attacker is free to choose
parts of the input state is depicted in Fig. 14(b). The approach is similar to the
one described above, but this time the attacker starts after the first MixColumns,
which saves a factor 232 in probability, and therefore results in 264 right pairs. For
each of these pairs the attacker then reverses the first round in order to find the
corresponding input pairs, each of which will be equal in the rightmost AES state.

The same reasoning can be applied to the two truncated differentials of
Lane-512 shown in Fig. 15. However, if we start with a set of 2128 input states in
Fig. 15(a), then we do not expect to find any right pair at all, since

22·128 · 2−3·96 = 2−32 .

In order to find a single right pair, we will therefore have to repeat this procedure
232 times, resulting in a total workload of 2160. Alternatively, we could start with
a set of 232 states after the first MixColumns, as shown in Fig. 15(b). This will
have to be repeated 2128 times in order to compensate for the fact that

22·32 · 2−2·96 = 2−128 ,

leading to the same total effort of 2160 as before. Note however that the first
approach requires 2128 of memory, whereas a table of 232 would suffice for the
second one.

4.3.3 Using Truncated Differentials for Collision Searching

An attack using truncated differentials to construct a collision pair would then
proceed as follows. First, we ensure that only 4 lanes are active, which is optimal
as shown in Sect. 4.2.1. This can be achieved by choosing ∆m0 = ∆m2. Then,
the probability that a colliding right pair exists for a given chaining input is given
by

Lane-256: 264 · 2512 ·
[(

2−96
)2 · 2−128

]2

= 2−64 ,

Lane-512: 2128 · 21024 ·
[(

2−3·96
)2 · 2−128

]2

= 2−256 .



SECURITY ANALYSIS 191

Note that, especially for Lane-256, even if such a pair exists, we do not expect to
be able to determine this with an effort less than 264, after which the pair would
need to be recovered in less than 2128.

4.4 Higher Order Differential Cryptanalysis

Higher order differentials where introduced as an extension of differential
cryptanalysis, using higher order derivatives [31]. The i’th order derivative of
a function f at the point a1, . . . , ai is defined as follows [33]:

∆af(x) := f(x + a)− f(x)

∆(i)
a1,...,ai

f(x) := ∆ai

(

∆(i−1)
a1,...,ai−1

f(x)
)

, i > 1.

Standard differential cryptanalysis used first-order derivatives.
The following property of the Lane message expansion is important.

Property 1. Let (W )ti, 0 ≤ t < 5, 0 ≤ i < n, denote the 6n output bits of the
message expansion, and let (H)i, (Mh)i, (M l)i, 0 ≤ i < n denote the 3n input
bits. Then for each t there exists a set of 12 binary constants a0t, a1t, a2t, a3t,
a4t, a5t, b0t, b1t, b2t, b3t, b4t, b5t such that

(W )ti =







a0t(H)i + a1t(M
h)i + a2t(M

l)i

+ a3t(H)i+n/2 + a4t(M
h)i+n/2 + a5t(M

l)i+n/2,
for 0 ≤ i < n/2;

b0t(H)i−n/2 + b1t(M
h)i−n/2 + b2t(M

l)i−n/2

+ b3t(H)i + b4t(M
h)i + b5t(M

l)i,
for n/2 ≤ i < n.

4.4.1 A Fourth-Order Differential Distinguisher

Property 1 implies the existence of 4th order differentials that have probability 1
over the message expansion and the first layer of lanes.

Corollary 1. Let F (H,Mh,M l) denote the function that consists of the message
expansion, the first layer of lanes and the two XOR combiners following it. Let δ
be an arbitrary (n/2)-bit difference and let

a0 = (0, 0; 0, 0; 0, δ)

b0 = (0, 0; 0, 0; δ, 0)

a1 = (0, 0; 0, δ; 0, 0)

b1 = (0, 0; δ, 0; 0, 0)

a2 = (0, δ; 0, 0; 0, 0)

b2 = (δ, 0; 0, 0; 0, 0).



192 THE LANE HASH FUNCTION

Then

∆ai,bi,aj ,bj
F (H,Mh,M l) = 0 with probability 1,

for all i, j ∈ {0, 1, 2}.

Proof. Property 1 implies that over the 16 inputs defined by the 4th order
differential, each lane input Wt will take 1, 2 or 4 different values, and each value
a multiple of 4 times. Consequently, each lane output will occur an even number
of times. Hence for each of the XOR combiners it holds that the XOR of the 16
outputs equals zero.

We could not determine a way to extend this property through the second layer
of permutations.

4.4.2 Square Attacks on the Compression Function

The structure of Lane is byte oriented, suggesting a possible square attack might
be applicable [18,32,36]. The attack is made slightly more complex by the message
expansion and the need to track the square property over six lanes, but it is
essentially the same.

For example, in Lane-256, consider 256 message blocks, for which one byte of
m0 (e.g., the first one) accepts all possible values, while all the other bytes are set
to the same value. This ensures that the first byte in both halves of W0 is active
(i.e., accepts all values), the first byte of the left half of W1 is active, as well as
the first byte of both halves of W2, and the left of W4.

In lanes where there is only one active byte, we have after two full rounds
sixteen bytes which are active (columns 0,1,4,5). Looking at the third round, we
learn that all bytes are balanced (i.e., the sum of all values in these bytes is zero).
In lanes where there are two active bytes (one in each half), after the second round
all the bytes are active, and after three rounds, all bytes are balanced. Thus, if we
reduce the length of the Pi permutations to three rounds, we know that the XOR
of the outputs of these permutations is balanced. Without the Qj permutations,
we could at this point find that all the bytes are balanced. Thus, given the output
values of 255 messages out of the set, we could predict the output of the missing
message. This could also be used as a distinguisher to distinguish the output of
the compression function from random.

We can extend the attack by one round, by considering structures of 232

messages, chosen such that after one round they generate 224 sets of 256 messages
each, where in each such set, the first byte of the state (or the first byte of each
128-bit half of the state) obtains all possible values, while the other bytes are fixed.
Similarly, we can extend the square property one more round, by taking structures
of 2128 values. A possible structure would use

m0 = m1 = m2 = m3 = i for all 0 ≤ i < 2128 . (39)



SECURITY ANALYSIS 193

We conclude that the best square property of Lane-256 is of 5 rounds, and thus,
after the additional round, the inputs to the Qj ’s permutations have no structural
property. And even if somehow the attacker succeeded in finding such a structure
after 6 rounds, the Qj ’s would destroy the remaining structural properties.

For Lane-512 the analysis is similar, but with an extra round. Starting from
only one active byte, after four rounds we expect that all the bytes of the internal
state are balanced. Hence, for Lane-512 the best square property is for 6 rounds,
making Lane-512 immune to this attack as well.

4.4.3 Multiset Distinguishers

As a further generalisation, one can consider distinguishers based on (much) larger
sets of inputs. As an example, consider the following case. Keep h0, h1, m0 and m1

constant and saturate m2 and m3, i.e. assign every possible value to them. The size
of this set of messages is 2n/2. Then, we know that every expanded message word
also gets assigned every possible value, except for W3 and W4, which are constant.
Now, after the first layer, the outputs of P0, P1, P2 and P5 are saturated. After
the XOR combiners, we see that the input to Q0 sums to zero, i.e. it is balanced,
and the input to Q1 is still saturated. This implies that also the output of Q1 is
saturated, but nothing useful can be said about the output of Q0 or the output of
the compression function.

4.5 Cryptanalysis of Wide-Block Rĳndael

Nakahara et al. investigated the security of wide-block Rĳndael [43, 44]. Since a
permutation in Lane has certain similarities with Rĳndael-256 we summarise these
attacks. Recall that a full permutation round in Lane consists of the following
sequence of transformations: SubBytes, ShiftRows, MixColumns, AddConstants,
AddCounter and SwapColumns, while a round in wide (large block) Rĳndael
consists of AddRoundKey, SubBytes, ShiftRows and MixColumns. Note that
ShiftRows differs in Rĳndael-128 (i.e. AES and Lane) and Rĳndael-256. In fact,
the combination of the SwapColumns and ShiftRows operations in Lane-256 can
be viewed as the equivalent of the (redefined) ShiftRows operation in Rĳndael-256.

There exist higher-order multiset (differential and linear) distinguishers for up
to 7 rounds of Rĳndael-256 [43]. These distinguishers trace the status of 128-bit
words, and thus require sets of 2128 chosen plaintexts at a time. The rationale
behind the multiset technique is to use balanced sets of bits to attack permutation
mappings (cipher rounds).

Similar distinguishers can be constructed for the first layer of Lane, see for
example Sect. 4.4.3. However, the second layer of permutations completely stops
these distinguishers.

Impossible-differential (ID) attacks on 7-round Rĳndael-256 are shown in [44].
Typical ID distinguishers follow the miss-in-the-middle technique. Two truncated
differentials, one in the encryption direction and one in the decryption direction,



194 THE LANE HASH FUNCTION

are combined to form an impossible truncated differential. A key recovery attack
can be built upon an ID distinguisher, as subkey guesses for which the impossible
differential would be followed, can be eliminated with certainty.

In order to construct a distinguisher for the Lane compression function based
on impossible differentials, it is not sufficient to have an impossible differential for
a single Lane permutation. Assuming that the unknown keying material enters
the compression function via the chaining value, four lanes in the first layer will
be affected. Hence, an impossible differential needs to cover these four lanes in the
first layer, as well as both lanes in the second layer. It seems very unlikely that
such an impossible differential can be found.

4.6 Algebraic Attacks

In algebraic attacks, the operation of a symmetric cryptographic primitive is
represented as a system of polynomial equations over GF (2) or GF (2n), which is
then attempted to be solved using various techniques and expression manipulations.
Since Lane is based on the AES, its security with regard to algebraic attacks
is closely related to that of the AES. As a single state of Lane encompasses
multiple AES states, the resulting equation systems for Lane are expected to
have comparable degree, but higher dimension.

There has been an extensive analysis of the equation systems corresponding to
the AES, however, all techniques have so far only been successful against very
small scaled variants. The approaches that are theoretically best understood
are methods based on Gröbner bases [5]. Improving over Buchberger’s classical
algorithm [12], Faugère’s F4 and F5 algorithms [23,24] are the best known methods
to compute Gröbner bases. Extensive experiments indicate that those algorithms
are only successful for very small AES variants, such as ten rounds of an 1 × 1
state or four rounds of a 2× 1 state [14].

An alternative approach to solving nonlinear polynomial equations is to
linearise the system by introducing new independent variables for each occurring
nonlinear monomial term. Since this method can only be effective if the number of
linearly independent polynomials approximately equals the number of monomials,
the Extended Linearisation (XL) algorithm [16] extends the original equation
system before linearisation by multiplying it with all monomials up to some degree
in order to generate enough linearly independent equations. Experimental evidence
indicates that the XL algorithm offers little to no advantage compared to Gröbner
basis techniques [4].

Finally, the Extended Sparse Linearisation (XSL) method [17] aims at
improving on the XL technique by multiplying the polynomials only by products
of monomials that occur in the original system. So far, also this method has been
unsuccessful in realistically-sized AES equation systems [14].

We conclude that it seems highly unlikely that algebraic attacks can be
successfully applied to Lane.



SECURITY ANALYSIS 195

4.7 Attacks Based on Reduced Query Complexity

4.7.1 General Comments

Since Lane is a permutation-based hash function, it can be studied in the ideal
permutation model [53], which is very similar to the ideal cipher model and the
random oracle model. Theorem 1 of [53] states that for a compression function
f : {0, 1}sn → {0, 1}rn using k calls to n-bit permutations, collisions can be found
with certainty using approximately

k · 2n(1−(s−r)/k) (40)

permutation queries (at most). Instantiating this with the parameters for Lane

(s = 3, r = 1, k = 8) yields query complexities of 2195 and 2387 for Lane-256 and
Lane-512, respectively.

An interesting discussion of the merits and limitations of the ideal/random
models can be found in [25]. An important observation is that there are two ways
to measure the complexity of an attack. On the one hand, there is the practical
complexity, which measures the (expected value of the) time complexity of the
adversary. This is the most natural complexity measure and also the most relevant
measure. On the other hand, there is the query complexity, which measures the
number of queries that are made to the oracle. This complexity is often used in
security proofs, mostly because it is easier to bound.

Since the practical complexity of an adversary is always larger than its query
complexity, the ideal oracle model can be used to prove bounds on the security of
hash function designs.

There are two important criticisms on this model. Firstly, the distinction
between oracle queries and computations made by the adversary is artificial.
A cryptographic hash function uses an instantiation of the permutation (block
cipher), which is public. Hence, it can be argued that any cryptographic hash
function can be broken without making a single query to the oracle. Secondly, the
model ignores the practical complexity of the adversary. It is well-known that an
information theoretic adversary who is given a full description of a hash function
can always find collisions and preimages. On the other hand, returning to the
case of hash function with the same dimensions as Lane-256 or Lane-512, the
adversary has to find the actual collision in sets of at least 2256 or 2512 values, so
that an acceleration in constructing these sets, such as the one given by (40), does
not reduce the practical complexity of the attack.

Summarising, results on the query complexity of attacks on hash function
designs do not always have a big impact on the actual security of the design.
Nevertheless, they can be first steps in the development of better attacks.
Therefore, we list here our results.



196 THE LANE HASH FUNCTION

4.7.2 Results on Lane

The message expansion of Lane expands three inputs to six outputs which
are then independently fed into the permutations of the first layer. We call
a particular combination of chaining value and message block an input to the
message expansion. If some value occurs more than once at a permutation input
when hashing a set of messages, the corresponding permutation output has to be
computed only once. More precisely, whenever the sum of the numbers of distinct
values at each of the six outputs is lower than the number of different message
expansion inputs, the output of the first layer can be computed with reduced effort,
resulting in some speedup of the evaluation of the entire compression function for
this set of inputs.

Property 1 leads to two corollaries which can be used to reduce the query
complexity of Lane adversaries. The first corollary looks at Lane without the
second layer of lanes.

Corollary 2. It is possible to compute the inputs of the second layer of lanes for
26p different inputs to the compression function, using only 6 · 22p queries to the
P -lanes (exactly 22p queries to each of the 6 P -lanes).

Proof. Choose p indices jt with 0 ≤ jt < n/2. Consider the 26p inputs where
the bits hjt

, hjt+n/2, mjt
, mjt+n/2, m∗

jt
, m∗

jt+n/2 take all possible values and the
remaining bits are constant. Property 1 implies that the words wt will differ in
the bits at the 2p positions jt, jt + n/2 only. Hence each lane needs to be queried
for at most 22p different values.

Adding the queries to the lanes of the second layer, and assuming that the
lanes in the second layer are twice as fast as the lanes of the first layer, we obtain
an acceleration factor given by

7 · 26p

6 · 22p + 26p
, (41)

which very rapidly converges to 7 as p approaches infinity. This simply means
that hashing many messages chosen in this way can be done up to 7 times faster
than the straightforward approach. This is not considered to be an issue, as it is
merely a constant factor. Similar optimisations to speed up the hashing of many
messages can be applied to virtually any hash function.

The following corollary will improve upon this number.

Corollary 3. It is possible to compute the outputs of the compression function
for 210p−2n different inputs, using only 22p+3 queries to the lanes.

Proof. We start by applying Property 1 twice. First, we apply it on the first layer,
with p varying bits. We compute and store the 26p outputs of the first layer in list
L1. Next, we apply it on the second layer, with q varying bits. We store the 24q

inputs for which we can compute the output in list L2.



SECURITY ANALYSIS 197

We have then made 6 · 22p queries to the lanes of the first layer, and 2 · 22q

queries to the lanes of the second layer. The number of inputs for which we can
compute the output of the compression function, equals the number of entries that
appear in both lists. This number can be approximated by 26p+4q−2n.

If we choose p = q > (2n + 3)/8 then

#queries = 22p+3 = 210p−(8p−3) < 210p−2n = #outputs (42)

For n = 256, the number of queries drops below the number of outputs when
p = q = 65. For n = 512, this happens when p = q = 129.

We are not aware of any method to exploit these properties to reduce the
practical complexity of any attack against Lane.

4.7.3 Bounds for Query Complexity

A Lower Bound for the Query Complexity of Lane. Consider any message
expansion mapping three inputs to six outputs, with the only requirement to have
a minimum distance greater than half the number of lanes in order to prevent the
meet-in-the-middle attack outlined in section 4.9. Assume that N different values
(each comprising chaining value and message block) are input into the message
expansion and denote the number of distinct values that occur at each of the six
outputs by L0, . . . , L5. The outputs of the first layer of parallel lanes for the entire
set of N inputs can then be computed with

∑5
i=0 Li permutation queries.

A minimum distance of four implies that any mapping from the input to some
three outputs is invertible. This in turn shows that for each i 6= j 6= k, the product
LiLjLk must be at least equal to N . As the latter holds for any three outputs, we

also know that
(

1
6

∑5
i=0 Li

)3

≥ N , and hence

5∑

i=0

Li ≥ 6
3
√

N. (43)

Therefore, the number of permutation queries needed to compute the first layer of
permutations for N inputs is lower bounded by 6 3

√
N , independent of the linearity

of the message expansion (only imposing the minimum distance requirement). This
lower bound is tight for the message expansion of Lane and we conclude that the
query strategy of Corollary 2 with Li = 22p and N = 26p is in fact optimal.

Alternative linear message expansions. Finally, we discuss the relative merits
of alternative linear message expansions. For the sake of clarity, we restrict the
treatment to Lane-256 (and hence Lane-224). The wider variants can be handled
completely analogously by considering GF (2512) instead of GF (2256).



198 THE LANE HASH FUNCTION

In order to construct a message expansion that does not exhibit Property 1,
a linear (6, 3, 4) code over GF (2256) could be used. The systematic form of the
generator matrix of such a code would be





1 0 0 α β γ
0 1 0 δ ε ζ
0 0 1 η θ ι



 , (44)

where the Greek letters denote elements of GF (2256). Since the attacker can
apply invertible transformations at both input and output, this generator matrix
can always be transformed to:





1 0 0 1 1 1
0 1 0 1 α′ β′

0 0 1 1 γ′ δ′



 . (45)

Over GF (2), this is a 768× 1536 matrix. We show now that a weakened form of
Property 1 holds also in this case.

We start by choosing an arbitrary 2p-dimensional vector space V (2p < n)
and require that the inputs of each lane are in this vector space. This imposes
conditions on the inputs of the message expansion. The requirements on the first
3 lanes are equivalent to: H,Mh,M l ∈ V . This ensures that H + Mh + M l ∈ V ,
which implies that also the condition on the input of the fourth lane is satisfied.
The requirements on the last two lanes restrict the number of permissible Mh-
and M l-values to smaller vector spaces. We denote the dimensions of these vector
spaces by k1, k2 < 2p. In this scenario, the output of the first layer for 22p+k1+k2

inputs can be computed with 6 · 22p permutation queries.
A sufficient condition on 2p to have both k1 > 0 and k2 > 0 can be obtained

as follows. The conditions on the last two lanes are H + α′Mh + γ′M l ∈ V and
H + β′Mh + δ′M l ∈ V , respectively. If we require that, besides Mh,M l ∈ V , also
the products α′Mh, β′Mh, γ′M l and δ′M l are elements of V , then both conditions
trivially hold. The three conditions on Mh form a set of 3 · (n − 2p) equations
in n unknowns, so k1 > 0 if n − 3 · (n − 2p) > 0. Hence, 2p > 2

3n is a sufficient
condition for having k1 > 0. Analogously, 2p > 2

3n implies k2 > 0. In case of a
linear message expansion for Lane-256, this corresponds to 6 · 2170.7 permutation
queries.

4.8 Wagner’s Generalised Birthday Attack

Wagner [58] describes a sub-exponential algorithm for the generalised birthday
problem where one is given k lists of n-bit values and wants to select one value
from each list such that the selected values sum to zero. For k = 2 and XOR
as summation operation, this is the well-known birthday problem. Provided that
the lists are long enough and the list elements are independently and uniformly
selected at random, it can be solved with good probability in O(2n/2) time. Under



SECURITY ANALYSIS 199

the same assumptions, Wagner’s generalised algorithm has a running time of O(k ·
2n/(1+⌈log2 k⌉)), which in particular implies that the birthday problem with four
lists can be solved in O(2n/3) time.

Lane has one XOR combiner with two inputs and two XOR combiners
involving 3 inputs each. For the 3-sum problem, no algorithm faster than the
birthday complexity is known. Since Wagner’s algorithm assumes that k is a
power of two, the best we can do is to emulate the case k = 2 by solving the
problem x0 ⊕ x1 = c, where c is a fixed, randomly selected value from the third
list. Moreover, the assumption that the list entries are independent is invalid for
Lane, since are linearly dependent according to the message expansion. Indeed,
even though h,m,m∗ can be chosen independently for the second 3-XOR, their
choice immediately fixes the inputs for the first 3-XOR.

Consider now Lane without the message expansion, so that the independence
assumption holds. Since selecting k = 3 yields no advantage compared to the
birthday bound, an attacker can consider the XOR of all six Pi outputs. In this
case, Wagner’s algorithm would be applied with k = 4 (in 2n/3 time), searching
for a solution to x0⊕x1⊕x2⊕x3 = c4⊕ c5, where c4, c5 are random choices from
the lists corresponding to P4 and P5. Once such a solution x′

0, . . . , x
′
5 is found, we

know that x′
0 ⊕ · · · ⊕ x′

5 = 0, which is equivalent to x′
0 ⊕ x′

1 ⊕ x′
2 = x′

3 ⊕ x′
4 ⊕ x′

5.
Hence, the attacker can use this to obtain a value x such that Hi = Q0(x)⊕Q1(x)
and is then left with the task of attacking a smaller number of AES-like rounds
with identical input but different keys (the constants). Alternatively, he can apply
the birthday attack on differences instead of values. In this scenario, the effect of
the different constants cancels, so that any pair following this differential would
immediately yield a collision for the entire compression function.

Summarising, both the message expansion and the second layer of permutations
contribute to making attacks based upon Wagner’s algorithm for the generalised
birthday problem inapplicable to Lane.

4.9 Meet-in-the-Middle Attacks

A meet-in-the-middle attack can be used to construct collisions or (second)
preimages by simultaneously modifying two consecutive message blocks. A basic
version of the attack can be described as follows. In order to reach a certain target
value for Hi+1 from a given Hi−1, the attacker will determine an intermediate
result V and define two maps g, g∗ such that

g(Hi−1,M) = V = g∗(Hi+1,M
∗), (46)

with g, g∗ efficiently computable functions and M,M∗ two independent parts of
the message input. Subsequently, the unknown V is eliminated from the equations
and a solution for M and M∗ is searched by constructing two lists. The first list
contains output values for g; the second list contains output values for g∗. A
match between both lists means that a message has been found which takes Hi−1



200 THE LANE HASH FUNCTION

to Hi+1. For example, if the compression function f(H,M) is invertible, then the
adversary can choose g = f and g∗ = f−1.

In the case of Lane, the compression function is not invertible, but a
cryptanalyst could try to construct a similar attack within one application of the
compression function. This can be done only if the adversary is able to partition
the lanes into two disjunct sets, whose inputs can be restricted to be independent
of the other set. The message expansion prevents this attack, as its minimum
distance of 4 ensures that each of these sets need to comprise at least four lanes.
Since there are only six lanes in total, it is not possible to find two non-overlapping,
independent sets of lanes.

4.10 Long Message Second-Preimage Attacks

The standard Merkle-Damgård iteration of a compression function guarantees
collision resistance of the overall construction if the compression function itself
is collision-resistant. However, as discovered by Dean [21], this does not hold in
the case of second preimages, if fixed points of the compression function can be
found.

Definition 5. A fixed point of a compression function f(·, ·) is a chaining value h
and message block m for which it holds that

h = f(h,m) . (47)

Fixed points of a compression function can be concatenated to form an
expandable message. This is a set of message patterns of different lengths which
all lead to the same output chaining value. In a long-message second preimage
attack [21,30], an expandable message allows an adversary to target simultaneously
any intermediate chaining value instead of just a single one, reducing the expected
work factor of a second preimage attack from O(2n) to O(2n−k), where 2k is the
length of the message.

For hash functions based on the Davies-Meyer construction, it is very easy to
find fixed points [42, 50]. Let EK(·) be a block cipher with key K. Then the
Davies-Meyer construction is

f(h,m) = Em(h) + h . (48)

Constructing a fixed point can be done by choosing an arbitrary message block m,
and computing

h = E−1
m (0) . (49)

Now, it follows from (48) that this yields a fixed point.
For the Lane compression function, constructing fixed points in such a

straightforward way does not seem to be possible. Even though the permutations
in Lane are invertible, the structure of the compression function does not allow for
the construction of fixed points, as the linear conditions on the expanded message



SECURITY ANALYSIS 201

words can only be satisfied probabilistically. Hence, finding a fixed point for the
compression function of Lane should be no easier than constructing a preimage
for the compression function.

Even more so, if a fixed point for the compression function of Lane could
be found in an efficient way, it would still not allow for the construction of
an expandable message. As discussed in [10], the inclusion of the counter in
Lane prohibits the concatenation of fixed points. Also Kelsey and Schneier’s
multicollision-based method for constructing an expandable message [30] is not
applicable thanks to the counter. Finally, the attacks on dithered hash functions
by Andreeva et al. [2] are also foiled by the inclusion of the counter.

Thus, we conclude that the second preimage resistance of Lane does not
degrade when the challenge message is long, and hence the iteration mode of
Lane offers full n-bit security for second preimages (see also [1]).

4.11 Length-Extension Attacks

Given the hash value of a (partially) unknown message m (including padding
etc.), length-extension attacks aim to infer the hash value of some message m ||x,
where the suffix x may be chosen freely by the adversary. This is an important
consideration for message authentication codes (MAC’s) based on hash functions,
as a successful length-extension attack would lead to a forgery.

In the plain Merkle-Damgård construction, the mere knowledge of the message
length l and the hash value h(m) of a (partially) unknown message m enables an
attacker to calculate the hash value of messages of the form padl(m) ||x, where x
is an arbitrary suffix. Indeed, the intermediate chaining value after processing
padl(m), which always aligns to a block boundary, is precisely equal to h(m),
which is known to the attacker.

In Lane, the output transformation, which can be regarded as another
compression function call on a special padding block, is processed using the special
counter value zero, which cannot occur in any regular message block. This makes
it impossible for an attacker to emulate the output transformation using a regular
message block. Therefore, length extension attacks are not applicable to Lane.

4.12 Multicollision Attacks

In a multicollision setting, the attacker wants to find k > 2 messages all hashing
to the same value. Ideally, finding a k-way multicollision should require a
computational effort of O(2n·(k−1)/k). However, the multicollision attack by
Joux [29] allows to find a 2l-way multicollision for an n-bit hash function using the
Merkle-Damgård iteration impressively faster than that. It requires an effort of
only l ·C(n), where C(n) is the complexity of finding a single collision, which will
be at most 2n/2 by the birthday paradox. Joux’s attack works by concatenating
a chain of internal collisions: For i = 1, . . . , l, the attacker computes colliding
pairs 〈Mi,M

′
i〉 such that h(Hi−1,Mi) = h(Hi−1,M

′
i), where H0 is the initial value



202 THE LANE HASH FUNCTION

and Hi := h(Hi−1,Mi) = h(Hi−1,M
′
i). Now, after appropriate padding, the 2l

messages X1 || · · · ||Xl, where Xi ∈ {M,M ′
i}, all hash to the same value, yielding

a 2l-way multicollision.
If the compression function allows for efficient calculation of fixed points, the

method of Kelsey and Schneier [30] gives multicollisions of arbitrary size with
O(2n/2) effort. As outlined in section 4.10, this improvement does not apply to
Lane. Joux’ approach, however, is applicable. In order to preclude it, a chaining
value of at least 2n bits would be required.

Since Joux’ attack combines single collisions, its complexity directly depends on
the best possible single-collision attack against the hash function. Naturally, the
effort of applying the multicollision attack can never be lower than that of finding
a single collision. Since we require that it should be already computationally
infeasible to construct a single collision, multicollisions do not present a bigger
threat than collisions. In particular, Lane’s security level against single collisions,
which meets the theoretical bound of 2n/2, is not reduced in any regard by the
fact that many messages colliding to the same hash value can be found with only
little more effort.

One of the main application of multicollisions is the construction of long
message second preimage attacks [30]. As was mentioned in Sect. 4.10, the
inclusion of the counter precludes these attacks for Lane. Hence, we argue that,
although Joux’ multicollision attack does apply to Lane, it is not a threat in
practice. Finally, it should be noted that the fact that this multicollision attack
applies to Lane is a mere consequence of the mode of iteration and does not imply
any weakness in the compression function itself.

4.13 On the Mode of Iteration

In this section, the reduction-based provable security approach is used to assess
the security of the Lane iteration. More precisely, security claims on the
Lane iteration under some concrete assumptions on the underlying compression
function are stated. Following this approach, concrete security bounds on the
computational complexity of an adversary against the Lane iteration can be
shown. We also exhibit information theoretic results on the Lane iteration
which indicate security against generic attacks under the assumption that the
compression function is an ideal primitive. For a full security analysis on the
Lane iteration, we refer to the work of Andreeva [1]. Here, we present a summary
of the main results.

Similarly to the known Merkle-Damgård iterative principle [20, 41], Andreeva
shows that both the non-salted and salted versions of the Lane iteration are
provably collision secure. Following Rogaway’s human-ignorance approach [52],
the advantage of an adversary against the Lane hash function is related to that of
another adversary against the Lane compression function to derive a tight security
bound.



SECURITY ANALYSIS 203

The upper bounds on the advantage of information theoretic adversaries against
the second preimage and preimage security, respectively, of the non-salted Lane

hash function indicate that 2n evaluations of the underlying ideal compression
function need to performed to break the respective security property. Moreover,
making a (variant of) preimage security assumption on the output transformation
of Lane and adopting some randomness extraction and regularity properties on the
iterative portion of the non-salted Lane hash function, a tight preimage security
bound on the Lane iteration is exhibited.

For the salted version of the Lane hash function a broad set of security notions
is developed that capture most of the important attack scenarios of randomised
hashing. In addition, the possibility of attacks under equal or distinct and known
or secret salt values is taken into account. The same (as for the non-salted Lane

hash function) security against information theoretic adversaries is obtained in
the second preimage case, and the preimage case. The salted Lane iteration also
provides second preimage security guarantees of order 2n against adversaries who
first commit to a target message and then are given a random target salt value.

The latter information theoretic results show that no generic attacks on the
second preimage and preimage security on both salted and non-salted Lane hash
function variants succeed in under 2n number of evaluations of an ideal compression
function.

Another important security feature of the Lane iterative design in both salted
and non-salted versions is the security against extension attacks and lack of
structural flaws ensured by the prefix-free property of the processed inputs. The
latter design characteristic of Lane ensures its indifferentiability from a random
oracle according to the work of Coron et al. [15] and pseudorandom function
behaviour according to Bellare et al. [6].

The suggested parallel processing method, see Sect. 3.1.5 is also shown to be
collision secure when the underlying hash function is collision secure. Under the
second preimage/preimage security and some mild assumptions on the min entropy
extraction properties of the hash functions, it is also shown that the parallel mode
of operation is second preimage/preimage secure.

4.14 Expected Strength of Lane

To the best of our knowledge, the complexity of finding collisions, first, and second
preimages for Lane is O(2n/2), O(2n), and O(2n), respectively. In all three cases,
the complexities refer to generic approaches applicable to any hash function: the
birthday attack for finding collisions and simple brute force for preimages. As
discussed in this section, none of the dedicated attack attempts yielded a lower
complexity than the generic attacks. This holds for any of the specified digest
lengths n = 224, 256, 384, 512.

Length-extension attacks are generally precluded, as outlined in section 4.11.
Our analysis also did not indicate any imbalance concerning the strength of
individual output bits, so forming an n′-bit hash function by selecting n′ < n digest



204 THE LANE HASH FUNCTION

Table 9 – Expected strength of Lane against cryptanalytic attacks.

Attack Lane-224 Lane-256 Lane-384 Lane-512

Collision attacks 2112 2128 2192 2256

Preimage attacks 2224 2256 2384 2512

Second preimage attacks 2224 2256 2384 2512

Length-extension attacks not applicable
Output bits equally strong yes

bits in an arbitrary manner yields a hash function fulfilling the above criteria in
terms of n′ instead of n. In particular, no n′-bit truncation of an n-bit hash value
is a valid n′-bit digest for the same message, since the initial value depends on the
digest length n.

The claimed security levels for each of the specified digest lengths are
summarised in Table 9.

5 Implementation Aspects

This section discusses implementation aspects of Lane. Several software
implementations of Lane targeting general purpose CPU’s have been created,
as well as two hardware implementations. They are presented and evaluated in
Sect. 5.1 and Sect. 5.3, respectively. Sect. 5.2 discusses the implementation aspects
of Lane on 8-bit embedded systems.

5.1 General Purpose CPU’s

As Lane is based on the AES block cipher [19,45], the implementation techniques
that are commonly used for the AES can be applied directly to Lane. A prevailing
technique is to group the SubBytes and (part of) the MixColumns operations
into four 8-to-32-bit lookup tables [19]. ShiftRows can be implemented as a
simple reordering of the indices, so it does not require any actual instructions.
The AddConstants and AddCounter operations in Lane are implemented in
the same way as AddRoundKey in the AES. Finally, like ShiftRows, also
the SwapColumns operation does not require any explicit instructions, just an
appropriate permutation of the indices.

There is extensive literature on fast AES implementations [3,9,37–39,55,59,60].
The design of Lane is such that entire rounds of the AES block cipher are used as
components. Hence, virtually all of the fast implementation techniques and ‘tricks’
apply to Lane as well.

We wrote an optimised implementation of Lane in ANSI-C, using the standard,
well-known techniques for the implementation of the AES [19]. In addition, we also
wrote a very similar implementation in x86 assembly using the MMX instruction



IMPLEMENTATION ASPECTS 205

set as a source of eight extra registers. This reduces the register pressure, and
shows a considerable improvement in performance in our test results. Finally, we
developed a bitsliced implementation of Lane, inspired by the work of Matsui et al.
on the AES [37,39]. Details on this implementation are given in Sect. 5.1.1.

We measured the performance of our implementations, using three different
software suites: Microsoft Visual Studio, GNU GCC and the Intel C compiler.
Details on our test hardware and these three software are given in Table 10. We
tested both short, 64 byte messages and long, 32 kilobyte messages, and normalised
the cycle count by dividing it by the message length, i.e., we use ‘cycles per
byte’ (cpb) as a performance metric. The measurement results are presented
in Table 11. As the performance of Lane-224 and Lane-384 are identical to
Lane-256 and Lane-512, respectively, we only give data for the latter two. Also,
our two assembly implementations currently only support Lane-256, hence no
data on Lane-512 is given for these implementations.

We note that apparently, the choice of the compiler has a large impact on the
performance. The Intel C compiler (ICC) achieves a speed which is very close to
that of our MMX assembly implementation. We expect that further improvements
can be made to these implementations. As several highly advanced, very fast AES
implementations exist, e.g., the very recent work by Bernstein and Schwabe [9],
we expect that (much) faster implementations of Lane can be made using these
techniques.

5.1.1 Bitsliced Implementation

Similarly to the AES block cipher, the C implementation of Lane relies
heavily on table lookups. Several authors have demonstrated side-channel
attacks against such software implementations of AES, using cache-timing
analysis to gather information on these data-dependent table lookups [7, 49].
While side-channel attacks are not relevant for hash functions in their most
straightforward application, they become a potential threat once the hash
function is used to process secret values such as the message authentication
key in an HMAC construction [47]. Thus, we provide an alternative proof-of-
concept implementation of Lane-256 that is constant-time and consequently not
vulnerable to cache-timing attacks.

A Cache-Timing Resistant Implementation of Lane-256. The constant-time
implementation of Lane-256 uses bitslicing to implement the AES S-box. That
is, instead of using table look-ups, we compute the S-box output on-the-fly, using
its representation as a concatenation of eight 8-to-1-bit Boolean functions. Such
a bitsliced implementation of the AES S-box was first proposed by Matsui [37].
Later, Matsui and Nakajima [39] reported a particularly efficient implementation
of bitsliced AES on the Intel Core 2 Duo processors, achieving speeds of up to
10.2 cycles per byte in modes of operation where sufficient parallelism is possible,



206 THE LANE HASH FUNCTION

Table 10 – Test platform for the software implementations of Lane.

Common hardware platform

CPU Intel(R) Core(TM) 2 Duo T8100 2.1 GHz
(supports MMX, SSE, SSE2, SSSE3, SSE4.1)
3072 KB cache memory

Memory 1024 MB

Software platform 1: GNU (64-bit)

Operating System Ubuntu Linux 8.04 x86_64
Compiler GNU C compiler (GCC) version 4.2.3
Compiler flags -O3 -fomit-frame-pointer

Assembler GNU MMX assembler (GAS) version 2.18.0

Software platform 2: Microsoft (32-bit)

Operating System Microsoft Windows XP professional SP2
Compiler Microsoft Visual Studio 2008 Version 9.0.21022.8 RTM
Compiler flags /O2

Software platform 3: Intel (64-bit)

Operating System Ubuntu Linux x86_64
Compiler Intel C compiler (ICC) 10.1 20080801
Compiler flags -O3

Table 11 – Performance measurement results of our Lane

implementations. The test platform, and the three software suites
we used, are described in Table 10.

Implementation Platform 64 byte message 32 kbyte message

Optimised ANSI-C
implementation of
Lane-256

GNU (1) 130.67 cpb 43.02 cpb
Microsoft (2) 104.75 cpb 40.46 cpb

Intel (3) 79.78 cpb 26.17 cpb

MMX Assembly
implementation of
Lane-256

GNU (1) 79.84 cpb 25.66 cpb

Bitsliced implemen-
tation of Lane-256

GNU (1) 87.19 cpb 30.20 cpb

Optimised ANSI-C
implementation of
Lane-512

GNU (1) 1069.97 cpb 176.97 cpb
Microsoft (2) 923.11 cpb 152.24 cpb

Intel (3) 864.46 cpb 145.31 cpb



IMPLEMENTATION ASPECTS 207

Table 12 – Number of XMM instructions in one Lane round.

SubBytes 205
ShiftRows 8
MixColumns 43
AddConstants 8
AddCounter 8
SwapColumns 72

Total 344

such as the counter mode. Similarly, the parallelism available in Lane allows for
an efficient bitsliced implementation.

Our implementation uses eight 128-bit XMM registers to store part of the
Lane-256 state, one register for each bit position in a Lane state. That is,
we collect in the first register bits from the least significant bit position in each
Lane-256 byte, in the second register bits from the second bit position, and so
forth. In order to fill the 128-bit XMM registers and fully utilise their width,
we need to be able to process 128 bytes of state in parallel. At first glance,
Lane-256 does not lend to such optimal parallelism: the six parallel P -lanes
contain altogether 192 bytes, whereas the two Q-lanes in the second, sequential
layer contain only 64 bytes. However, we observe that lanes P4 and P5 are
independent of the chaining value and thus can be processed before the actual
chaining value is known. This observation allows us to process the Lane-256 state
in two parts of 128 bytes each. Namely, during each compression function call, we
first process the Q-lanes of the previous call together with lanes P4 and P5. The
output of the Q-lanes then provides us with the chaining value required to process
lanes P0, P1, P2, P3.

Performance. We have implemented the compression function of Lane-256 in a
bitsliced manner, using GNU assembly. Table 12 lists the number of instructions
required in one Lane round. In addition to the compression function, our
implementation contains bitslicing for input messages, and inverse bitslicing for
the hash output, so that the bitsliced implementation is fully compatible with
the standard implementation. Notice that apart from the input message, also
the counter needs to be bitsliced on the fly for each compression function call,
introducing an overhead compared to an AES implementation.

Including format conversion overhead for input, output and counters, the
bitsliced implementation achieves a speed of 30.2 cycles per byte on our test
platform (see Table 10 for platform details). We conclude that at least on 64-
bit platforms, it is possible to implement Lane in a cache-timing resistant manner
without a significant penalty in performance.



208 THE LANE HASH FUNCTION

5.1.2 Intel AES-NI Instruction Set

In a white paper [28], Intel has announced AES-NI, a new set of instructions that
are going to be introduced in the next generation of Intel processors, as of 2009.
The AES-NI extension consists of six instructions that will provide full hardware
support for the AES block cipher [19,45].

As Lane reuses rounds of the AES as components, the Intel AES-NI instruction
can also be used to create a fast implementation of Lane. Lane only uses full
AES rounds in the encryption direction, hence only one of the six new instructions,
AESENC, is required to implement Lane.

The AESENC instruction consists of the ShiftRows, SubBytes, MixColumns
and AddRoundKey operations. The AddRoundKey operation in the AES is
functionally equivalent to AddConstants in Lane. Other operations used in
Lane can be implemented using instructions from the SSE/SSE2 instruction
set. The message expansion and AddCounter can be implemented using the
PXOR instruction, and either SHUFPD or SHUFPS can be used to implement
SwapColumns, depending on the Lane variant.

As the underlying hardware that implements the AESENC instruction is fully
pipelined [28], a new AES round can be started each clock cycle, provided that
there are no data dependencies. The latency of the AESENC instruction is
6 cycles [28], which implies that six parallel AES rounds suffice to keep the pipeline
filled. Lane offers ample opportunities for parallel AES rounds. In the first layer,
there are 12 independent AESENC instructions in each round. In the second
layer, there are only four parallel AES rounds. But, by scheduling the second
layer of one compression function call in parallel with the P4 and P5 lanes of the
next compression function call, as explained in Sect. 5.1.1, the parallelism can be
balanced out more evenly.

As processors supporting the AES-NI instruction set are not yet available on
the market, we can only estimate the performance of Lane on such a machine. For
a parallel mode of AES, a throughput of about 12 cycles per block, or 1.2 cycles
per AES round is claimed [28]. Counting only the AES rounds in a Lane-256
compression function call would yield a performance of 84·1.2/64 = 1.575 cycles per
byte for Lane-256. But as other components of the Lane compression function,
which are negligible in other implementations, can likely no longer be ignored, a
performance of around 5 cycles per byte seems more reasonable. Still, this shows
that Lane has the potential to achieve a very high performance on platforms that
offer a fast, hardware accelerated way to compute AES encryptions.

5.2 Embedded Systems with an 8-bit CPU

As Lane is based on rounds of the AES block cipher, its performance on 8-bit
CPU’s can be estimated based on the existing literature on the implementation
of the AES on these platforms. Rinne et al. [51] present an implementation of
the AES on an 8-bit AVR microcontroller, inspired by the 8-bit AES code of



IMPLEMENTATION ASPECTS 209

Gladman [26]. Their implementation has a code size (ROM size) of 3410 bytes,
and is able to do an AES encryption in 3766 CPU cycles.

The message expansion of Lane-256 can be implemented using 288 8-bit
XOR operations. An 8-bit XOR operation typically takes a single CPU cycle
on these CPU’s, hence the message expansion costs about 288 CPU cycles. An
AES encryption consists of ten rounds, so the cost of a single AES round can be
estimated at 377 CPU cycles. One Lane-256 compression function call contains
84 AES rounds, yielding a total of 31 668 CPU cycles. The AddCounter operation
consists of four 8-bit XOR’s, and is used 34 times per compression function call

— 136 CPU cycles in total. Finally, the computation of the constants needs to be
counted. A single step of the LFSR can be implemented in 8 CPU cycles, and it
needs to be carried out 272 times, resulting in a cost of 2176 CPU cycles. Adding
these components gives a total cost of 34 268 CPU cycles.

Based on this rough estimate, we can expect a real implementation of Lane-256
on this 8-bit platform to require about 35 000 CPU cycles per compression function.
This corresponds to an expected performance of roughly 550 cycles per byte. As
most of the program code will be the same as for an AES implementation, we
expect that an implementation of Lane-256 should fit in less than 5 kilobytes of
ROM.

The amount of RAM required by a Lane-256 implementation on a resource-
constrained system can be estimated as follows.

• 768 bits of read/write memory to store the input chaining value Hi, and for
intermediate storage. Note that it is possible to reuse the memory used for
storing Hi after the fourth lane of the first layer has been started, because
the last two lanes are independent of Hi. This trick allows to save 256 bits
of memory.

• 512 bits to store the message block. Note that the message expansion
does not need to modify this memory, so it could be shared with another
application, e.g., a transmit or receive buffer.

• 64 bits for the counter.

• (optionally) 256 bits to store the salt value.

• 32 bits for computing the constants on-the-fly.

For example, a Lane-256 implementation not using salts requires 172 bytes of
RAM, of which the 64 bytes containing the current message block can be shared.

Tillich et al. [57] propose to add a small hardware accelerator of only 1.1 kGates
to an AVR microcontroller, which increases the performance of an AES encryption
by a factor 3.6 compared to the pure software implementation of [51]. Of course,
such techniques will also greatly benefit the performance of Lane. It is even more
interesting for embedded systems requiring both a hash function and a block cipher.
When using Lane and the AES, a single investment in additional hardware can
be used both for faster hashing and faster encryption.



210 THE LANE HASH FUNCTION

Table 13 – Hardware evaluation of the Lane hash function.

Design Area Frequency # of Throughput
[GE] [MHz] Cycles [Mbps]

Lane-224/Lane-256† 16 462 100 2201 23.3
Lane-224/Lane-256‡ 243 486 305 11 14 191
Lane-384/Lane-512‡ 466 190 286 14 20 958

† Compact implementation.
‡ High-throughput implementations.

5.3 Hardware Implementation

The hardware performance evaluation of the Lane hash function was done by
synthesising the proposed designs using 0.13µm CMOS standard cell library. The
code was first written in GEZEL [54], then compiled to VHDL and synthesised
using the Synopsys Design Vision tool [56]. The synthesis results are given in
Table 13.

As the ample parallelism provided by Lane allows for much flexibility in high-
throughput implementations, our main goal was to show that Lane can achieve
a very high throughput at the cost of consumed gate area. Additionally, by
implementing a compact version, we have also shown that the same algorithm
can be used in more constrained environments where the available gate area is a
limiting factor.

The target for the high-throughput implementations was to minimise the
critical path of the design. To perform the first layer of permutations, we used
6 permutation blocks in parallel where each of them contained 2 full AES engines
(4 for Lane-384 and Lane-512). The two permutations from the first layer were
also reused for the second layer.

The straightforward implementation of Lane-224/Lane-256 resulted in the
critical path of 5.60 ns and the cycle count of 9. The critical path was placed
from the input of the message injection function, going along the permutation
block and ending at the input of the second layer of permutation. As the message
injection function was performed only once per input message block, we moved
the state registers at the input of the permutation blocks. This approach resulted
in the faster design, shortening the critical path to 4.28 ns. One more clock cycle
had to be spent in order to perform the complete round, but the final throughput
increased by about 20 %. The critical path was now placed along the permutation
block and also contained the 3-input XOR gate at the output of the first layer
permutations. By storing the output of the first layer back to the state registers
and then performing an XOR operation, we introduced one more clock cycle and
reduced the critical path down to only 3.28 ns (3.49 ns for Lane-384/Lane-512).



IMPLEMENTATION ASPECTS 211

The final design achieved a high throughput of 14.2 Gbps and 21.0 Gbps for
Lane-224/Lane-256 and Lane-384/Lane-512, respectively.

As can be seen from Table 13, the most compact implementation is obtained
for Lane-224/Lane-256 algorithm and consumes approximately 16.5 kGE. The
major part of the compact design is consumed by the message expansion, though
it is performed only once per input message block. Hence, we also evaluated
the circuit size assuming that the message expansion is performed outside of the
hash engine. This resulted in a smaller design with a gate area of only 11.7 kGE.
The compact implementation was made using only one permutation block. Inside
the permutation we used a single compact AES S-box [40] and a single AES
MixColumns block. This approach resulted in a large number of cycles (2201),
while on the other hand it efficiently reduced the final gate count. We used three
256-bit registers to maintain the internal state. Note that our only goal for the
compact implementation was to have a small die size, regardless of the circuit
speed. Hence, we fixed the frequency to 100 MHz and synthesised our design.

The throughput was calculated according to the following equations:

Throughput256/224 =
Frequency

# of Cycles
× 512 , (50)

Throughput512/384 =
Frequency

# of Cycles
× 1024 . (51)

Our hardware performance figures show that the Lane cryptographic hash
functions can be implemented very efficiently and provide very high throughputs,
up to 21 Gbps. On the other hand, the compact implementation shows that, at the
cost of speed, the Lane hash functions can be considered as a good candidate for
constrained environments. We believe that in the future faster and more compact
Lane designs will be announced. By exploring different levels of parallelism, one
can make a number of trade-offs and choose the appropriate application-driven
implementation. Compact implementation of hash functions remains a challenging
task in general and hence, we expect more research effort in this direction.

Acknowledgements

I would like to thank Elena Andreeva, Christophe De Cannière, Orr Dunkelman,
Emilia Käsper, Svetla Nikova, Bart Preneel, Vincent Rĳmen and Elmar
Tischhauser for many interesting discussions concerning the design of Lane and
its predecessors, and for their continued effort on the cryptanalysis of both older
and the final version of Lane. Their findings, comments and suggestions for
improvements were invaluable in the design process.

I extend my gratitude to Antoon Bosselaers, Emilia Käsper, Miroslav Knežević,
Nicky Mouha and Vesselin Velichkov for their work on several implementations of
Lane, and for giving useful feedback from the implementor’s point of view.



212 THE LANE HASH FUNCTION

Additional thanks go to all of the people mentioned above, for their
contributions to the writing and proofreading of this document. Finally, thanks
to everyone in the COSIC research group for their support.

Sebastiaan Indesteege
October 2008

Sebastiaan Indesteege is supported by the Fund for Scientific Research Flanders
(Aspirant F.W.O. Vlaanderen). This work was also supported in part by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in
part by the Interdisciplinary Institute for BroadBand Technology (IBBT), and in
part by the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT.

References

[1] E. Andreeva. On lane modes of operation. Technical report, COSIC, 2008.

[2] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir,
and S. Zimmer. Second preimage attacks on dithered hash functions. In N. P.
Smart, editor, Advances in Cryptology — EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 270–288. Springer, 2008.

[3] K. Aoki and H. Lipmaa. Fast implementations of AES candidates. In Third
AES Candidate Conference, pages 106–120. National Institute of Standards
and Technology, 2000.

[4] G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison
between XL and Gröbner basis algorithms. In P. J. Lee, editor, Advances in
Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer
Science, pages 338–353. Springer, 2004.

[5] T. Becker and V. Weispfenning. Gröbner bases: A computational approach to
commutative algebra, volume 141 of Graduate Texts in Mathematics. Springer,
1993.

[6] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited:
The cascade construction and its concrete security. In 37th Symposium
on Foundations of Computer Science (FOCS 1996), pages 514–523. IEEE
Computer Society, 2002.

[7] D. J. Bernstein. Cache-timing attacks on AES. Preprint, 2005. Available
online at http://cr.yp.to/papers.html#cachetiming.

http://cr.yp.to/papers.html#cachetiming


REFERENCES 213

[8] D. J. Bernstein. What output size resists collisions in a XOR of independent
expansions? In ECRYPT Hash Workshop. European Network of Excellence
in Cryptology ECRYPT, May 2007.

[9] D. J. Bernstein and P. Schwabe. New AES software speed records. In
D. R. Chowdhury, V. Rĳmen, and A. Das, editors, Progress in Cryptology
— INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2008.

[10] E. Biham and O. Dunkelman. A framework for iterative hash functions —
HAIFA. Second NIST Hash Workshop, 2006.

[11] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
In A. Menezes and S. A. Vanstone, editors, Advances in Cryptology —
CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 2–
21. Springer, 1990.

[12] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Mathematical Institute, University of Innsbruck, Austria, 1965.

[13] F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes
in Computer Science, pages 56–71. Springer, 1998.

[14] C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of the Advanced
Encryption Standard. Springer, 2006.

[15] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård
revisited: How to construct a hash function. In V. Shoup, editor, Advances
in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 430–448. Springer, 2005.

[16] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In
B. Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 392–407. Springer, 2000.

[17] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Y. Zheng, editor, Advances in Cryptology —
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
267–287. Springer, 2002.

[18] J. Daemen, L. R. Knudsen, and V. Rĳmen. The block cipher Square. In
E. Biham, editor, Fast Software Encryption, 4th International Workshop —
FSE ’97, volume 1267 of Lecture Notes in Computer Science, pages 149–165.
Springer, 1997.



214 THE LANE HASH FUNCTION

[19] J. Daemen and V. Rĳmen. The design of Rĳndael: AES — the Advanced
Encryption Standard. Springer, 2002.

[20] I. Damgård. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer, 1990.

[21] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, Jan. 1999.

[22] H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast Software
Encryption, Third International Workshop — FSE ’96, volume 1039 of
Lecture Notes in Computer Science, pages 53–69. Springer, 1996.

[23] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139:61–88, 1999.

[24] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In T. Mora, editor, International Symposium on
Symbolic and Algebraic Computation (ISAAC 2002), pages 75–83. ACM Press,
2002.

[25] P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of tweaked versions of
SMASH and reparation. In R. M. Avanzi, L. Keliher, and F. Sica, editors,
Selected Areas in Cryptography — SAC 2008, volume 5381 of Lecture Notes
in Computer Science, pages 136–150. Springer, 2009.

[26] B. Gladman. Byte oriented AES implementation. Available online at http://
www.gladman.me.uk/.

[27] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized
hashing. In C. Dwork, editor, Advances in Cryptology — CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 41–59. Springer,
2006.

[28] Intel Corporation. Advanced encryption standard (AES) instructions set.
White paper, July 2008. Available online at http://softwarecommunity.

intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf.

[29] A. Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In M. K. Franklin, editor, Advances in Cryptology —
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
306–316. Springer, 2004.

[30] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In R. Cramer, editor, Advances in Cryptology —
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 474–490. Springer, 2005.

http://www.gladman.me.uk/
http://www.gladman.me.uk/
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf


REFERENCES 215

[31] L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor,
Fast Software Encryption, Second International Workshop — FSE ’94, volume
1008 of Lecture Notes in Computer Science, pages 196–211. Springer, 1994.

[32] L. R. Knudsen and D. Wagner. Integral cryptanalysis. In J. Daemen and
V. Rĳmen, editors, Fast Software Encryption, 9th International Workshop —
FSE 2002, volume 2365 of Lecture Notes in Computer Science, pages 112–127.
Springer, 2002.

[33] X. Lai. Higher order derivatives and differential cryptanalysis. Proc.
Symposium on Communication, Coding and Cryptography, in honor of James
L. Massey on the occasion of his 60’th birthday, Feb. 10-13, 1994, Monte-
Verita, Ascona, Switzerland, 1994.

[34] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and differential
cryptanalysis. In D. W. Davies, editor, Advances in Cryptology —
EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages
17–38. Springer, 1991.

[35] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, revised edition, 1994.

[36] S. Lucks. The saturation attack — a bait for Twofish. In M. Matsui, editor,
Fast Software Encryption, 8th International Workshop — FSE 2001, volume
2355 of Lecture Notes in Computer Science, pages 1–15. Springer, 2002.

[37] M. Matsui. How far can we go on the x64 processors? In M. J. B. Robshaw,
editor, Fast Software Encryption, 13th International Workshop — FSE 2006,
volume 4047 of Lecture Notes in Computer Science, pages 341–358. Springer,
2006.

[38] M. Matsui and S. Fukuda. How to maximize software performance of
symmetric primitives on Pentium III and 4 processors. In H. Gilbert
and H. Handschuh, editors, Fast Software Encryption, 12th International
Workshop — FSE 2005, volume 3557 of Lecture Notes in Computer Science,
pages 398–412. Springer, 2005.

[39] M. Matsui and J. Nakajima. On the power of bitslice implementation on Intel
Core2 processor. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems — CHES 2007, volume 4727 of Lecture
Notes in Computer Science, pages 121–134. Springer, 2007.

[40] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. A systematic
evaluation of compact hardware implementations for the Rĳndael S-Box. In
A. Menezes, editor, Topics in Cryptology — CT-RSA 2005, volume 3376 of
Lecture Notes in Computer Science, pages 323–333. Springer, 2005.



216 THE LANE HASH FUNCTION

[41] R. C. Merkle. One way hash functions and DES. In G. Brassard, editor,
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 428–446. Springer, 1990.

[42] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions
are not collision free. In I. Damgård, editor, Advances in Cryptology —
EUROCRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages
326–343. Springer, 1991.

[43] J. Nakahara Jr., D. S. de Freitas, and R. C.-W. Phan. New multiset attacks on
Rĳndael with large blocks. In E. Dawson and S. Vaudenay, editors, Progress in
Cryptology — MYCRYPT 2005, volume 3715 of Lecture Notes in Computer
Science, pages 277–295. Springer, 2005.

[44] J. Nakahara Jr. and I. C. Pavão. Impossible-differential attacks on large-block
Rĳndael. In J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta, editors,
Information Security 10th International Conference — ISC 2007, volume 4779
of Lecture Notes in Computer Science, pages 104–117. Springer, 2007.

[45] National Institute of Standards and Technology. Specification for the
Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, 2001.

[46] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[47] National Institute of Standards and Technology. The keyed-hash message
authentication code (HMAC). Federal Information Processing Standards
Publication 198-1, 2008.

[48] National Institute of Standards and Technology. Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-3, Oct. 2008.

[49] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
The case of AES. In D. Pointcheval, editor, Topics in Cryptology — CT-
RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2006.

[50] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In D. R. Stinson, editor, Advances
in Cryptology — CRYPTO ’93, volume 773 of Lecture Notes in Computer
Science, pages 368–378. Springer, 1994.

[51] S. Rinne, T. Eisenbarth, and C. Paar. Performance analysis of contemporary
light-weight block ciphers on 8-bit microcontrollers. In SPEED – Software
Performance Enhancement for Encryption and Decryption. European
Network of Excellence in Cryptology ECRYPT, June 2007.



THE CONSTANTS USED IN Lane 217

[52] P. Rogaway. Formalizing human ignorance. In P. Q. Nguyen, editor,
Progress in Cryptology — VIETCRYPT 2006, volume 4341 of Lecture Notes
in Computer Science, pages 211–228. Springer, 2006.

[53] P. Rogaway and J. P. Steinberger. Security/efficiency tradeoffs for
permutation-based hashing. In N. P. Smart, editor, Advances in Cryptology
— EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 220–236. Springer, 2008.

[54] P. Schaumont. The GEZEL development environment. http://rijndael.

ece.vt.edu/gezel2.

[55] B. Schneier and D. Whiting. A performance comparison of the five AES
finalists. In Third AES Candidate Conference, pages 123–135. National
Institute of Standards and Technology, 2000.

[56] Synopsys Design Vision. http://www.synopsys.com/.

[57] S. Tillich and C. Herbst. Boosting AES performance on a tiny processor core.
In T. Malkin, editor, Topics in Cryptology — CT-RSA 2008, volume 4964 of
Lecture Notes in Computer Science, pages 170–186. Springer, 2008.

[58] D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances
in Cryptology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 288–303. Springer, 2002.

[59] R. Weiss and N. L. Binkert. A comparison of AES candidates on the Alpha
21264. In Third AES Candidate Conference, pages 75–81. National Institute
of Standards and Technology, 2000.

[60] J. Worley, B. Worley, T. Christian, and C. Worley. AES finalists on PA-RISC
and IA-64: Implementations & performance. In Third AES Candidate
Conference, pages 57–74. National Institute of Standards and Technology,
2000.

A The Constants Used in Lane

Table 14 contains the precomputed values of the constants used in Lane.

Table 14 – The constants used in Lane.

k0 = 07fc703dx, k1 = d3fe381fx, k2 = b9ff1c0ex, k3 = 5cff8e07x,

k4 = fe7fc702x, k5 = 7f3fe381x, k6 = ef9ff1c1x, k7 = a7cff8e1x,

k8 = 83e7fc71x, k9 = 91f3fe39x, k10 = 98f9ff1dx, k11 = 9c7cff8fx,

k12 = 9e3e7fc6x, k13 = 4f1f3fe3x, k14 = f78f9ff0x, k15 = 7bc7cff8x,

k16 = 3de3e7fcx, k17 = 1ef1f3fex, k18 = 0f78f9ffx, k19 = d7bc7cfex,

k20 = 6bde3e7fx, k21 = e5ef1f3ex, k22 = 72f78f9fx, k23 = e97bc7cex,

k24 = 74bde3e7x, k25 = ea5ef1f2x, k26 = 752f78f9x, k27 = ea97bc7dx,

http://rijndael.ece.vt.edu/gezel2
http://rijndael.ece.vt.edu/gezel2
http://www.synopsys.com/


218 THE LANE HASH FUNCTION

Table 14 – The constants used in Lane. (continued)

k28 = a54bde3fx, k29 = 82a5ef1ex, k30 = 4152f78fx, k31 = f0a97bc6x,

k32 = 7854bde3x, k33 = ec2a5ef0x, k34 = 76152f78x, k35 = 3b0a97bcx,

k36 = 1d854bdex, k37 = 0ec2a5efx, k38 = d76152f6x, k39 = 6bb0a97bx,

k40 = e5d854bcx, k41 = 72ec2a5ex, k42 = 3976152fx, k43 = ccbb0a96x,

k44 = 665d854bx, k45 = e32ec2a4x, k46 = 71976152x, k47 = 38cbb0a9x,

k48 = cc65d855x, k49 = b632ec2bx, k50 = 8b197614x, k51 = 458cbb0ax,

k52 = 22c65d85x, k53 = c1632ec3x, k54 = b0b19760x, k55 = 5858cbb0x,

k56 = 2c2c65d8x, k57 = 161632ecx, k58 = 0b0b1976x, k59 = 05858cbbx,

k60 = d2c2c65cx, k61 = 6961632ex, k62 = 34b0b197x, k63 = ca5858cax,

k64 = 652c2c65x, k65 = e2961633x, k66 = a14b0b18x, k67 = 50a5858cx,

k68 = 2852c2c6x, k69 = 14296163x, k70 = da14b0b0x, k71 = 6d0a5858x,

k72 = 36852c2cx, k73 = 1b429616x, k74 = 0da14b0bx, k75 = d6d0a584x,

k76 = 6b6852c2x, k77 = 35b42961x, k78 = cada14b1x, k79 = b56d0a59x,

k80 = 8ab6852dx, k81 = 955b4297x, k82 = 9aada14ax, k83 = 4d56d0a5x,

k84 = f6ab6853x, k85 = ab55b428x, k86 = 55aada14x, k87 = 2ad56d0ax,

k88 = 156ab685x, k89 = dab55b43x, k90 = bd5aada0x, k91 = 5ead56d0x,

k92 = 2f56ab68x, k93 = 17ab55b4x, k94 = 0bd5aadax, k95 = 05ead56dx,

k96 = d2f56ab7x, k97 = b97ab55ax, k98 = 5cbd5aadx, k99 = fe5ead57x,

k100 = af2f56aax, k101 = 5797ab55x, k102 = fbcbd5abx, k103 = ade5ead4x,

k104 = 56f2f56ax, k105 = 2b797ab5x, k106 = c5bcbd5bx, k107 = b2de5eacx,

k108 = 596f2f56x, k109 = 2cb797abx, k110 = c65bcbd4x, k111 = 632de5eax,

k112 = 3196f2f5x, k113 = c8cb797bx, k114 = b465bcbcx, k115 = 5a32de5ex,

k116 = 2d196f2fx, k117 = c68cb796x, k118 = 63465bcbx, k119 = e1a32de4x,

k120 = 70d196f2x, k121 = 3868cb79x, k122 = cc3465bdx, k123 = b61a32dfx,

k124 = 8b0d196ex, k125 = 45868cb7x, k126 = f2c3465ax, k127 = 7961a32dx,

k128 = ecb0d197x, k129 = a65868cax, k130 = 532c3465x, k131 = f9961a33x,

k132 = accb0d18x, k133 = 5665868cx, k134 = 2b32c346x, k135 = 159961a3x,

k136 = daccb0d0x, k137 = 6d665868x, k138 = 36b32c34x, k139 = 1b59961ax,

k140 = 0daccb0dx, k141 = d6d66587x, k142 = bb6b32c2x, k143 = 5db59961x,

k144 = fedaccb1x, k145 = af6d6659x, k146 = 87b6b32dx, k147 = 93db5997x,

k148 = 99edaccax, k149 = 4cf6d665x, k150 = f67b6b33x, k151 = ab3db598x,

k152 = 559edaccx, k153 = 2acf6d66x, k154 = 1567b6b3x, k155 = dab3db58x,

k156 = 6d59edacx, k157 = 36acf6d6x, k158 = 1b567b6bx, k159 = ddab3db4x,

k160 = 6ed59edax, k161 = 376acf6dx, k162 = cbb567b7x, k163 = b5dab3dax,

k164 = 5aed59edx, k165 = fd76acf7x, k166 = aebb567ax, k167 = 575dab3dx,

k168 = fbaed59fx, k169 = add76acex, k170 = 56ebb567x, k171 = fb75dab2x,

k172 = 7dbaed59x, k173 = eedd76adx, k174 = a76ebb57x, k175 = 83b75daax,

k176 = 41dbaed5x, k177 = f0edd76bx, k178 = a876ebb4x, k179 = 543b75dax,

k180 = 2a1dbaedx, k181 = c50edd77x, k182 = b2876ebax, k183 = 5943b75dx,

k184 = fca1dbafx, k185 = ae50edd6x, k186 = 572876ebx, k187 = fb943b74x,

k188 = 7dca1dbax, k189 = 3ee50eddx, k190 = cf72876fx, k191 = b7b943b6x,

k192 = 5bdca1dbx, k193 = fdee50ecx, k194 = 7ef72876x, k195 = 3f7b943bx,

k196 = cfbdca1cx, k197 = 67dee50ex, k198 = 33ef7287x, k199 = c9f7b942x,

k200 = 64fbdca1x, k201 = e27dee51x, k202 = a13ef729x, k203 = 809f7b95x,

k204 = 904fbdcbx, k205 = 9827dee4x, k206 = 4c13ef72x, k207 = 2609f7b9x,

k208 = c304fbddx, k209 = b1827defx, k210 = 88c13ef6x, k211 = 44609f7bx,

k212 = f2304fbcx, k213 = 791827dex, k214 = 3c8c13efx, k215 = ce4609f6x,

k216 = 672304fbx, k217 = e391827cx, k218 = 71c8c13ex, k219 = 38e4609fx,

k220 = cc72304ex, k221 = 66391827x, k222 = e31c8c12x, k223 = 718e4609x,

k224 = e8c72305x, k225 = a4639183x, k226 = 8231c8c0x, k227 = 4118e460x,

k228 = 208c7230x, k229 = 10463918x, k230 = 08231c8cx, k231 = 04118e46x,

k232 = 0208c723x, k233 = d1046390x, k234 = 688231c8x, k235 = 344118e4x,

k236 = 1a208c72x, k237 = 0d104639x, k238 = d688231dx, k239 = bb44118fx,

k240 = 8da208c6x, k241 = 46d10463x, k242 = f3688230x, k243 = 79b44118x,

k244 = 3cda208cx, k245 = 1e6d1046x, k246 = 0f368823x, k247 = d79b4410x,

k248 = 6bcda208x, k249 = 35e6d104x, k250 = 1af36882x, k251 = 0d79b441x,

k252 = d6bcda21x, k253 = bb5e6d11x, k254 = 8daf3689x, k255 = 96d79b45x,

k256 = 9b6bcda3x, k257 = 9db5e6d0x, k258 = 4edaf368x, k259 = 276d79b4x,

k260 = 13b6bcdax, k261 = 09db5e6dx, k262 = d4edaf37x, k263 = ba76d79ax,

k264 = 5d3b6bcdx, k265 = fe9db5e7x, k266 = af4edaf2x, k267 = 57a76d79x,

k268 = fbd3b6bdx, k269 = ade9db5fx, k270 = 86f4edaex, k271 = 437a76d7x,

k272 = f1bd3b6ax, k273 = 78de9db5x, k274 = ec6f4edbx, k275 = a637a76cx,



THE CONSTANTS USED IN Lane 219

Table 14 – The constants used in Lane. (continued)

k276 = 531bd3b6x, k277 = 298de9dbx, k278 = c4c6f4ecx, k279 = 62637a76x,

k280 = 3131bd3bx, k281 = c898de9cx, k282 = 644c6f4ex, k283 = 322637a7x,

k284 = c9131bd2x, k285 = 64898de9x, k286 = e244c6f5x, k287 = a122637bx,

k288 = 809131bcx, k289 = 404898dex, k290 = 20244c6fx, k291 = c0122636x,

k292 = 6009131bx, k293 = e004898cx, k294 = 700244c6x, k295 = 38012263x,

k296 = cc009130x, k297 = 66004898x, k298 = 3300244cx, k299 = 19801226x,

k300 = 0cc00913x, k301 = d6600488x, k302 = 6b300244x, k303 = 35980122x,

k304 = 1acc0091x, k305 = dd660049x, k306 = beb30025x, k307 = 8f598013x,

k308 = 97acc008x, k309 = 4bd66004x, k310 = 25eb3002x, k311 = 12f59801x,

k312 = d97acc01x, k313 = bcbd6601x, k314 = 8e5eb301x, k315 = 972f5981x,

k316 = 9b97acc1x, k317 = 9dcbd661x, k318 = 9ee5eb31x, k319 = 9f72f599x,

k320 = 9fb97acdx, k321 = 9fdcbd67x, k322 = 9fee5eb2x, k323 = 4ff72f59x,

k324 = f7fb97adx, k325 = abfdcbd7x, k326 = 85fee5eax, k327 = 42ff72f5x,

k328 = f17fb97bx, k329 = a8bfdcbcx, k330 = 545fee5ex, k331 = 2a2ff72fx,

k332 = c517fb96x, k333 = 628bfdcbx, k334 = e145fee4x, k335 = 70a2ff72x,

k336 = 38517fb9x, k337 = cc28bfddx, k338 = b6145fefx, k339 = 8b0a2ff6x,

k340 = 458517fbx, k341 = f2c28bfcx, k342 = 796145fex, k343 = 3cb0a2ffx,

k344 = ce58517ex, k345 = 672c28bfx, k346 = e396145ex, k347 = 71cb0a2fx,

k348 = e8e58516x, k349 = 7472c28bx, k350 = ea396144x, k351 = 751cb0a2x,

k352 = 3a8e5851x, k353 = cd472c29x, k354 = b6a39615x, k355 = 8b51cb0bx,

k356 = 95a8e584x, k357 = 4ad472c2x, k358 = 256a3961x, k359 = c2b51cb1x,

k360 = b15a8e59x, k361 = 88ad472dx, k362 = 9456a397x, k363 = 9a2b51cax,

k364 = 4d15a8e5x, k365 = f68ad473x, k366 = ab456a38x, k367 = 55a2b51cx,

k368 = 2ad15a8ex, k369 = 1568ad47x, k370 = dab456a2x, k371 = 6d5a2b51x,

k372 = e6ad15a9x, k373 = a3568ad5x, k374 = 81ab456bx, k375 = 90d5a2b4x,

k376 = 486ad15ax, k377 = 243568adx, k378 = c21ab457x, k379 = b10d5a2ax,

k380 = 5886ad15x, k381 = fc43568bx, k382 = ae21ab44x, k383 = 5710d5a2x,

k384 = 2b886ad1x, k385 = c5c43569x, k386 = b2e21ab5x, k387 = 89710d5bx,

k388 = 94b886acx, k389 = 4a5c4356x, k390 = 252e21abx, k391 = c29710d4x,

k392 = 614b886ax, k393 = 30a5c435x, k394 = c852e21bx, k395 = b429710cx,

k396 = 5a14b886x, k397 = 2d0a5c43x, k398 = c6852e20x, k399 = 63429710x,

k400 = 31a14b88x, k401 = 18d0a5c4x, k402 = 0c6852e2x, k403 = 06342971x,

k404 = d31a14b9x, k405 = b98d0a5dx, k406 = 8cc6852fx, k407 = 96634296x,

k408 = 4b31a14bx, k409 = f598d0a4x, k410 = 7acc6852x, k411 = 3d663429x,

k412 = ceb31a15x, k413 = b7598d0bx, k414 = 8bacc684x, k415 = 45d66342x,

k416 = 22eb31a1x, k417 = c17598d1x, k418 = b0bacc69x, k419 = 885d6635x,

k420 = 942eb31bx, k421 = 9a17598cx, k422 = 4d0bacc6x, k423 = 2685d663x,

k424 = c342eb30x, k425 = 61a17598x, k426 = 30d0baccx, k427 = 18685d66x,

k428 = 0c342eb3x, k429 = d61a1758x, k430 = 6b0d0bacx, k431 = 358685d6x,

k432 = 1ac342ebx, k433 = dd61a174x, k434 = 6eb0d0bax, k435 = 3758685dx,

k436 = cbac342fx, k437 = b5d61a16x, k438 = 5aeb0d0bx, k439 = fd758684x,

k440 = 7ebac342x, k441 = 3f5d61a1x, k442 = cfaeb0d1x, k443 = b7d75869x,

k444 = 8bebac35x, k445 = 95f5d61bx, k446 = 9afaeb0cx, k447 = 4d7d7586x,

k448 = 26bebac3x, k449 = c35f5d60x, k450 = 61afaeb0x, k451 = 30d7d758x,

k452 = 186bebacx, k453 = 0c35f5d6x, k454 = 061afaebx, k455 = d30d7d74x,

k456 = 6986bebax, k457 = 34c35f5dx, k458 = ca61afafx, k459 = b530d7d6x,

k460 = 5a986bebx, k461 = fd4c35f4x, k462 = 7ea61afax, k463 = 3f530d7dx,

k464 = cfa986bfx, k465 = b7d4c35ex, k466 = 5bea61afx, k467 = fdf530d6x,

k468 = 7efa986bx, k469 = ef7d4c34x, k470 = 77bea61ax, k471 = 3bdf530dx,

k472 = cdefa987x, k473 = b6f7d4c2x, k474 = 5b7bea61x, k475 = fdbdf531x,

k476 = aedefa99x, k477 = 876f7d4dx, k478 = 93b7bea7x, k479 = 99dbdf52x,

k480 = 4cedefa9x, k481 = f676f7d5x, k482 = ab3b7bebx, k483 = 859dbdf4x,

k484 = 42cedefax, k485 = 21676f7dx, k486 = c0b3b7bfx, k487 = b059dbdex,

k488 = 582cedefx, k489 = fc1676f6x, k490 = 7e0b3b7bx, k491 = ef059dbcx,

k492 = 7782cedex, k493 = 3bc1676fx, k494 = cde0b3b6x, k495 = 66f059dbx,

k496 = e3782cecx, k497 = 71bc1676x, k498 = 38de0b3bx, k499 = cc6f059cx,

k500 = 663782cex, k501 = 331bc167x, k502 = c98de0b2x, k503 = 64c6f059x,

k504 = e263782dx, k505 = a131bc17x, k506 = 8098de0ax, k507 = 404c6f05x,

k508 = f0263783x, k509 = a8131bc0x, k510 = 54098de0x, k511 = 2a04c6f0x,

k512 = 15026378x, k513 = 0a8131bcx, k514 = 054098dex, k515 = 02a04c6fx,

k516 = d1502636x, k517 = 68a8131bx, k518 = e454098cx, k519 = 722a04c6x,

k520 = 39150263x, k521 = cc8a8130x, k522 = 66454098x, k523 = 3322a04cx,



220 THE LANE HASH FUNCTION

Table 14 – The constants used in Lane. (continued)

k524 = 19915026x, k525 = 0cc8a813x, k526 = d6645408x, k527 = 6b322a04x,

k528 = 35991502x, k529 = 1acc8a81x, k530 = dd664541x, k531 = beb322a1x,

k532 = 8f599151x, k533 = 97acc8a9x, k534 = 9bd66455x, k535 = 9deb322bx,

k536 = 9ef59914x, k537 = 4f7acc8ax, k538 = 27bd6645x, k539 = c3deb323x,

k540 = b1ef5990x, k541 = 58f7acc8x, k542 = 2c7bd664x, k543 = 163deb32x,

k544 = 0b1ef599x, k545 = d58f7acdx, k546 = bac7bd67x, k547 = 8d63deb2x,

k548 = 46b1ef59x, k549 = f358f7adx, k550 = a9ac7bd7x, k551 = 84d63deax,

k552 = 426b1ef5x, k553 = f1358f7bx, k554 = a89ac7bcx, k555 = 544d63dex,

k556 = 2a26b1efx, k557 = c51358f6x, k558 = 6289ac7bx, k559 = e144d63cx,

k560 = 70a26b1ex, k561 = 3851358fx, k562 = cc289ac6x, k563 = 66144d63x,

k564 = e30a26b0x, k565 = 71851358x, k566 = 38c289acx, k567 = 1c6144d6x,

k568 = 0e30a26bx, k569 = d7185134x, k570 = 6b8c289ax, k571 = 35c6144dx,

k572 = cae30a27x, k573 = b5718512x, k574 = 5ab8c289x, k575 = fd5c6145x,

k576 = aeae30a3x, k577 = 87571850x, k578 = 43ab8c28x, k579 = 21d5c614x,

k580 = 10eae30ax, k581 = 08757185x, k582 = d43ab8c3x, k583 = ba1d5c60x,

k584 = 5d0eae30x, k585 = 2e875718x, k586 = 1743ab8cx, k587 = 0ba1d5c6x,

k588 = 05d0eae3x, k589 = d2e87570x, k590 = 69743ab8x, k591 = 34ba1d5cx,

k592 = 1a5d0eaex, k593 = 0d2e8757x, k594 = d69743aax, k595 = 6b4ba1d5x,

k596 = e5a5d0ebx, k597 = a2d2e874x, k598 = 5169743ax, k599 = 28b4ba1dx,

k600 = c45a5d0fx, k601 = b22d2e86x, k602 = 59169743x, k603 = fc8b4ba0x,

k604 = 7e45a5d0x, k605 = 3f22d2e8x, k606 = 1f916974x, k607 = 0fc8b4bax,

k608 = 07e45a5dx, k609 = d3f22d2fx, k610 = b9f91696x, k611 = 5cfc8b4bx,

k612 = fe7e45a4x, k613 = 7f3f22d2x, k614 = 3f9f9169x, k615 = cfcfc8b5x,

k616 = b7e7e45bx, k617 = 8bf3f22cx, k618 = 45f9f916x, k619 = 22fcfc8bx,

k620 = c17e7e44x, k621 = 60bf3f22x, k622 = 305f9f91x, k623 = c82fcfc9x,

k624 = b417e7e5x, k625 = 8a0bf3f3x, k626 = 9505f9f8x, k627 = 4a82fcfcx,

k628 = 25417e7ex, k629 = 12a0bf3fx, k630 = d9505f9ex, k631 = 6ca82fcfx,

k632 = e65417e6x, k633 = 732a0bf3x, k634 = e99505f8x, k635 = 74ca82fcx,

k636 = 3a65417ex, k637 = 1d32a0bfx, k638 = de99505ex, k639 = 6f4ca82fx,

k640 = e7a65416x, k641 = 73d32a0bx, k642 = e9e99504x, k643 = 74f4ca82x,

k644 = 3a7a6541x, k645 = cd3d32a1x, k646 = b69e9951x, k647 = 8b4f4ca9x,

k648 = 95a7a655x, k649 = 9ad3d32bx, k650 = 9d69e994x, k651 = 4eb4f4cax,

k652 = 275a7a65x, k653 = c3ad3d33x, k654 = b1d69e98x, k655 = 58eb4f4cx,

k656 = 2c75a7a6x, k657 = 163ad3d3x, k658 = db1d69e8x, k659 = 6d8eb4f4x,

k660 = 36c75a7ax, k661 = 1b63ad3dx, k662 = ddb1d69fx, k663 = bed8eb4ex,

k664 = 5f6c75a7x, k665 = ffb63ad2x, k666 = 7fdb1d69x, k667 = efed8eb5x,

k668 = a7f6c75bx, k669 = 83fb63acx, k670 = 41fdb1d6x, k671 = 20fed8ebx,

k672 = c07f6c74x, k673 = 603fb63ax, k674 = 301fdb1dx, k675 = c80fed8fx,

k676 = b407f6c6x, k677 = 5a03fb63x, k678 = fd01fdb0x, k679 = 7e80fed8x,

k680 = 3f407f6cx, k681 = 1fa03fb6x, k682 = 0fd01fdbx, k683 = d7e80fecx,

k684 = 6bf407f6x, k685 = 35fa03fbx, k686 = cafd01fcx, k687 = 657e80fex,

k688 = 32bf407fx, k689 = c95fa03ex, k690 = 64afd01fx, k691 = e257e80ex,

k692 = 712bf407x, k693 = e895fa02x, k694 = 744afd01x, k695 = ea257e81x,

k696 = a512bf41x, k697 = 82895fa1x, k698 = 9144afd1x, k699 = 98a257e9x,

k700 = 9c512bf5x, k701 = 9e2895fbx, k702 = 9f144afcx, k703 = 4f8a257ex,

k704 = 27c512bfx, k705 = c3e2895ex, k706 = 61f144afx, k707 = e0f8a256x,

k708 = 707c512bx, k709 = e83e2894x, k710 = 741f144ax, k711 = 3a0f8a25x,

k712 = cd07c513x, k713 = b683e288x, k714 = 5b41f144x, k715 = 2da0f8a2x,

k716 = 16d07c51x, k717 = db683e29x, k718 = bdb41f15x, k719 = 8eda0f8bx,

k720 = 976d07c4x, k721 = 4bb683e2x, k722 = 25db41f1x, k723 = c2eda0f9x,

k724 = b176d07dx, k725 = 88bb683fx, k726 = 945db41ex, k727 = 4a2eda0fx,

k728 = f5176d06x, k729 = 7a8bb683x, k730 = ed45db40x, k731 = 76a2eda0x,

k732 = 3b5176d0x, k733 = 1da8bb68x, k734 = 0ed45db4x, k735 = 076a2edax,

k736 = 03b5176dx, k737 = d1da8bb7x, k738 = b8ed45dax, k739 = 5c76a2edx,

k740 = fe3b5177x, k741 = af1da8bax, k742 = 578ed45dx, k743 = fbc76a2fx,

k744 = ade3b516x, k745 = 56f1da8bx, k746 = fb78ed44x, k747 = 7dbc76a2x,

k748 = 3ede3b51x, k749 = cf6f1da9x, k750 = b7b78ed5x, k751 = 8bdbc76bx,

k752 = 95ede3b4x, k753 = 4af6f1dax, k754 = 257b78edx, k755 = c2bdbc77x,

k756 = b15ede3ax, k757 = 58af6f1dx, k758 = fc57b78fx, k759 = ae2bdbc6x,

k760 = 5715ede3x, k761 = fb8af6f0x, k762 = 7dc57b78x, k763 = 3ee2bdbcx,

k764 = 1f715edex, k765 = 0fb8af6fx, k766 = d7dc57b6x, k767 = 6bee2bdbx.



Publication

Practical Collisions for
EnRUPT

Publication Data

Conference version:

Sebastiaan Indesteege and Bart Preneel. Practical collisions for
EnRUPT. In Orr Dunkelman, editor, Fast Software Encryption, 16th
International Workshop — FSE 2009, volume 5665 of Lecture Notes in
Computer Science, pages 246–259. Springer, 2009.

Extended journal version (included here):

Sebastiaan Indesteege and Bart Preneel. Practical collisions for
EnRUPT. Journal of Cryptology, 2010. To appear in print. Published
online at http://dx.doi.org/10.1007/s00145-010-9058-x.

Contributions

• Principal author.

221

http://dx.doi.org/10.1007/s00145-010-9058-x


222 PRACTICAL COLLISIONS FOR ENRUPT



Practical Collisions for EnRUPT∗

Sebastiaan Indesteege1,2,† and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. The EnRUPT hash functions were proposed by O’Neil,
Nohl and Henzen as candidates for the SHA-3 competition, organised
by NIST. The proposal contains seven concrete hash functions, each
with a different digest length. We present a practical collision attack
on each of these seven EnRUPT variants. The time complexity of our
attack varies from 236 to 240 round computations, depending on the
EnRUPT variant, and the memory requirements are negligible. We
demonstrate that our attack is practical by giving an actual collision
example for EnRUPT-256.

Key words: EnRUPT, SHA-3 candidate, hash function, collision
attack.

1 Introduction

Cryptographic hash functions are important cryptographic primitives that are
employed in a vast number of applications, such as digital signatures and
commitment schemes. They are expected to possess several security properties,
one of which is collision resistance. Informally, collision resistance means that it
should be hard to find two distinct messages m 6= m′ that hash to the same value,
i.e., h(m) = h(m′).

Many popular hash functions, such as MD5, SHA-1 and SHA-2 share some
common design principles. The recent advances in the cryptanalysis of these hash
functions have raised serious concerns regarding their long-term security. This
motivates the design of new hash functions, based on different design strategies.
The National Institute of Standards and Technology (NIST) has decided to hold a
public competition, the SHA-3 competition, to develop a new cryptographic hash
function standard [6].

The EnRUPT hash functions were proposed by O’Neil, Nohl and Henzen [9]
as candidates in this SHA-3 competition. The proposal contains seven concrete

∗This paper is an extended version of [3].
†F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

223

mailto:sebastiaan.indesteege@esat.kuleuven.be


224 PRACTICAL COLLISIONS FOR ENRUPT

Table 1 – EnRUPT parameters.

EnRUPT digest word parallelisation security number of
variant length size level parameter state words

h w P s H

EnRUPT-128 128 bits 32 bits 2 4 8
EnRUPT-160 160 bits 32 bits 2 4 10
EnRUPT-192 192 bits 32 bits 2 4 12
EnRUPT-224 224 bits 64 bits 2 4 8
EnRUPT-256 256 bits 64 bits 2 4 8
EnRUPT-384 384 bits 64 bits 2 4 12
EnRUPT-512 512 bits 64 bits 2 4 16

EnRUPT variants, each with a different digest length. Khovratovich et al. [4]
presented a theoretical preimage attack on EnRUPT, with a time complexity of
2480 and requiring about 2384 memory elements.

In this paper, we analyse EnRUPT and show that none of the proposed
EnRUPT variants is collision resistant. We present a practical collision attack
requiring only 236 to 240 EnRUPT round computations, depending on the
EnRUPT variant. This is significantly less than the approximately 2n/2 hash
computations required for a generic collision attack on an n-bit hash function,
based on the birthday paradox.

The structure of this paper is as follows. A short description of EnRUPT is
given in Sect. 2. Section 3 introduces the basic strategy used to find collisions for
EnRUPT, which is based on the work on SHA by Chabaud and Joux [2] and Rĳmen
and Oswald [11]. Sections 4, 5 and 6 apply this basic attack strategy to EnRUPT,
step by step. Our results, including an example collision for EnRUPT-256, are
presented in Sect. 7. Finally, Sect. 8 concludes.

2 Description of EnRUPT

In this section, we give a short description of the seven EnRUPT variants that
were proposed as SHA-3 candidates [9]. All share the same structure and use the
same round function. The only differences lie in the parameters used. Table 1
gives the values of these parameters for each EnRUPT variant.

2.1 The EnRUPT Hash Functions

The structure shared by all EnRUPT hash functions can be split into four phases:
preprocessing, message processing, finalisation and output. Figure 1 contains a
description of the EnRUPT hash functions in pseudocode.



DESCRIPTION OF EnRUPT 225

In the preprocessing phase (lines 2–4) the input message is padded to be a
multiple of w bits, where w is the word size. Depending on the EnRUPT variant,
the word size w is 32 or 64 bits, see Table 1. The padded message is then split
into an integer number of w-bit words mi.

The internal state of EnRUPT consists of several w-bit words: H state words
xi, P ‘delta accumulators’ di, and a round counter r. All of these are initialised
to zero. The parameter P is equal to 2 for all seven EnRUPT variants. The value
of H depends on the digest length, as indicated in Table 1.

Then, in the message processing phase (lines 5–8), the round function is called
once for each w-bit padded message word mi. Each call to the round function
updates the internal state 〈d, x, r〉. A detailed description of the EnRUPT round
function is given in the next section, Sect. 2.2.

After all message words have been processed, a finalisation is performed
(lines 9–13). The EnRUPT round function is called once with the length of the
(unpadded) message, represented as a w-bit unsigned integer3. Then, H blank
rounds, i.e., calls to the round function with a zero message word input, are
performed.

Finally, in the output phase (lines 14–18), the message digest is generated one
w-bit word at a time. The EnRUPT round function is called h/w times and, after
each call, the content of the ‘delta accumulator’ d0 is output.

2.2 The EnRUPT Round Function

The EnRUPT round function is based entirely on a number of simple operations on
words of w bits, such as bit shifts, bit rotations, exclusive OR and addition modulo
2w. Figure 2 gives a description of the EnRUPT round function in pseudocode.
The round function consists of s ·P identical steps, where s and P are parameters
of the hash function. As indicated in Table 1, s = 4 and P = 2 for all seven
proposed EnRUPT variants. Thus, the EnRUPT round function consists of eight
steps.

In each step, several words of the state are selected (lines 4–7) and combined
into an intermediate value f (lines 9–10). Note that line 10 could equally be
described as a multiplication with 9 modulo 2w. The intermediate value f is
then used to update one state word, xγ , and one ‘delta accumulator’, di mod P

(lines 12–13).
After all steps have been performed, the round counter is incremented by the

number of steps that were carried out, i.e., s·P (line 15). Finally, the input message
word m is injected into one word of the internal state, the ‘delta accumulator’ dP−1

(line 16).

3Note that the EnRUPT specification [9] only states that the message length should be
included, not how this is to be done exactly. The EnRUPT reference implementation uses one
w-bit word for the message length, which implies that the EnRUPT variants for which w = 32

can only handle up to 232
− 1 bits in this implementation. Note that the results presented in

this paper are independent of the details of the padding.



226 PRACTICAL COLLISIONS FOR ENRUPT

1: function EnRUPT (M)
2: /* Preprocessing */
3: m0, · · · ,mt ←M || 1 || 0w−(|M |+1 mod w) s.t. ∀i, 0 ≤ i ≤ t : |mi| = w
4: d0, · · · , dP−1, x0, · · · , xH−1, r ← 0, · · · , 0
5: /* Message processing */
6: for i = 0 to n do
7: 〈d, x, r〉 ← round(〈d, x, r〉 ,mi)
8: end for
9: /* Finalisation */

10: 〈d, x, r〉 ← round(〈d, x, r〉 ,uintw(|M |))
11: for i = 1 to H do
12: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
13: end for
14: /* Output */
15: for i = 0 to h/w − 1 do
16: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
17: oi ← d0

18: end for
19: return o0 || · · · || oh/w−1

20: end function

Figure 1 – The EnRUPT hash function.

1: function round (〈d, x, r〉 ,m)
2: for i = 0 to s · P − 1 do /* An iteration of this loop is a “step” */
3: /* Compute indices */
4: α← r + (i + 1 mod P ) mod H
5: β ← r + i + 2P mod H
6: γ ← r + i + P mod H
7: ξ ← r + i mod H
8: /* Compute intermediate f */
9: e← ((xα ≪ 1)⊕ xβ ⊕ di mod P ⊕ uintw(r + i)) ≫ w/4

10: f ← (e≪ 3) ⊞ e /* Multiplication with 9 modulo 2w */
11: /* Update state */
12: xγ ← xγ ⊕ f
13: di mod P ← di mod P ⊕ xξ ⊕ f
14: end for
15: r ← r + s · P
16: dP−1 ← dP−1 ⊕m /* Message word injection */
17: return 〈d, x, r〉
18: end function

Figure 2 – The EnRUPT round function.



BASIC ATTACK STRATEGY 227

3 Basic Attack Strategy

This section gives an overview of the linearisation method for finding collision
differential characteristics for a hash function, which we use to attack EnRUPT
in this work. This method was introduced by Chabaud and Joux [2], who applied
it to SHA-0 and simplified variants thereof. Later, it was extended further and
applied to SHA-1 by Rĳmen and Oswald [11].

A Linear Hash Function. Consider a hypothetical hash function that consists
only of linear operations over GF(2). When the input messages are restricted to a
certain length, each output bit can be written as an affine function of the input bits.
The difference in each output bit is given by a linear function of the differences in
the input bits, as the constants (if any) cancel out. A message difference that leads
to a collision can be found by equating the output differences to zero, and solving
the resulting system of linear equations over GF(2), for instance using Gauss
elimination. Any pair of messages with this difference will result in a collision.

Linearising a Nonlinear Hash Function. Actual cryptographic hash functions
contain (also) nonlinear components, so this method no longer applies. However,
we may still be able to approximate the nonlinear components by linear ones and
construct a linear approximation of the entire hash function. For our purpose,
a good linear approximation λ(x) of a nonlinear function γ(x) is such that its
differential behaviour is close to that of γ(x). More formally, the equation

γ(x⊕∆)⊕ γ(x) = λ(x⊕∆)⊕ λ(x) = λ(∆) (1)

should hold for a relatively large fraction of values x. For instance, an addition
modulo 2w could be approximated by a simple XOR operation, i.e., ignoring the
carries.

Finding Collisions. A differential characteristic consists of a message difference
and a list of the differences in all (relevant) intermediate values. For the linear
approximation, it is easy to find a differential characteristic that leads to a collision
with probability one. But for the actual hash function, this probability will be
(much) lower.

If the differential behaviour of all the nonlinear components corresponds
to that of the linear approximations they were replaced with, i.e., if (1)
holds simultaneously for each nonlinear component, we say that the differential
characteristic is followed. In this case, the message pair under consideration will
not only collide for the linearised hash function, but also for the original, nonlinear
hash function. Such a message pair is called a conforming message pair.

Hence, a procedure for finding a collision for the nonlinear hash function
could be to find a differential characteristic leading to collisions for a linearised
variant of the hash function. Then, a message pair conforming to the differential



228 PRACTICAL COLLISIONS FOR ENRUPT

characteristic is searched. In order to lower the complexity of the attack, it
is important to maximise the probability that the differential characteristic is
followed, i.e., we need to find a good differential characteristic.

4 Linearising EnRUPT

We now apply this general strategy to EnRUPT. Recall the description of the
EnRUPT round function in Fig. 2. Note that only the modular addition in line 10
is not linear over GF(2). Indeed, the computation of the indices in lines 4–7 and
the update of the round counter in line 15 do not depend on the message being
hashed and can thus be precomputed. The same holds for the inclusion of the
round counter in line 9, which can be seen as an XOR with a constant. The other
operations are all linear over GF(2).

Replacing the modular addition in line 10 with an XOR operation yields a
linearised round function, which we refer to as the EnRUPT-L round function.
The EnRUPT-L hash function, i.e., the hash function built on this linearised
round function, also consists solely of GF(2)-linear components.

5 The Collision Search

During the collision search phase, many collisions for EnRUPT-L are constructed,
and a collision for EnRUPT is searched among them. Since only the modular
additions (line 10 of Fig. 2) were approximated by XOR, these are the only
places where the propagation of differences could differ between EnRUPT-L
and EnRUPT. Instead of checking for a collision at the output, we can
immediately check if the difference at the output of each modular addition,
i.e., the difference ∆f in the intermediate value f , still matches the differential
characteristic.

5.1 An Observation on EnRUPT

We now make an important observation on the structure of the EnRUPT hash
function. It is possible to find a conforming message pair for a given differential
characteristic one round at a time.

Consider the message word mi, which is injected into the ‘delta accumulator’
dP−1 at the end of round i. In the first (P − 1) steps of the next round, dP−1 is
not used, so mi can not influence the behaviour of the modular additions in these
steps. Starting from the P -th step of round (i + 1), however, mi does have an
influence.

We can search for a value for mi such that the differential characteristic is
followed up to and including the first (P − 1) steps of round (i+2). Starting with
the P -th step of round (i + 2), the next message word, mi+1 also influences the
modular additions. Thus, we can keep mi fixed, and use the new freedom available



THE COLLISION SEARCH 229

in mi+1 to ensure that the differential characteristic is also followed for the next
s · P steps.

This drastically reduces the expected number of trials required to find a
collision. Let pi denote the probability that the differential characteristic is
followed in a block of s · P consecutive steps, starting at the P -th step of a round.
Because we can construct a conforming message pair one word at a time, the
expected number of trials is

∑

i 1/pi rather than
∏

i 1/pi. In other words, the
complexities associated with each block of s · P steps should be added together,
rather than multiplied. This possibility was ignored in the security analysis of
EnRUPT [9], leading to the incorrect conclusion that attacks based on linearisation
do not apply.

5.2 Accelerating the Collision Search

A simple optimisation can be made to the collision search, which allows us to
ignore the probability associated with one step in each round. This optimisation
is analogous to Wang’s ‘single message modification’, which was first introduced
in the context of MD5 and other hash functions of the MD4-family [13].

Consider the P -th step of a round. In this step, the ‘delta accumulator’ dP−1,
to which a new message word m was XORed at the end of the previous round, is
used for the first time. More precisely, it is used in line 9 of Fig. 2 to compute
the intermediate value e. Note however that these computations can be inverted.
We can choose the value of e, and compute backwards to find what the message
word m should be to arrive at this value of e:

m = dP−1 ⊕ dprev
P−1

= (e ≪ w/4)⊕ (xα ≪ 1)⊕ xβ ⊕ uintw(r + P − 1)⊕ dprev
P−1 . (2)

Here, dprev
P−1 is the (known) value of dP−1 in the previous round, just before the

message word m was added to it.
The values of e which ensure that the difference propagation of the modular

addition in line 10 of Fig. 2 corresponds to that of its linear approximation can be
efficiently enumerated as follows. Consider a binary tree representing all possible
values for e. Each layer of the tree determines one more bit of e, starting from
the least significant bit. This tree is walked in a depth-first fashion, backtracking
as soon as the difference propagation is not as desired. Indeed, the difference
propagation in the lower bits does not depend on the more significant bits, so this
backtracking strategy effectively skips over all bad values for e.

Thus, rather than randomly picking values for m, we can efficiently sample
good values for e in this step, and compute backwards to find the corresponding
m. This ensures that the first modular addition affected by a message word m
will always exhibit the desired propagation of differences. Thus, the P -th step of
every round can be ignored in the estimation of the complexity of the attack.



230 PRACTICAL COLLISIONS FOR ENRUPT

6 Finding Good Differential Characteristics

The key to lowering the attack complexity is to find a good differential
characteristic, i.e., a characteristic which is likely to be followed for the nonlinear
hash function. A generic approach to this problem, based on finding low weight
codewords in a linear code, was proposed by Rĳmen and Oswald [11] and extended
by Pramstaller et al. in [10]. In this section, we show how to apply this approach
to EnRUPT.

6.1 Coding Theory

As observed by Rĳmen and Oswald [11], all of the differential characteristics
leading to a collision for the linearised hash function can be seen as the codewords
of a linear code.

Consider the EnRUPT-L hash function with a h-bit output length, and the
message input restricted to messages of t message words. Since it is affine over
GF(2), it is possible to express the difference in the output as a linear function of
the difference in the input message m:

[∆o]1×h = [∆m]1×tw · [O]tw×h . (3)

As the modular additions, or rather the multiplications with 9, in the EnRUPT
round function are approximated, we are also interested in the differences that
enter each of these operations. For EnRUPT restricted to t message blocks, there
are t ·s ·P such operations in total. Hence, we can combine the input differences to
these operations in a 1× tsPw bit vector ∆e. Again, for the linear approximation,
∆e is simply a linear function of the message difference ∆m:

[∆e]1×tsPw = [∆m]1×tw · [E]tw×tsPw . (4)

Putting this together results in a linear code described by the following generator
matrix

G =
[

Itw×tw Etw×tsPw Otw×h

]
. (5)

Each codeword contains a message difference, the input differences to all
approximated modular additions, and finally the output difference.

Thus, each codeword is in fact a differential characteristic for EnRUPT-L,
and all differential characteristics for EnRUPT-L are codewords of this code. To
restrict ourselves to collision differentials, i.e., differential characteristics ending in
a zero output difference, we can use Gauss elimination to force the h rightmost
columns of the generator matrix G to zero.

It is well known that the differential behaviour of modular addition can be well
approximated by that of XOR when the Hamming weight of the input difference,
ignoring the most significant bit, is small [2, 5, 10, 11]. As the input differences
to the modular additions are part of the codewords, we will attempt to find a
codeword with a low Hamming weight in this part of the codeword.



FINDING GOOD DIFFERENTIAL CHARACTERISTICS 231

6.2 Low Weight Codewords

To find low weight codewords, we used a simple and straightforward algorithm
that is based on the assumption that a codeword of very low weight exists in the
code. For our purposes, this is a reasonable assumption, as only a very low weight
codeword will lead to an attack faster than a generic attack. The algorithm is
related to the algorithm of Canteaut and Chabaud [1] and the algorithm used to
find low weight codewords for linearised SHA-1 by Pramstaller et al. [10].

Let G be the generator matrix of the linear code as in (5). We randomly
select a set I of (appropriate) columns of the generator matrix G and force
them to zero using Gauss elimination, until only d rows remain, where d is a
parameter of the algorithm. Then, the remaining space of 2d codewords is searched
exhaustively. This procedure is repeated until a codeword of sufficiently low weight
is encountered. By replacing only the ‘oldest’ column(s) in I, instead of restarting
from the beginning every time, the algorithm can be implemented efficiently in
practice.

If a codeword of very low weight exists in the code, it is likely that all of
the columns in the randomly constructed set I will coincide with zeroes in the
codeword, which implies that the codeword will be found in the exhaustive search
phase. In the case of the codes originating from the seven linearised EnRUPT
variants we consider, this algorithm finds a codeword of very low weight in a
matter of minutes on a PC. Repeated runs of the algorithm always find the same
codewords, so it is reasonable to assume that these are indeed the best codewords
we can find.

6.3 Estimating the Attack Complexity

Actually, the weight of a codeword is only a heuristic for the attack complexity
resulting from the corresponding differential. Codewords with a lower weight
are expected to result in a lower attack complexity, but we can easily enhance
our algorithm to optimise the actual attack complexity, rather than just a crude
heuristic.

The Differential Probability. The probability that a differential characteristic is
followed, is determined by the differences that enter each of the multiplications
with 9 (line 10 in Fig. 2), which were approximated using XOR operations. Denote
by DP×9(∆) the probability that the propagation of differences through this
nonlinear operation coincides with that of its linear approximation:

DP×9(∆) = Pr
x

[

(x× 9)⊕ ((x⊕∆)× 9) = ∆⊕ (∆≪ 3)
]

. (6)

The differential probability of modular addition was studied by Lipmaa and
Moriai [5]. Applying their results to this situation, and taking into account that



232 PRACTICAL COLLISIONS FOR ENRUPT

the three least significant bits of (x ≪ 3) are always zero, we find the following
estimate for DP×9(∆):

DP×9(∆) ≈ 2
−wt

((
∆∨(∆≪3)

)
∧0111···111000b

)

. (7)

Even though this estimate ignores the dependency between x and (x ≪ 3), this
confirms the intuition that a difference ∆ with a low Hamming weight (ignoring the
most significant bit and the three least significant bits) results in a large probability
DP×9(∆). We used this as a heuristic to find a good differential characteristic: we
want to minimise the Hamming weight of the relevant parts of the differences
that are input to the modular additions. In other words, we want to find a low
weight codeword of the aforementioned linear code, where only the bits that impact
DP×9(∆) are counted.

Exact Computation of the Differential Probability. Computing the exact value
of DP×9(∆) for any given difference ∆ can be done by counting all the values x for
which the difference propagation is as predicted by the linear approximation. We
now show how this can be done in an efficient way. While this is very useful for
evaluating the precise attack complexity, it lacks the clear intuition we can gather
from (7).

For w-bit words, the definition of DP×9(∆) given in (6) can be restated as

DP×9(∆) =
#
{

x ∈ {0, 1}w | (x× 9)⊕ ((x⊕∆)× 9) = ∆⊕ (∆≪ 3)
}

2w
. (8)

Now, consider how the computation of y = (x× 9) = x⊕ (x≪ 3) is performed at
the bit level. Let xi denote the i-th bit of x, where x0 is the least significant bit.
Then the following equations can be derived:

{
yi = xi ⊕ xi−3 ⊕ ci

ci+1 = maj(xi, xi−3, ci)
. (9)

Here, the bits ci represent the carry bits in the modular addition. By definition,
the first carry bit c0 is zero. The majority function maj(·) is defined by

maj(a, b, c) = ab⊕ bc⊕ ac . (10)

Let ∆xi be the XOR difference in the i-th bit of x, and similar for other differences.
Then, we find
{

∆yi = ∆xi ⊕∆xi−3 ⊕∆ci

∆ci+1 = maj(xi, xi−3, ci)⊕maj(xi ⊕∆xi, xi−3 ⊕∆xi−3, ci ⊕∆ci)
.

(11)
Since the output difference of the multiplication is approximated by ∆x⊕(∆x≪ 3),
it follows from the first equation of (11) that we require ∆ci = 0 for 0 ≤ i < w.



FINDING GOOD DIFFERENTIAL CHARACTERISTICS 233
c x

i
−

1

x
i
−

2

x
i
−

3

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

∆xi−3 = 0

∆xi = 0

∆xi−3 = 1

∆xi = 0

∆xi−3 = 0

∆xi = 1

∆xi−3 = 1

∆xi = 1

c x
i
−

1

x
i
−

2

x
i
−

3

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

(a) (b) (c) (d)

Figure 3 – Trellis segments used in the calculation of DP×9.

Note that only the knowledge of xi, xi−3 and ci is required to evaluate (11) when
the input difference ∆x is fixed, and the carry bits have no difference.

Hence, this can be represented efficiently in a trellis where the computations
relating to one bit slice are represented by one segment in the trellis. Each node
in the trellis represents, for a certain bit position, the values of the input carry
ci and the values of the three most recent bits, xi−1, xi−2 and xi−3. Since the
differences in x are fixed a priori, and we do not allow differences in the carry, it
is possible to compute the arcs in the segment as for each value of the bit xi, the
next node can be computed. Indeed, the next node is identified by ci+1, which
can be computed from (9) and xi, xi−1 and xi−2. Note however that, except for
the most significant bit, we require ∆ci+1 = 0 for our approximation to hold. This
can be checked using (11), and only arcs satisfying this condition are kept. The
full trellis is the concatenation of segments out of the four possibilities shown in
Figure 3. The input difference ∆x, which is fixed, determines which segments are
used. Note that the trellis segment for the most significant bit contains all arcs
regardless of ∆x, as the condition prohibiting an output carry differences is no
longer required there.

For each value of x for which no carry differences occur, there is a path in
the trellis starting at the node 〈0, 0, 0, 0〉 at the input of least significant bit slice,
which we refer to as the source node, and ending at one of the nodes at the output
of the most significant bit slice, the goal nodes. Hence, we can evaluate (8) by
simply counting the number of such paths. This can be done using an algorithm
that bears similarity to the Viterbi algorithm [12] and is an example of dynamic
programming. Let f(N) denote the number of paths from the source node to a



234 PRACTICAL COLLISIONS FOR ENRUPT

node N . It is straightforward to see that this is equal to

f(N) =
∑

arc(X,N)

f(X) , (12)

where arc(X,N) denotes that there is an arc from node X to node N . For the
source node S, we initialise f(S) = 1. Then the recurrence (12) can be used to
evaluate the number of paths to all nodes in the trellis. Finally, the sum of the
number of paths to each of the goal nodes allows to compute DP×9 using (8).

Computing the Attack Complexity. Let pr,i be the differential probability
associated with the modular addition in step i of round r of the differential
characteristic. Recall the observation made in Sect. 5.1, i.e., finding a conforming
message pair can be done one round at a time, or rather one message word at a
time, as this does not coincide precisely with the round boundaries. Taking this
into account, the complexity of finding the j-th word of a conforming message pair
can thus be computed as

Cj =

(
sP−1∏

i=P−1

1

pj+1,i

)(
P−2∏

i=0

1

pj+2,i

)

. (13)

Due to the acceleration technique presented in Sect. 5.2, we are guaranteed that
the differential behaviour of the modular addition in step P − 1 of each round will
be as desired. Thus, we can set pr,P−1 = 1. With the default EnRUPT parameters
(P = 2 and s = 4, see Table 1), this then becomes

Cj =
1

pj+1,2
· 1

pj+1,3
· 1

pj+1,4
· 1

pj+1,5
· 1

pj+1,6
· 1

pj+1,7
· 1

pj+2,0
. (14)

Finally, as was explained in Sect. 5.1, note that each message word can be found
independently of the previous ones, due to the newly available degrees of freedom in
each message word. Hence, the overall attack complexity can simply be computed
as the sum of these round complexities:

Ctot =

t∑

j=0

Cj . (15)

Note that, given a differential characteristic, it is easy to compute the
associated attack complexity. Hence, when searching for a good differential
characteristic using the algorithm described in Sect. 6.2, we can use the actual
attack complexity instead of the weight of the codeword. The algorithm still
implicitly uses the weight of a codeword as a heuristic, but now attempts to
optimise the actual attack complexity directly.



RESULTS AND DISCUSSION 235

Table 2 – Summary of our attacks. Only the best attack is listed for
each EnRUPT variant.

EnRUPT word state estimated length of
variant size w size H time complexity differential

[bits] [words] [EnRUPT rounds] [message words]

EnRUPT-128 32 8 236.04 6
EnRUPT-160 32 10 237.78 7
EnRUPT-192 32 12 238.33 8
EnRUPT-224 64 8 237.02 6
EnRUPT-256 64 8 237.02 6
EnRUPT-384 64 12 239.63 8
EnRUPT-512 64 16 238.46 10

7 Results and Discussion

We constructed differential characteristics for each of the seven EnRUPT variants
in the EnRUPT SHA-3 proposal [9]. Table 2 lists the attack complexity and
the length of the best characteristic we found for each variant. For the sake of
clarity, the key parameters of each EnRUPT variant are repeated from Table 1.
Recall that we fixed the length of the characteristic a priori. Note however that
nothing prevents our search algorithm from proposing a shorter characteristic,
padded with rounds without any difference, which we also observed in practice.
We experimented with (much) longer maximum characteristic lengths, but found
no better long characteristics.

The time complexities vary from 236 to 240 round computations, depending on
the EnRUPT variant, which is remarkable. It means that the collision resistance
in absolute terms of each of these EnRUPT variants is more or less the same,
regardless of the digest length. Relative to the expected collision resistance of
approximately 2n/2 for an n-bit hash function, however, the (relative) collision
resistance of EnRUPT is much worse for the variants with a longer digest length
than for those with a shorter digest length.

Tables 4–9 list our differential characteristics for each of the seven EnRUPT
variants. Note that the same characteristic applies to EnRUPT-224 and
EnRUPT-256 (Table 7) as both functions share the same parameter settings, see
Table 1.

The format of these tables is as follows. Each line in the table corresponds to
one step of the EnRUPT round function. The difference in the input (∆e) and
the output (∆f) of the multiplication with 9 in that step is indicated. Also, the
message word differences are shown at the end of each round. Note that the word
size is 32 bits for some EnRUPT variants, and 64 bits for others. The table also
includes the differential probabilities of each step, which were used to compute the



236 PRACTICAL COLLISIONS FOR ENRUPT

Table 3 – A collision example for EnRUPT-256.

M 13x c8x 4bx 45x 62x 70x 17x 6ex

04x f9x 31x 7ex c3x 6cx e7x d3x

e1x 21x 78x 6ax 34x 74x 11x 19x

7fx 64x a3x c9x 40x 07x 75x 76x

a1x 4fx 90x 86x fdx c7x 33x 4ax

41x 3ax 76x 91x 96x 06x 2cx a1x.

M ′
13x c8x 4bx 45x 6ax 70x 17x 6ex

04x f9x 31x 5cx 43x 6cx e7x d3x

e1x 21x 78x 48x bcx 74x 11x 19x

7fx 64x a3x cbx 48x 07x 75x 76x

a1x 4fx 90x 84x fdx c7x 33x 4ax

41x 3ax 76x 93x 96x 06x 2cx a1x.

EnRUPT-256(M) = bdx 67x 51x 7cx a6x c0x 41x 20x

EnRUPT-256(M ′) = 82x e0x 3bx 74x 5fx fcx 4ax 64x

e9x f0x 92x c2x 58x c3x 98x b8x

44x 9ax fex cbx 7fx c8x 6fx 72x.

attack complexity. A star (‘⋆’) indicates that the differential probability can be
ignored in that step because of the technique presented in Sect. 5.2. The product
of the step probabilities is given for eight consecutive steps. Note that these do
not coincide with the rounds, as was discussed in Sect. 6.3.

A collision example for EnRUPT-256, obtained using the characteristic from
Table 7, is given in Table 3. This example was computed on a cluster of
AMD Opteron 250 processors running at 2.4 GHz. The total computational
effort was 237 CPU-days. This is roughly 1000 times what one would expect
if one were to count just the time spent doing EnRUPT rounds using an
optimised implementation of EnRUPT. This discrepancy is explained by a lack of
optimisation of the implementation of the attack algorithm, a simple but somewhat
wasteful approach to parallelisation, and a considerable amount of redundant
work due to a bug in the initial attack implementation. However, such practical
issues are to be expected in a first implementation, and we opted to balance
the programming effort and CPU time, rather than pursuing the fastest possible
implementation.



RESULTS AND DISCUSSION 237

Table 4 – Differential characteristic for EnRUPT-128.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 00000800x

0 0 00000000x → 00000000x 2−0.00
2
−0.00

1 00000008x → 00000048x ⋆

2 90000000x → 10000000x 2−0.85

3 48000008x → 08000048x 2−3.85

4 90000000x → 10000000x 2−0.85

5 48280008x → 09680048x 2−6.92

6 9002d000x → 10145000x 2−6.43

7 00296808x → 01622848x 2−10.39

inject message word difference ∆m0 = 00228000x

1 0 9002d000x → 10145000x 2−6.43
2
−35.72

1 00296800x → 01622800x ⋆

2 9002d000x → 10145000x 2−6.43

3 48280000x → 09680000x 2−4.92

4 9002d000x → 10145000x 2−6.43

5 00080000x → 00480000x 2−1.85

6 90024000x → 10104000x 2−3.69

7 48092000x → 08402000x 2−5.71

inject message word difference ∆m1 = 00228800x

2 0 90024000x → 10104000x 2−3.69
2
−32.73

1 00084800x → 004a0800x ⋆

2 90024000x → 10104000x 2−3.69

3 48096800x → 08422800x 2−8.45

4 90024000x → 10104000x 2−3.69

5 00200000x → 01200000x 2−1.85

6 90000000x → 10000000x 2−0.85

7 48200000x → 09200000x 2−3.26

inject message word difference ∆m2 = 00020800x

3 0 90000000x → 10000000x 2−0.85
2
−22.65

1 00292000x → 01602000x ⋆

2 90009000x → 10041000x 2−3.70

3 48296800x → 09622800x 2−9.68

4 90009000x → 10041000x 2−3.70

5 00084800x → 004a0800x 2−4.59

6 90009000x → 10041000x 2−3.70

7 48080000x → 08480000x 2−3.71

inject message word difference ∆m3 = 00020000x

4 0 90009000x → 10041000x 2−3.70
2
−32.76

1 00080008x → 00480048x ⋆

2 00000000x → 00000000x 2−0.00

3 00080008x → 00480048x 2−3.85

4 00000000x → 00000000x 2−0.00

5 48084808x → 084a0848x 2−8.47



238 PRACTICAL COLLISIONS FOR ENRUPT

Table 4 – Differential characteristic for EnRUPT-128. (continued)

Round Step ∆e → ∆f DP
×9 totals

6 00000000x → 00000000x 2−0.00

7 48084808x → 084a0848x 2−8.47

inject message word difference ∆m4 = 00020000x

5 0 00000000x → 00000000x 2−0.00
2
−20.79

1 00000000x → 00000000x ⋆

.

..
.
.. →

.

..
.
..

7 00000000x → 00000000x 2−0.00



RESULTS AND DISCUSSION 239

Table 5 – Differential characteristic for EnRUPT-160.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 00000400x

0 0 00000000x → 00000000x 2−0.00
2
−0.00

1 00000004x → 00000024x ⋆

2 48000000x → 08000000x 2−1.85

3 24000004x → 04000024x 2−2.85

4 48000000x → 08000000x 2−1.85

5 24140004x → 04b40024x 2−5.92

6 48016800x → 080a2800x 2−7.43

7 2414b404x → 04b11424x 2−10.70

inject message word difference ∆m0 = 00114000x

1 0 48016800x → 080a2800x 2−7.43
2
−38.04

1 0014b400x → 00b11400x ⋆

2 00016800x → 000a2800x 2−5.59

3 2414b400x → 04b11400x 2−9.68

4 48016800x → 080a2800x 2−7.43

5 24000000x → 04000000x 2−1.85

6 48000000x → 08000000x 2−1.85

7 0000b400x → 00051400x 2−5.59

inject message word difference ∆m1 = 00114400x

2 0 48016800x → 080a2800x 2−7.43
2
−39.41

1 0004b400x → 00211400x ⋆

2 48012000x → 08082000x 2−4.69

3 00042400x → 00250400x 2−4.59

4 00012000x → 00082000x 2−2.85

5 24042400x → 04250400x 2−6.45

6 48012000x → 08082000x 2−4.69

7 24042400x → 04250400x 2−6.45

inject message word difference ∆m2 = 00000000x

3 0 48004800x → 08020800x 2−4.70
2
−34.42

1 0010b400x → 00951400x ⋆

2 48004800x → 08020800x 2−4.70

3 00100000x → 00900000x 2−1.85

4 48000000x → 08000000x 2−1.85

5 0014b400x → 00b11400x 2−8.36

6 00004800x → 00020800x 2−2.85

7 2414b400x → 04b11400x 2−9.68

inject message word difference ∆m3 = 00010400x

4 0 48004800x → 08020800x 2−4.70
2
−33.99

1 24002400x → 04010400x ⋆

2 48004800x → 08020800x 2−4.70

3 00002400x → 00010400x 2−2.85

4 48004800x → 08020800x 2−4.70

5 00042400x → 00250400x 2−4.59



240 PRACTICAL COLLISIONS FOR ENRUPT

Table 5 – Differential characteristic for EnRUPT-160. (continued)

Round Step ∆e → ∆f DP
×9 totals

6 48004800x → 08020800x 2−4.70

7 00042400x → 00250400x 2−4.59

inject message word difference ∆m4 = 00010000x

5 0 00000000x → 00000000x 2−0.00
2
−26.12

1 24042404x → 04250424x ⋆

2 00000000x → 00000000x 2−0.00

3 00040004x → 00240024x 2−2.85

4 00000000x → 00000000x 2−0.00

5 24042404x → 04250424x 2−7.47

6 00000000x → 00000000x 2−0.00

7 24042404x → 04250424x 2−7.47

inject message word difference ∆m5 = 00010000x

6 0 00000000x → 00000000x 2−0.00
2
−17.79

1 00000000x → 00000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 00000000x → 00000000x 2−0.00



RESULTS AND DISCUSSION 241

Table 6 – Differential characteristic for EnRUPT-192.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 00000800x

0 0 00000000x → 00000000x 2−0.00
2
−0.00

1 00000008x → 00000048x ⋆

2 90000000x → 10000000x 2−0.85

3 48000008x → 08000048x 2−3.85

4 90000000x → 10000000x 2−0.85

5 48280008x → 09680048x 2−6.92

6 9002d000x → 10145000x 2−6.43

7 48296808x → 09622848x 2−11.70

inject message word difference ∆m0 = 00228000x

1 0 9002d000x → 10145000x 2−6.43
2
−37.03

1 48296800x → 09622800x ⋆

2 0002d000x → 00145000x 2−5.58

3 48296800x → 09622800x 2−9.68

4 0002d000x → 00145000x 2−5.58

5 48016800x → 080a2800x 2−7.43

6 90000000x → 10000000x 2−0.85

7 48016800x → 080a2800x 2−7.43

inject message word difference ∆m1 = 00228800x

2 0 90000000x → 10000000x 2−0.85
2
−37.41

1 00016800x → 000a2800x ⋆

2 9002d000x → 10145000x 2−6.43

3 00016800x → 000a2800x 2−5.59

4 9002d000x → 10145000x 2−6.43

5 48080000x → 08480000x 2−3.71

6 00024000x → 00104000x 2−2.85

7 48084800x → 084a0800x 2−6.45

inject message word difference ∆m2 = 00000000x

3 0 00024000x → 00104000x 2−2.85
2
−34.30

1 48092000x → 08402000x ⋆

2 90009000x → 10041000x 2−3.70

3 48092000x → 08402000x 2−5.71

4 90009000x → 10041000x 2−3.70

5 00212000x → 01282000x 2−4.58

6 90009000x → 10041000x 2−3.70

7 00200000x → 01200000x 2−1.85

inject message word difference ∆m3 = 00000000x

4 0 90009000x → 10041000x 2−3.70
2
−26.93

1 48296800x → 09622800x ⋆

2 00009000x → 00041000x 2−2.85

3 48292000x → 09602000x 2−6.92

4 00009000x → 00041000x 2−2.85

5 48000000x → 08000000x 2−1.85



242 PRACTICAL COLLISIONS FOR ENRUPT

Table 6 – Differential characteristic for EnRUPT-192. (continued)

Round Step ∆e → ∆f DP
×9 totals

6 90009000x → 10041000x 2−3.70

7 48004800x → 08020800x 2−4.70

inject message word difference ∆m4 = 00020800x

5 0 90009000x → 10041000x 2−3.70
2
−26.56

1 00000000x → 00000000x ⋆

2 90009000x → 10041000x 2−3.70

3 00004800x → 00020800x 2−2.85

4 90009000x → 10041000x 2−3.70

5 48080000x → 08480000x 2−3.71

6 00000000x → 00000000x 2−0.00

7 48080000x → 08480000x 2−3.71

inject message word difference ∆m5 = 00020000x

6 0 00000000x → 00000000x 2−0.00
2
−17.66

1 48084808x → 084a0848x ⋆

2 00000000x → 00000000x 2−0.00

3 00080008x → 00480048x 2−3.85

4 00000000x → 00000000x 2−0.00

5 48084808x → 084a0848x 2−8.47

6 00000000x → 00000000x 2−0.00

7 48084808x → 084a0848x 2−8.47

inject message word difference ∆m6 = 00020000x

7 0 00000000x → 00000000x 2−0.00
2
−20.79

1 00000000x → 00000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 00000000x → 00000000x 2−0.00



RESULTS AND DISCUSSION 243

Table 7 – Differential characteristic for EnRUPT-224 or -256.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00
2
−0.00

1 0000000000000800x → 0000000000004800x ⋆

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000280168000800x → 0001680a28004800x 2−11.02

inject message word difference ∆m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43
2
−36.56

1 0000280168000000x → 0001680a28000000x ⋆

2 90000002d0000000x → 1000001450000000x 2−6.43

3 4800280000000000x → 0801680000000000x 2−5.43

4 90000002d0000000x → 1000001450000000x 2−6.43

5 0000080000000000x → 0000480000000000x 2−1.85

6 9000000240000000x → 1000001040000000x 2−3.70

7 4800080120000000x → 0800480820000000x 2−6.54

inject message word difference ∆m1 = 0000002288000000x

2 0 9000000240000000x → 1000001040000000x 2−3.70
2
−34.08

1 0000080048000000x → 0000480208000000x ⋆

2 9000000240000000x → 1000001040000000x 2−3.70

3 4800080168000000x → 0800480a28000000x 2−9.28

4 9000000240000000x → 1000001040000000x 2−3.70

5 0000200000000000x → 0001200000000000x 2−1.85

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800200000000000x → 0801200000000000x 2−3.70

inject message word difference ∆m2 = 0000000208000000x

3 0 9000000000000000x → 1000000000000000x 2−0.85
2
−23.91

1 0000280120000000x → 0001680820000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800280168000000x → 0801680a28000000x 2−11.02

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000080048000000x → 0000480208000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800080000000000x → 0800480000000000x 2−3.70

inject message word difference ∆m3 = 0000000200000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70
2
−34.19

1 0000080000000800x → 0000480000004800x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39



244 PRACTICAL COLLISIONS FOR ENRUPT

Table 7 – Differential characteristic for EnRUPT-224 or -256.
(continued)

Round Step ∆e → ∆f DP
×9 totals

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

inject message word difference ∆m4 = 0000000200000000x

5 0 0000000000000000x → 0000000000000000x 2−0.00
2
−20.49

1 0000000000000000x → 0000000000000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00



RESULTS AND DISCUSSION 245

Table 8 – Differential characteristic for EnRUPT-384.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00
2
−0.00

1 0000000000000800x → 0000000000004800x ⋆

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 4800280168000800x → 0801680a28004800x 2−12.87

inject message word difference ∆m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43
2
−38.41

1 4800280168000000x → 0801680a28000000x ⋆

2 00000002d0000000x → 0000001450000000x 2−5.58

3 4800280168000000x → 0801680a28000000x 2−11.02

4 00000002d0000000x → 0000001450000000x 2−5.58

5 4800000168000000x → 0800000a28000000x 2−7.43

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800000168000000x → 0800000a28000000x 2−7.43

inject message word difference ∆m1 = 0000002288000000x

2 0 9000000000000000x → 1000000000000000x 2−0.85
2
−38.75

1 0000000168000000x → 0000000a28000000x ⋆

2 90000002d0000000x → 1000001450000000x 2−6.43

3 0000000168000000x → 0000000a28000000x 2−5.58

4 90000002d0000000x → 1000001450000000x 2−6.43

5 4800080000000000x → 0800480000000000x 2−3.70

6 0000000240000000x → 0000001040000000x 2−2.85

7 4800080048000000x → 0800480208000000x 2−6.54

inject message word difference ∆m2 = 0000000000000000x

3 0 0000000240000000x → 0000001040000000x 2−2.85
2
−34.39

1 4800080120000000x → 0800480820000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800080120000000x → 0800480820000000x 2−6.54

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000200120000000x → 0001200820000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000200000000000x → 0001200000000000x 2−1.85

inject message word difference ∆m3 = 0000000000000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70
2
−27.87

1 4800280168000000x → 0801680a28000000x ⋆

2 0000000090000000x → 0000000410000000x 2−2.85

3 4800280120000000x → 0801680820000000x 2−8.28

4 0000000090000000x → 0000000410000000x 2−2.85

5 4800000000000000x → 0800000000000000x 2−1.85



246 PRACTICAL COLLISIONS FOR ENRUPT

Table 8 – Differential characteristic for EnRUPT-384. (continued)

Round Step ∆e → ∆f DP
×9 totals

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800000048000000x → 0800000208000000x 2−4.70

inject message word difference ∆m4 = 0000000208000000x

5 0 9000000090000000x → 1000000410000000x 2−3.70
2
−27.91

1 0000000000000000x → 0000000000000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 0000000048000000x → 0000000208000000x 2−2.85

4 9000000090000000x → 1000000410000000x 2−3.70

5 4800080000000000x → 0800480000000000x 2−3.70

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080000000000x → 0800480000000000x 2−3.70

inject message word difference ∆m5 = 0000000200000000x

6 0 0000000000000000x → 0000000000000000x 2−0.00
2
−17.63

1 4800080048000800x → 0800480208004800x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

inject message word difference ∆m6 = 0000000200000000x

7 0 0000000000000000x → 0000000000000000x 2−0.00
2
−20.49

1 0000000000000000x → 0000000000000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00



RESULTS AND DISCUSSION 247

Table 9 – Differential characteristic for EnRUPT-512.

Round Step ∆e → ∆f DP
×9 totals

inject message word difference ∆m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00
2
−0.00

1 0000000000000800x → 0000000000004800x ⋆

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 4800280168000800x → 0801680a28004800x 2−12.87

inject message word difference ∆m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43
2
−38.41

1 4800280168000000x → 0801680a28000000x ⋆

2 00000002d0000000x → 0000001450000000x 2−5.58

3 0000280168000000x → 0001680a28000000x 2−9.17

4 00000002d0000000x → 0000001450000000x 2−5.58

5 0000000168000000x → 0000000a28000000x 2−5.58

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800000000000000x → 0800000000000000x 2−1.85

inject message word difference ∆m1 = 0000002288000000x

2 0 0000000000000000x → 0000000000000000x 2−0.00
2
−27.77

1 4800000000000000x → 0800000000000000x ⋆

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000168000000x → 0800000a28000000x 2−7.43

4 9000000000000000x → 1000000000000000x 2−0.85

5 0000000168000000x → 0000000a28000000x 2−5.58

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000000168000000x → 0000000a28000000x 2−5.58

inject message word difference ∆m2 = 0000000000000000x

3 0 90000002d0000000x → 1000001450000000x 2−6.43
2
−33.16

1 4800000000000000x → 0800000000000000x ⋆

2 00000002d0000000x → 0000001450000000x 2−5.58

3 0000000000000000x → 0000000000000000x 2−0.00

4 00000002d0000000x → 0000001450000000x 2−5.58

5 0000080168000000x → 0000480a28000000x 2−7.43

6 0000000090000000x → 0000000410000000x 2−2.85

7 4800080048000000x → 0800480208000000x 2−6.54

inject message word difference ∆m3 = 0000000000000000x

4 0 0000000090000000x → 0000000410000000x 2−2.85
2
−30.84

1 4800080048000000x → 0800480208000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800080120000000x → 0800480820000000x 2−6.54

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000200120000000x → 0001200820000000x 2−4.70



248 PRACTICAL COLLISIONS FOR ENRUPT

Table 9 – Differential characteristic for EnRUPT-512. (continued)

Round Step ∆e → ∆f DP
×9 totals

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000200048000000x → 0001200208000000x 2−4.70

inject message word difference ∆m4 = 0000000000000000x

5 0 9000000090000000x → 1000000410000000x 2−3.70
2
−30.72

1 4800280120000000x → 0801680820000000x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000280120000000x → 0001680820000000x 2−6.43

4 0000000000000000x → 0000000000000000x 2−0.00

5 0000000048000000x → 0000000208000000x 2−2.85

6 0000000090000000x → 0000000410000000x 2−2.85

7 4800000048000000x → 0800000208000000x 2−4.70

inject message word difference ∆m5 = 0000000000000000x

6 0 0000000090000000x → 0000000410000000x 2−2.85
2
−19.67

1 4800000000000000x → 0800000000000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800000048000000x → 0800000208000000x 2−4.70

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000000000000000x → 0000000000000000x 2−0.00

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000000000000000x → 0000000000000000x 2−0.00

inject message word difference ∆m6 = 0000000208000000x

7 0 9000000090000000x → 1000000410000000x 2−3.70
2
−19.48

1 4800000048000000x → 0800000208000000x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000000048000000x → 0000000208000000x 2−2.85

4 0000000000000000x → 0000000000000000x 2−0.00

5 0000080048000000x → 0000480208000000x 2−4.70

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080000000000x → 0800480000000000x 2−3.70

inject message word difference ∆m7 = 0000000200000000x

8 0 0000000000000000x → 0000000000000000x 2−0.00
2
−11.24

1 4800080048000800x → 0800480208004800x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

inject message word difference ∆m8 = 0000000200000000x

9 0 0000000000000000x → 0000000000000000x 2−0.00
2
−20.49

1 0000000000000000x → 0000000000000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00



CONCLUSION 249

Discussion. In response to these collision attacks, the designers of EnRUPT
proposed to double the s parameter to 8, or to increase it even further to be
equal to the H-parameter, see Table 1 [7,8]. As a consequence of this, the number
of steps between two message word injections is at least doubled. Experiments
with these EnRUPT variants indicate that this tweak seems to be effective at
stopping the attacks described in this paper. For EnRUPT-256 with s = 6, we
were still able to find a differential with an associated attack complexity of about
2110 EnRUPT rounds, which is still below the birthday bound. For higher values
of the s parameter, all the differential characteristics we could find would result in
attack complexities that are far beyond than the birthday bound, and thus should
not be considered to be real attacks.

Note that the failure of this heuristic attack method for s = 8 or s = H does
not preclude the possibility of attacks based on linearisation. Our experiments
only show that it is unlikely that the particular attack method used in this work
can be applied directly to EnRUPT with s ≥ 8.

8 Conclusion

We presented collision attacks on all seven variants of the EnRUPT hash
function [9] that were proposed as candidates to the NIST SHA-3 competition [6].
The attacks require negligible memory and have time complexities ranging from 236

to 240 EnRUPT round computations, depending on the EnRUPT variant. The
practicality of the attacks has been demonstrated with an example collision for
EnRUPT-256.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II. The
collision example for EnRUPT-256 was obtained utilising high performance
computational resources provided by the University of Leuven, http://ludit.

kuleuven.be/hpc.

References

[1] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

http://ludit.kuleuven.be/hpc
http://ludit.kuleuven.be/hpc


250 PRACTICAL COLLISIONS FOR ENRUPT

[2] F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes
in Computer Science, pages 56–71. Springer, 1998.

[3] S. Indesteege and B. Preneel. Practical collisions for EnRUPT. In
O. Dunkelman, editor, Fast Software Encryption, 16th International
Workshop — FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 246–259. Springer, 2009.

[4] D. Khovratovich, I. Nikolić, and R.-P. Weinmann. Meet-in-the-middle attacks
on SHA-3 candidates. In O. Dunkelman, editor, Fast Software Encryption,
16th International Workshop — FSE 2009, volume 5665 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2009.

[5] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential
properties of addition. In M. Matsui, editor, Fast Software Encryption,
8th International Workshop — FSE 2001, volume 2355 of Lecture Notes in
Computer Science, pages 336–350. Springer, 2001.

[6] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[7] S. O’Neil. personal communication, Jan. 2009.

[8] S. O’Neil. EnRUPT. The First SHA-3 Candidate Conference, Leuven,
Belgium, Feb. 2009. Available online at http://csrc.nist.gov/groups/ST/
hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf.

[9] S. O’Neil, K. Nohl, and L. Henzen. EnRUPT hash function specification.
Submission to the NIST SHA-3 competition, Oct. 2008. Available online at
http://csrc.nist.gov/groups/ST/hash/sha-3/.

[10] N. Pramstaller, C. Rechberger, and V. Rĳmen. Exploiting coding theory for
collision attacks on SHA-1. In N. P. Smart, editor, Cryptography and Coding,
IMA International Conference, volume 3796 of Lecture Notes in Computer
Science, pages 78–95. Springer, 2005.

[11] V. Rĳmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, Topics
in Cryptology — CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 58–71. Springer, 2005.

[12] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2):260–269, Apr. 1967.

[13] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/


Publication

Practical Preimages for
Maraca

Publication Data

Sebastiaan Indesteege and Bart Preneel. Practical preimages for
Maraca. In Tjalling Tjalkens and Frans Willems, editors, Proceedings
of the 30th Symposium on Information Theory in the Benelux, pages
119–126. Werkgemeenschap voor Informatie- en Communicatietheorie,
2009.

Contributions

• Principal author.

251



252 PRACTICAL PREIMAGES FOR MARACA



Practical Preimages for Maraca

Sebastiaan Indesteege1,2,∗ and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. The cryptographic hash function Maraca was submitted
to the NIST SHA-3 competition [4] by Jenkins [3]. In this work, we
show a practical preimage attack on Maraca. Our attack has been
implemented and verified experimentally. This shows that Maraca
does not achieve several important security properties which a secure
cryptographic hash function is expected to offer.

1 Introduction

Cryptographic hash functions are easy to compute, deterministic functions that
map an input message of arbitrary length to a short, fixed-length digest. They
are important building blocks in many cryptographic applications. Secure
cryptographic hash functions are required to have several security properties, such
as collision resistance and preimage resistance. In this work, we focus on the latter,
preimage resistance. Informally, this notion means that, given a hash function
output y, it should be difficult to find an input message x hashing to this output.

As recent cryptanalytic advances have raised serious concerns regarding the
security of several widely used hash functions, such as MD5 and SHA-1, the
National Institute of Standards and Technology (NIST) has recently started a
public competition, the SHA-3 competition [4]. This competition aims to develop
a new cryptographic hash function standard. Maraca is a hash function proposal
that was submitted as a candidate to this SHA-3 competition by Jenkins [3], but
it was not selected for round 1 of the competition.

Canteaut and Naya-Plasencia [1] analysed the security of Maraca with respect
to collision attacks, and constructed a theoretical collision attack, requiring 2237

calls to the compression function and a memory of 2230.5 bits.
In this work, we propose a practical preimage attack on Maraca. After a one-

time precomputation, our attack can find many (first) preimages for any hash
output in just a few seconds on an average PC. We have implemented our attack,
and verified it experimentally. Of course, this attack can also be used to construct
collisions or second preimages for Maraca.

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

253

mailto:sebastiaan.indesteege@esat.kuleuven.be


254 PRACTICAL PREIMAGES FOR MARACA

This paper is organised as follows. First, a description of the Maraca hash
function is given in Sect. 2. The basic ideas used in our attack are presented in
Sect. 3. Section 4 focuses on a component of Maraca, the Maraca S-box, as an
important weakness in this component will be exploited in our attack. Section 5
puts everything together, resulting in a practical preimage attack on the Maraca
hash function. The practical aspects of this attack are discussed in Sect. 6. Finally,
Sect. 7 concludes.

2 Description of Maraca

Maraca is a cryptographic hash function proposed by Jenkins [3] as a SHA-3
candidate. It supports digest sizes of up to 1024 bits, and can optionally use a
key. For simplicity, we only describe the unkeyed mode of Maraca here. Hashing
a message with Maraca consists of three phases: message padding, message
processing and digest generation.

First, the input message is padded to a multiple of 1024 bits as follows. If the
message ends in a fractional byte, this byte is filled with zero bits. Then, a 16-bit
tag containing the number of zero padding bits used, is appended to the message.
Finally, zero bytes are used to further pad the message to an integer number of
1024-bit blocks. Note that, unlike many other hash functions, the message length
is not included in the padding.

The operation of the Maraca hash function is shown in Fig. 1. Maraca has an
internal state of 1024 bits, which is initialised to zero. For each 1024-bit message
block Wi, a round is performed. A round consists of the following sequence of
operations. First, the message block Wi is XORed into the internal state. Next, a
1024-bit permutation, which will be described in detail in Sect. 2.1, is applied once.
Then, up to three message blocks are selected from a window consisting of the past
47 message blocks, where message blocks with a negative index are defined to be
all zeroes. This selection of blocks is done in a way that ensures that each message
block is used four times in total. Each of these three message blocks is subjected
to a different fixed rotation and combined into the accumulator Acci using XOR.
The 1024-bit quantity Acci is then XORed into the internal state. Finally, the
same 1024-bit permutation, see Sect. 2.1, is applied twice.

After all message blocks have been processed, 47 blank rounds are performed.
These are rounds where no new message blocks are used. Note that in these blank
rounds, the 47 last message blocks are still reused via the accumulators Acci, even
though there are no new message blocks. Finally, the Maraca permutation, see
Sect. 2.1, is applied 28 more times. The output digest is then found by truncating
the final internal state to the desired length. Thus, digest lengths of up to 1024 bits
can be obtained.



BASIC ATTACK IDEA 255

p
e
rm

p
e
rm

p
e
rm

p
e
rm

p
e
rm

p
e
rm+ + + + +0 · · ·

W0 Acc0 W1 Acc1 W2

round 0 round 1

Figure 1 – The Maraca hash function.

2.1 The Maraca Permutation

The Maraca permutation is a fixed, nonlinear permutation operating on 1024 bits.
It is shown schematically in Fig. 2. The input to this permutation is the 1024-
bit internal state of Maraca, which is arranged as 16 words of 64 bits. First, the
same nonlinear bĳective 8× 8 bit substitution box (S-box) is applied 128 times in
parallel. Each S-box takes a single bit from eight distinct words as its input bits,
as is shown in Fig. 2, and performs a table lookup as defined in Table 1. This
arrangement is intended to allow for a simple bitsliced implementation of Maraca.

After the S-box layer, constants are XORed to six words. Then, the bits in
each word are rotated by a fixed amount, which is different for each word. Finally,
the words are shuffled, i.e., their order is changed. Note that only the S-box layer
is nonlinear. Everything that comes after the S-box layer is just an XOR with
constants, followed by a reordering of the 1024 bits, i.e., a bit permutation. This
is clearly linear, or more precisely as there are constants, affine.

3 Basic Attack Idea

Consider a hypothetical hash function with an n-bit output which, for a certain
fixed message length l, is a linear or an affine function over GF(2). Clearly, any
such function can be written as

[y]n×1 = [A]n×l · [x]l×1 ⊕ [b]n×1 . (1)

Here, x is a binary column vector containing the l bits of the input message and
similarly, y holds the n-bit output digest. The binary matrix A and the binary
vector b allow to express any linear or affine function over GF(2). In the remainder
of this paper, we will drop the distinction between a linear and an affine function,
and refer to both as linear.

Note that finding preimages for such a linear hash function is easy. Given any
output y, it is easy to find a value for the message x such that h(x) = y. Indeed,



256 PRACTICAL PREIMAGES FOR MARACA

S
8 × 8

od
d

ev
en S

8 × 8

⊕
c
o
n
s
t

⊕
c
o
n
s
t

r
o
t
a
t
e

r
o
t
a
t
e

s
h

u
ffl

e

16

64

16

64

non-linear linear, bit permutation

Figure 2 – The Maraca permutation.

all messages x for which h(x) = y are simply the solutions of the system of linear
equations over GF(2) given by:

A · x = y ⊕ b . (2)

Such a system of equations can be solved easily, for instance using Gaussian
elimination.

Even though Maraca is clearly not a linear function, it is in essence this method
that will be used to construct preimages for Maraca. In the remainder of this work,
we will show that by restricting the input messages in a carefully chosen way, it is
possible to turn the Maraca hash function into a linear function over GF(2).

4 Linearising the Maraca S-box

The only component in Maraca which is not linear is the S-box, which is given in
Table 1. However, as was noted by Canteaut and Naya-Plasencia [1], three of the
eight output bits are linear functions of the input bits.

Our aim is to linearise the Maraca S-box completely, i.e., to turn it into a linear
function. The idea is to choose a linear approximation for the nonlinear S-box, and
restrict the inputs to those for which the approximation holds. A trivial example
of this approach is to choose any two input values to the S-box. A linear function
which maps these two input values to the correct outputs can be found easily.

More concretely, the inputs of the S-box are restricted to some affine space.
The reason is that such restrictions can be incorporated easily in the system of
linear equations in (2). If every component of Maraca is replaced by a linear



LINEARISING THE MARACA S-BOX 257

Table 1 – The Maraca S-box (hexadecimal).

 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

0  00 41 26 4f 92 b3 94 bd 0e 47 28 49 9c b5 9a bb

1  8d a4 8b a2 1f 56 39 50 83 aa 85 ac 11 58 37 5e

2  17 76 31 78 a5 84 a3 8a 19 70 3f 7e ab 82 ad 8c

3  ba 93 bc 95 08 61 2e 67 b4 9d b2 9b 06 6f 20 69

4  98 d1 be d7 4a e3 4c e5 96 df b0 d9 44 ed 42 eb

5  55 f4 53 fa 87 46 a1 48 5b f2 5d fc 89 40 af 4e

6  8f e6 a9 e0 6d c4 6b c2 81 e8 a7 ee 63 ca 65 cc

7  72 d3 74 dd 90 71 b6 7f 7c d5 7a db 9e 77 b8 79

8  91 10 b7 1e 43 e2 45 ec 9f 16 b9 18 4d e4 4b ea

9  5c f5 5a f3 8e 07 a8 01 52 fb 54 fd 80 09 a6 0f

a  86 27 a0 29 64 c5 62 cb 88 21 ae 2f 6a c3 6c cd

b  7b d2 7d d4 99 30 bf 36 75 dc 73 da 97 3e b1 38

c  c9 c0 ef c6 1b 32 1d 34 c7 ce e1 c8 15 3c 13 3a

d  04 25 02 2b d6 57 f0 59 0a 23 0c 2d d8 51 fe 5f

e  de f7 f8 f1 2c 05 2a 03 d0 f9 f6 ff 22 0b 24 0d

f  33 12 35 1c c1 60 e7 6e 3d 14 3b 1a cf 66 e9 68

approximation, then every intermediate bit is found as a linear combination of
input bits and possibly a constant. Restricting a set of intermediate bits to
some affine space thus corresponds to adding a number of linear equations to
the system (2).

An exhaustive search through all possible affine input spaces was performed.
For each such space, it was tested whether the Maraca S-box becomes a linear
function when its inputs are restricted to this space. To keep the search complexity
low, the problem was reformulated as a tree search, where new restrictions are
added at every level of the tree. An early abort strategy was used to accelerate
the search. Also, care was taken to avoid duplicate work arising from equivalent
representations of the same affine spaces. Such duplicate work can be avoided by
only investigating sets of conditions in reduced echelon form. The search takes
just a few seconds on an average desktop PC.

The results are remarkable in the sense that imposing just three linear
conditions on the input bits of the Maraca S-box can already linearise it. For
comparison, at least six conditions are required for the AES [2] S-box, which is
also an 8 × 8 bit S-box. An example of a set of conditions which linearises the
Maraca S-box, is the following, where x7, . . . , x0 denote the eight input bits:







x0 = 0
x2 ⊕ x4 = 0

x7 = 0
. (3)

Many such sets of three or more linear conditions which linearise the Maraca
S-box were found. Actually, due to the completeness of the search algorithm used,
it is guaranteed that all of them are found.



258 PRACTICAL PREIMAGES FOR MARACA

5 A Preimage Attack on Maraca

Recall from Sect. 4 that, in Maraca, imposing just three linear conditions on the
input bits of an S-box can already be sufficient to turn it into a linear function. As
a first attempt, consider linearising every S-box in this way, thereby linearising the
entire hash function. Clearly, this will not work, as there are 3 ·128 S-boxes in each
round, thus requiring a total of 1152 conditions per round. But there are only 1024
degrees of freedom available in each round, which arise from the 1024-bit message
block. In other words, for each round, many more equations than unknowns would
be added to the system of equations in (2). As it is very unlikely that, by accident,
enough of these equations would be linearly dependent, the system of equations is
not expected to have any solutions.

5.1 Making Conditions Dependent

A way to overcome this problem is to make use of the fact that there are many
ways to linearise the Maraca S-box. By carefully choosing how to linearise each
S-box, an attempt can be made to make as many conditions as possible dependent
on each other.

Recall the structure of a Maraca round, see Fig. 1. It consists of three
calls to the Maraca permutation, which was introduced in Sect 2.1. Before the
first permutation, a message block Wi is XORed into the internal state. Also,
after the first permutation, a combination of message blocks denoted by Acci is
XORed into the state. But in between the second and the third permutation,
no additional inputs are added to the state. Investigating the linear part of the
Maraca permutation leads to the observation that all eight output bits of an S-box
in the second permutation of a round are input to different S-boxes in the third
permutation of that round. Since conditions on the bits of a single S-box are
required in order to linearise it, only conditions involving a single bit are useful
as they apply to a single S-box in both the second and the third permutation of a
round.

We propose the following approach. The S-boxes in the first permutation of a
round are linearised using three conditions per S-box, for instance using (3). The
S-boxes in the second permutation are linearised using a set of four conditions
per S-box. Depending on the constants and whether the S-box is even or odd-
numbered, one of the following two sets of linearising conditions is used:







x1 ⊕ x3 = 0
x2 ⊕ x5 = 0
x4 ⊕ x5 = 1
x6 ⊕ x7 = 0

or







x1 ⊕ x3 = 0
x2 ⊕ x5 = 1
x4 ⊕ x5 = 0
x6 ⊕ x7 = 0

. (4)

Again, x7 to x0 denote the S-box input bits. While at first it may seem counter-
productive to use more than three conditions per S-box, the advantage is that



A PREIMAGE ATTACK ON MARACA 259

as much as four S-box output bits are also fixed to a particular value by these
conditions.

For the S-boxes in the third permutation, either a set of three or a set of
five linearising conditions is used, again depending on the position of the S-box.
However, because of the way the S-boxes of the second permutation were linearised,
most of these conditions are satisfied automatically. Only one additional condition
needs to be added for the even-numbered S-boxes, i.e., just half of the S-boxes in
the third permutation. Thus, the total number of conditions per round is now
128 · 3 + 128 · 4 + 64 · 1 = 960. As there are 1024 degrees of freedom available in
each round, 64 degrees of freedom are expected to remain per round.

5.2 Maraca’s Finalisation Phase

The last message block contains an amount of padding, which cannot be chosen by
an adversary. However, by choosing an appropriate message length, this padding
overhead can be reduced to just 16 bits whose value will be fixed and known a
priori. This has the effect of reducing the available degrees of freedom in the last
message block slightly, which does not cause any problems.

After all message blocks have been processed, Maraca performs 47 blank
rounds. The S-boxes in these rounds also have to be linearised, but no new
degrees of freedom are available. This problem can be overcome by building up
enough degrees of freedom before the start of the finalisation phase. A simple
estimate learns that about 47 · 960 = 45120 degrees of freedom are required for
the finalisation phase. Each normal round yields on average 64 extra degrees of
freedom. Thus, after 705 rounds, the required number of degrees of freedom could
be achieved. In our experiments, 750 rounds were used, to provide for a reasonable
margin of error.

Finally, there are 28 consecutive calls to the Maraca permutation. Note that
these do not contribute to the security of Maraca in any way, as they are invertible.
Indeed, each of the operations shown in Fig. 2 can be inverted easily. Note that
the Maraca S-box is bĳective. Starting from a Maraca digest, one first reverts the
final truncation by adding arbitrary bits. Then, the final 28 permutations can be
inverted in a straightforward way.

Another improvement is to not linearise the S-boxes in the 47 blank rounds,
but instead fix the last 47 message blocks to some known value. Then, the 47
blank rounds can be inverted, as all the message blocks used in Acci in those
rounds are now known. This can also be seen as moving the blank rounds 47
rounds towards the beginning, which may seem pointless at first. However, now
the (fixed) message bits used in these “blank rounds” can be chosen, instead of
being fixed to zeroes. Note that this principle can also be used to extend the
attack to the keyed mode of Maraca. The key appears both at the beginning and
the end of the padded message. For a fixed key, it is possible to remove the first
and the last message block, which contain the key, and proceed as before.



260 PRACTICAL PREIMAGES FOR MARACA

5.3 Dealing with Contradictions

Up to now, it was silently assumed that none of the additional conditions that
are imposed cause any contradictions. It turns out that this is mostly the case,
but very sporadically, contradictions do occur. Even though they are rare, they
constitute an important issue, as even a single contradiction suffices to make the
entire approach fail.

However, it is possible to work around these unfortunate events at the cost
of some degrees of freedom. When a contradiction is detected, one can just
choose a different linearisation for the problematic S-box. For instance, a trivial
linearisation using seven conditions, which is always possible, can be used. As
contradictions only occur rarely, the overall impact of this procedure on the
available degrees of freedom is close to being negligible.

6 Practical Aspects

Conceptually, our preimage attack on Maraca corresponds to building a system of
linear equations over GF(2), and solving this system of equations. There are some
small complications, such as efficiently detecting contradictions, and modifying the
system of equations to circumvent them, as was discussed in Sect. 5.3. However,
the most important practical obstacle is the large dimension of the system. For
750 rounds, the system of equations has more than 760 000 equations in about
as many unknowns. This amounts to a memory requirement of over 67 GB just
to store the system. Also, for such a large system, the cubic time complexity of
straightforward Gaussian elimination is prohibitively large.

Note however that the system of equations has a block triangular structure.
This is explained by the simple observation that a message block can not affect
the rounds before the first use of this message block. Because of the ample diffusion
in Maraca, the equations are dense otherwise. Furthermore, in order to be able
to efficiently detect contradictions and work around them, it is advantageous
to combine the building and the solving the system. This has the additional
advantage of limiting the memory usage.

Our implementation of the attack consists of two distinct phases. First, there
is a precomputation phase, which has to be done only once, and an online phase
which generates a preimage. All complexity is concentrated in the precomputation
phase.

6.1 The Precomputation Phase

The following approach, which is based on straightforward Gaussian elimination,
was used to build and solve the system of equations simultaneously. Rather than
storing equations, the solution space itself is continuously tracked throughout the
rounds of Maraca. As this is an affine space, it can be represented by a single
displacement vector and a set of basis vectors. These vectors contain a message of



PRACTICAL ASPECTS 261

a fixed length of 750 message blocks, as well as the 1024-bit internal state at the
current position. The solution space is continuously updated as follows.

1. A new message block is added. This corresponds to adding 1024 vectors
to the solution space. Each contains a message with a single “1” bit in
the current message block and zeroes otherwise. Then, the internal state is
updated in every vector to include the XOR with the new message block.

2. Conditions on the internal state bits are imposed in order to linearise the
S-boxes of the first permutation of the round. This step corresponds to
performing a Gaussian elimination step on several of the internal state bits,
and removing certain vectors from the solution space. Note that at this point
it is easy to detect any contradictions, and to choose a different linearisation
for the S-box in question.

3. Now, the internal state in each of the vectors can be updated to include the
(linearised) first permutation of the round. Also, the XOR with Acci, which
is a combination of previous message blocks, can be performed.

4. In a similar way, the conditions for linearising the S-boxes in the second and
third permutation of the round are imposed, further reducing the solution
space.

This procedure is repeated until all rounds have been processed. After a single
round, the dimension of the solution space has been increased by 64, on average, as
1024 new degrees of freedom were introduced, but only 960 conditions were added.
As explained in Sect. 5.2, the 47 last message blocks are set to a fixed value so
that the blank rounds can be inverted. This corresponds to another Gaussian
elimination step in these rounds, which further reduces the solution space.

In the end, an affine message space is found for which the Maraca hash function,
omitting the blank rounds and the final permutations, is linear. Then, it is checked
if this solution space allows to reach any value for the internal state before the
blank rounds. If not, the number of rounds needs to be increased. Our experiments
show that, with 750 message blocks, any state can be reached.

The precomputation phase was implemented to run distributed on a cluster
of computers. Each node keeps a part of the basis vectors in memory, and most
of the computations can be carried out in parallel. Running the precomputation
phase took about 10.7 CPU-days and 20 GB of distributed memory on a cluster of
32 AMD Opteron nodes. The result of the precomputation is a data file of 94 MB.
This is the only data that is required by the online phase.

6.2 The Online Phase

The online phase constructs arbitrary preimages using the data from the
precomputation phase. The target digest is first extended to 1024 bits by adding
arbitrary bits. Then, the 28 final permutations and the 47 blank rounds are
inverted, to retrieve the correct internal state before the start of the blank rounds.



262 PRACTICAL PREIMAGES FOR MARACA

Finally, the appropriate basis vectors from the data file are combined using XOR
to reach the desired internal state. This entire process takes just a few seconds on
an average desktop PC.

As any internal state before the blank rounds can be obtained, our attack is
guaranteed to succeed for any given digest value. By extending the target digest
to 1024 bits in different ways, it is possible to find multiple messages hashing to
a given digest, i.e., multi-preimages. Of course, our attack can also be used to
construct collisions or second preimages for Maraca.

7 Conclusion

In this work, we have shown a practical preimage attack on the hash function
proposal Maraca. The main weakness that we exploit lies within the Maraca
S-box. We have shown that the Maraca S-box can be linearised successfully by
imposing additional linear constraints on the S-box inputs. In this way, the Maraca
hash function can be turned into a linear function, for which it is easy to construct
preimages. Our attack has been implemented and verified experimentally. This
clearly shows that Maraca is not preimage resistant nor collision resistant, and
hence should not be considered to be a secure cryptographic hash function.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.
This research was conducted utilizing high performance computational resources
provided by the University of Leuven, http://ludit.kuleuven.be/hpc.

References

[1] A. Canteaut and M. Naya-Plasencia. Internal collision attack on Maraca. In
H. Handschuh, S. Lucks, B. Preneel, and P. Rogaway, editors, Symmetric
Cryptography, number 09031 in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, Germany, 2009.

[2] J. Daemen and V. Rĳmen. The design of Rĳndael: AES — the Advanced
Encryption Standard. Springer, 2002.

[3] R. J. Jenkins Jr. Maraca: Algorithm specification. Submission to the NIST
SHA-3 competition, Oct. 2008. Available online at http://burtleburtle.

net/bob/crypto/maraca/nist/.

[4] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

http://ludit.kuleuven.be/hpc
http://burtleburtle.net/bob/crypto/maraca/nist/
http://burtleburtle.net/bob/crypto/maraca/nist/


Publication

Cryptanalysis of Dynamic
SHA(2)

Publication Data

Jean-Philippe Aumasson, Orr Dunkelman, Sebastiaan Indesteege, and
Bart Preneel. Cryptanalysis of Dynamic SHA(2). In Michael J.
Jacobson, Jr., Vincent Rĳmen, and Reihaneh Safavi-Naini, editors,
Selected Areas in Cryptography — SAC 2009, volume 5867 of Lecture
Notes in Computer Science, pages 415–432. Springer, 2009.

Contributions

• Cryptanalysis of Dynamic SHA:

– Sect. 3 (Collision attack on Dynamic SHA),

– Sect. 4 (Preimage attack on Dynamic SHA),

– Appendix A (Practical Results), and

– Appendices C.1 and C.2 (Extensions to Dynamic SHA-512).

• Contributions to the cryptanalysis of Dynamic SHA2.

263



264 CRYPTANALYSIS OF DYNAMIC SHA(2)



Cryptanalysis of Dynamic SHA(2)

Jean-Philippe Aumasson1,∗, Orr Dunkelman2,†, Sebastiaan Indesteege3,4,‡,
and Bart Preneel3,4

1 FHNW, Windisch, Switzerland.
2 École Normale Supérieure, INRIA, CNRS, Paris, France.

3 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven,
Belgium.

4 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. In this paper, we analyze the hash functions Dynamic
SHA and Dynamic SHA2, which have been selected as first round
candidates in the NIST hash function competition. These hash
functions rely heavily on data-dependent rotations, similar to certain
block ciphers, e.g., RC5. Our analysis suggests that in the case of
hash functions, where the attacker has more control over the rotations,
this approach is less favorable than in block ciphers. We present
practical, or close to practical, collision attacks on both Dynamic
SHA and Dynamic SHA2. Moreover, we present a preimage attack
on Dynamic SHA that is faster than exhaustive search.

Key words: Dynamic SHA, Dynamic SHA2, SHA-3 candidate, hash
function, collision attack.

1 Introduction

New generic cryptanalytic techniques for hash functions [3,4] and the recent results
on MD5 and SHA-1 [1, 11, 12], along with the fact that the SHA-2 family of hash
functions was designed with a similar structure, have led to the initiation of the
NIST hash function competition [7], a public competition to develop a new hash
standard, which will be called SHA-3.

The competition has sparked a great deal of submissions: 64 new hash function
proposals were submitted to the competition, of which 51 were accepted as meeting
the submission criteria for the first round. Among the 51 candidates, Dynamic
SHA and Dynamic SHA2 stand out as a combination of the SHA family design
with data-dependent rotations.

The concept of data-dependent rotations has been explored for block ciphers in
several constructions, most notably in the RC5 and RC6 block ciphers [8, 9]. The

∗Supported by the Swiss National Science Foundation, project no. 113329.
†This author was supported by the France Telecom chaire.
‡F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

265



266 CRYPTANALYSIS OF DYNAMIC SHA(2)

security of such block ciphers has been challenged many times, and a majority of
attacks is based on guessing the distances of the rotations. In cryptanalysis of hash
functions, however, the internal state is known. The attacker even has control over
(parts of) the internal state, including rotations, though sometimes this control is
only indirect. For example, Mendel et al. [6] exploited data-dependent rotations
to find collisions for the hash function of Shin et al. [10]. Our attacks on Dynamic
SHA and Dynamic SHA2 also exploit data-dependent rotations, to find (second)
preimages and collisions.

2 Brief Description of Dynamic SHA and Dynamic
SHA2

Dynamic SHA and Dynamic SHA2 use similar building blocks, but have different
compression functions. This section gives a brief description of these algorithms.

Dynamic SHA and Dynamic SHA2 follow a classical Merkle-Damgård construc-
tion, based on a compression function that maps an 8-word chaining value and a
16-word message to a new 8-word chaining value. The 256-bit versions use 32-bit
words, and the 512-bit versions use 64-bit words. We focus on the 256-bit versions,
also called Dynamic SHA-256 and Dynamic SHA2-256. See [13, 14] for details on
the 512-bit versions, Dynamic SHA-512 and Dynamic SHA2-512. The following
presents a bottom-up description of the compression function, thus starting with
its building blocks.

The symbol ⊕ stands for exclusive OR (XOR), ∧ for logical AND, ∨ for logical
OR, and + for integer addition. Numbers in hexadecimal basis are written in
typewriter font (e.g., FF = 255). We count bit indices starting from zero at the
least significant bit (LSB). Thus, the first bit of a word w is written as w0, and more
generally we use the notation wi for the bit i of the word w. The most significant
bit (MSB) of w is thus w31 for Dynamic SHA-256, and w63 for Dynamic SHA-512.
Note that the i-th bit of a word corresponds to the bit number i−1, since we start
counting from zero.

2.1 Building Blocks

The function G takes as input three words x1, x2, x3 and an integer t ∈ {0, 1, 2, 3},
and returns one word, computed as follows:

Gt(x1, x2, x3) =







x1 ⊕ x2 ⊕ x3 if t = 0
(x1 ∧ x2)⊕ x3 if t = 1
(x1 ∧ x2)⊕ x3 ⊕ ¬x1 if t = 2
(x1 ∧ x2)⊕ x3 ⊕ ¬x2 if t = 3

.

Note that this definition is simplified, but equivalent to the original in [13,14].



BRIEF DESCRIPTION OF DYNAMIC SHA AND DYNAMIC SHA2 267

The function R takes as input eight words x1, . . . , x8 and an integer t, and
returns one word computed as follows:

R(x1, . . . , x8, t) = (((((((x1 ⊕ x2) + x3)⊕ x4) + x5)⊕ x6) + x7)⊕ x8) ≫ t .

The function R1 takes as input eight words x1, . . . , x8 and returns one word
computed as follows (in the 256-bit versions):

t0 ← (((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7

t1 ← ((t0 ≫ 17)⊕ t0) ∧ 0001FFFF

t2 ← ((t1 ≫ 10)⊕ t1) ∧ 000003FF

t3 ← ((t2 ≫ 5)⊕ t2) ∧ 0000001F

return x8 ≫ t3

Finally, the COMP function takes as input eight words a, . . . , h representing the
internal state, eight message words w0, . . . , w7, or w8, . . . , w15, and an integer t.
COMP updates the internal state as follows (in the 256-bit versions):

T ← R(a, . . . , h, wt mod 32) T ← R(a, . . . , h, (wt ≫ 15) mod 32)
h ← g h ← g + wt+7

g ← f ≫ ((wt ≫ 5) mod 32) g ← f ≫ ((wt ≫ 20) mod 32)
f ← e + wt+3 f ← e + wt+6

e ← d ≫ ((wt ≫ 10) mod 32) e ← d ≫ ((wt ≫ 25) mod 32)
d ← Gwt≫30(a, b, c) + wt+2 d ← Gt mod 4(a, b, c) + wt+5

c ← b c ← b + wt

b ← a b ← a
a ← T + wt+1 a ← T + wt+4

2.2 Compression Functions

Given a chaining value h0, . . . , h7 and a message block w0, . . . , w15, the compression
function of Dynamic SHA (Dynamic SHA2, respectively) produces a new chaining
value, as described in Fig. 1 (Fig. 2, resp.).

The compression function of Dynamic SHA is composed of an initialization, an
iterative part of 48 rounds, and a feedforward of the initial chaining value. It uses
three constants TT0, TT1, TT2.

The compression function of Dynamic SHA2 is composed of an initialization
followed by three iterative parts, and finally by a feedforward. Note that, when
calling COMP with the message words w8, . . . , w15 and an integer t, wt stands
for w8, wt+1 stands for w9, etc. Dynamic SHA2, surprisingly enough, uses no
constants.



268 CRYPTANALYSIS OF DYNAMIC SHA(2)

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

Iterative part

for t = 0, 1 . . . , 47:

T ← R1(a, b, c, d, e, f, g, h)
U ← G(a, b, c, t mod 4) + wt mod 16 + TTt≫4

(a, b, c, d, e, f, g, h) ← (T, a, b, U, d, e, f, g)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d
h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h

Figure 1 – Compression function of Dynamic SHA.



COLLISION ATTACK ON DYNAMIC SHA 269

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

First iterative part

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, 0)
COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, 0)

Second iterative part

for t = 0, 1 . . . , 8:

T ← R1(a, b, c, d, e, f, g, h)
(a, b, c, d, e, f, g, h) ← (T, a, b, c, d, e, f, g)

Third iterative part

for t = 1, 2 . . . , 7 :

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, t)
COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, t)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d
h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h

Figure 2 – Compression function of Dynamic SHA2.



270 CRYPTANALYSIS OF DYNAMIC SHA(2)

3 Collision Attack on Dynamic SHA

This section describes a practical collision attack on Dynamic SHA. It builds
on a 9-step local collision that exploits an important differential property of the
function R1, which we introduce first. The same local collision pattern is repeated
three times to find collisions for the entire compression function. Furthermore,
these three instances of the local collision pattern can be decoupled, which
drastically reduces the attack complexity. We present the attack on Dynamic SHA-
256 here. We could adapt it to Dynamic SHA-512 with only minimal changes, as
detailed in Appendix C.

3.1 A Differential Property of the Function R1

To overcome the obstacle of data-dependent rotation, our attack ensures that no
difference occurs in any of the data-dependent rotation amounts. This section
clarifies how to achieve this.

The data-dependent rotations are located in the 8-input function R1. For
Dynamic SHA-256, consider the difference ∆ = 80004000, i.e., only bits 31 and
14 are set. Let one of the first seven inputs to the function R1 have this difference,
i.e., one of x1, . . . , x7. In the first step of R1, an intermediary word t0 is computed
as follows:

t0 ← ((((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7 .

The difference in the MSB always propagates to t0. Assuming that no carry occurs
for bit 14, the intermediary t0 also has the difference ∆. If t0 has a difference ∆,
this difference is then absorbed by the rest of the function R1. Indeed, the next
step computes the intermediary word t1 as

t1 ← ((t0 ≫ 17)⊕ t0) ∧ 0001FFFF .

Note that (∆ ≫ 17) ⊕ ∆ = 80000000, which is absorbed by the logical AND
operation. We note that there are other differences of Hamming weight 2 that
exhibit the same property and may be used without any change in the attack, e.g.,
∆ = 80000010

We now estimate the probability that a single ∆-difference in one of the first
seven inputs of the function R1 is absorbed. As a ∆-difference in t0 is absorbed
with certainty, it suffices that a ∆-difference in one of the seven first inputs
propagates to t0. This happens when no carry difference occur for bit 14 in
any of the modular additions. The probability that a one-bit difference in one
of the summands in an addition does not cause a carry difference is 1/2. Thus, the
probability that a ∆-difference is absorbed by the function R1 can be estimated to
2−k, where k is the number of modular additions the difference propagates through.
For instance, a difference in x3 activates two modular additions, so k = 2.

However, the actual probability is higher, as the undesirable effects of a carry
difference in one modular addition can be reverted by another carry difference



COLLISION ATTACK ON DYNAMIC SHA 271

Table 1 – A 9-step local collision for Dynamic SHA. The difference
at step t is the difference in the state before computing step t.

t a b c d e f g h w Pr

0 0 0 0 0 0 0 0 0 ∆ 2−1

1 0 0 0 ∆ 0 0 0 0 0 2−1.58

2 0 0 0 0 ∆ 0 0 0 0 2−1

3 0 0 0 0 0 ∆ 0 0 0 2−1

4 0 0 0 0 0 0 ∆ 0 0 1
5 0 0 0 0 0 0 0 ∆ 0 2−5

6 ∆ 0 0 0 0 0 0 0 0 2−2.07 · 2−2

7 0 ∆ 0 0 0 0 0 0 0 2−2.07 · 2−2

8 0 0 ∆ 0 0 0 0 0 ∆ 2−1.58 · 2−1

0 0 0 0 0 0 0 0

in a subsequent addition. The combination of modular additions and XOR can
be represented compactly in a trellis, and a variant of the Viterbi algorithm can
be used to efficiently count the probability that a ∆-difference is passed to t0
unchanged. Our computer aided research revealed that this is indeed an important
effect: For a difference in x3 or x4, the actual probability is 2−1.58 rather than
2−2, and for a difference in x1 or x2, the actual probability is 2−2.07 rather than
2−3. For differences in the other words, only one modular addition is affected, so
no carry differences can be canceled. Hence, in those cases, the simple estimation
is correct.

3.2 A 9-Step Local Collision

We present a simple 9-step local collision for Dynamic SHA in Table 1. A difference
of ∆ = 80004000 is introduced, then, all further diffusion of this difference is
avoided. After seven more steps, the difference has rotated through the internal
state of Dynamic SHA once, and can be canceled via an appropriate difference in
the message word. The characteristic has probability 2−20.3.

In step 0, a ∆-difference is introduced via the message word. Note that
the message word itself can contain any additive difference that can cause a ∆-
difference in the state. In steps 1 to 4, the ∆-difference in one of the state variables
is absorbed by the function R1, as described in Section 3.1. Then, at the beginning
of step 5, there is a ∆-difference in the internal state word h. This word is rotated
by a data-dependent amount, and thus we can require that it is rotated by zero
bits, i.e., not rotated at all. In steps 6 and 7, the ∆-difference should be absorbed
by the G-functions. Any G-function except XOR absorbs differences in its first
two inputs with probability 1/2 per bit. Also, R1 should absorb the differences in



272 CRYPTANALYSIS OF DYNAMIC SHA(2)

these steps. Finally, in step 8, the difference in the state variable c is canceled by
another ∆-difference coming from the message word.

The probability that the local collision pattern is followed is estimated by
simply multiplying the probabilities of all the events discussed above. The
probabilities of each step are indicated in Table 1. This yields an overall probability
of 2−20.3 for the entire 9-step local collision.

3.3 The Attack

Our attack repeats the 9-step collision three times. This made possible by the
simple message schedule, which consists of a simple repetition of the 16 words in a
message block. Thus, the only message words that have a difference are w0, which
introduces the differences, and w8, which cancels them.

A straightforward attack would consist of choosing an arbitrary message block,
and applying a difference of ∆ = 80004000 to w0 and w8. As the local collision
is repeated three times, the complexity of this attack would be approximately
(220.3)3 = 261. This can be improved tremendously by making the three local
collisions independent. Then, the three local collision complexities can be added
rather than multiplied.

The first two local collisions can be decoupled in a straightforward manner
as only the message words w0 to w8 influence the first local collision. Therefore,
once suitable values for these message words have been found, there is still enough
freedom remaining in the other message words. The words w0 to w8 can thus be
kept constant, while values for w9 to w15 are searched such that the second local
collision is also achieved.

Controlling Internal State Values. In each step of Dynamic SHA, the new value
of the internal state word d is found as the modular addition of a message word and
an intermediate depending on the internal state words a, b and c. Full control over
message words allows an adversary to give the internal state word d any desired
value. Indeed, it holds that

wt mod 16 = dnew −G(a, b, c, t mod 4)− TTt≫4 .

Applying this to eight consecutive steps allows one to almost fully control the final
internal state. In every step, the new value of d is fixed to some desired value.
These values then shift through the internal state words a number of times, to end
up as one of the internal state words after the eighth step. However, a complication
arises with the first three steps, which ends up in the state words a, b and c. Before
a controlled value from d ends up in one of these three state words, it is be rotated
by a data-dependent amount. An obvious way to sidestep this issue is to choose a
rotation-invariant value for these three words, i.e., 00000000 or FFFFFFFF. Then,
the data-dependent rotations have no influence.



PREIMAGE ATTACK ON DYNAMIC SHA 273

Decoupling All Three Local Collisions. Our attack consists of three phases, each
dealing with one local collision. The first phase satisfies the first local collision,
using the message words w0 to w8. It would be possible to use message modification
techniques here to find a conforming message pair quicker, but as the later phases
of the attack dominate the overall complexity anyway, no significant gains can be
made in this way.

To satisfy the second local collision, we use the freedom in the remaining
message words. However, we do not choose the remaining message words directly,
but rather choose the internal state after step 15. We then use the words w8 to w15

to connect to this state, using the technique outlined earlier. We fix the values of
a, b and c to zero, to make them rotation-invariant, and choose the remaining five
words arbitrarily. Note that w8 was already determined in phase 1, so it should not
be modified again, but w8 is used here to force a zero value, which ends up in the
internal state word d after step 15. This issue is solved by shifting this condition
on w8 to phase 1. Instead of arbitrarily choosing w8 there, it is computed such
that the required zero is generated. This does not change the complexity of the
first phase.

Finally, to satisfy the third local collision, we modify w7. Then, only d changes
after step seven. As the value in w8, which should force d to zero after step eight,
depends only on the internal state words a, b and c before step eight, modifying w7

does not require a correction in w8. Thus, such modifications do not change the
fact that the first local collision pattern is followed. The values of w9 to w15 are
then updated such that the internal state after step 15 is unchanged, and so the
start of the second local collision will be unaltered. For the same reasons as before,
the change in w7 also does not affect the end of the second local collision pattern.

Hence, we dispose of a modification algorithm that leaves the first two local
collisions unaffected, but changes the internal state values before the third local
collision randomly. This provides the required freedom to also satisfy this third
and final local collision. Hence, the overall attack complexity can be estimated at
about 221 Dynamic SHA compression function computations. Appendix A reports
on our implementation of the attack, with an example of collision.

4 Preimage Attack on Dynamic SHA

This section describes (first and second) preimage attacks on Dynamic SHA. We
first describe how to find preimages for the compression function of Dynamic SHA,
and then explain how to extend this to first and second preimage attacks. on the
Dynamic SHA hash function. We describe how to attack Dynamic SHA-256 here,
and refer to Appendix C for details on how to adapt the attack to Dynamic SHA-
512.

Conceptually, our preimage attack bears some similarity to the work on SHA-0
and SHA-1 by De Cannière and Rechberger [2], for it finds a preimage bit slice per
bit slice. If all data-dependent rotation amounts in Dynamic SHA are assumed to



274 CRYPTANALYSIS OF DYNAMIC SHA(2)

be zero, then a bit of any intermediate word cannot be influenced by any other
bit of higher position. This is because, besides rotations, all operations are either
bit-wise or modular additions.

4.1 Preimage Attack on the Compression Function

Assume that the rotations in a block of Dynamic SHA are all zero. Then, all
words in Dynamic SHA can be divided into bit slices, as all computations are now
T-functions [5]. As noted above, bit i of each word can only be influenced by bits 0
to i of other words. When bits 0 to (i − 1) of each word are known, bit i of all
words can be determined.

In a preimage attack on the Dynamic SHA compression function, the internal
state is given before step 0 and after step 47. Our attack starts by determining
the LSB of each word. To determine this bit of all of the internal state words in
every step, only the LSBs of the 16 message words need to be known. There are
216 choices for these 16 bits. Then, it can be verified whether the LSBs of the
eight internal state words after step 47 are correct. This occurs with probability
2−8, so 28 choices are expected to survive.

We then proceed to the next bit slice. Keeping the choice for the LSB slice
fixed, the same procedure can be repeated. For each choice of the LSB slice again
28 choices for the second LSB are expected to survive. For Dynamic SHA-256,
this procedure is repeated until the 28 LSBs (bits 0–27) have been determined. At
that point, one of the bits of each of the 48 rotation constants can be determined,
as it does not depend on the higher bits of any word. Now, it can be verified
if the initial assumption that all rotation constants are zero indeed holds. This
corresponds to a 48-bit condition, i.e., for all rotation constants to be zero, surely
this single bit of each rotation constant has to be zero. Any choices that do not
satisfy this condition are eliminated. Then, the next bit is determined as before,
after which another bit of each rotation constant can be verified. This is repeated
until all bits have been determined.

4.2 Complexity Evaluation

The attack can be described as a simple tree search, where a tree level corresponds
to a bit slice, and a node represents an assignment for all bits in the slice under
consideration, and all LSB slices. To expand a node in the tree, one guesses the
16 message bits of the next slice, and checks that the conditions on the state
words after step 47 are satisfied. As explained above, on average about 28 choices
are expected to survive, i.e., the tree has a branching factor of 28. When the
28 LSB slices are known, however, the average number of child nodes drops by
2−48 due to the additional filtering. The cost of expanding one node is about
216 Dynamic SHA compression function evaluations, as 216 choices have to be
investigated. The expected number of solutions is equal to the expected number
of nodes at the deepest level of the tree, which is 28·32 · 2−48·5 = 216. This



PREIMAGE ATTACK ON DYNAMIC SHA 275

agrees with the observation that for a given input/output chaining values of the
compression function, there are expected to be 2256 message blocks that conform
to this combination. For each of these, the probability that all the rotations are
by 0 positions is 2−240, so about 216 remain.

As we aim to find just one solution, i.e., any node on the deepest level of the
tree, a depth-first search is well suited to our application. It requires only negligible
memory and can easily be parallelised. Since, for Dynamic SHA-256, 216 solutions
are expected, the depth-first search needs to search only about a fraction 2−16 of
the entire tree before encountering the first solution. Due to the large branching
factor, the total number of nodes in the tree is well approximated by the number
of nodes on the widest level of the tree, which has 28·27 = 2216 nodes for Dynamic
SHA-256. The search is thus expected to expand about 2200 nodes, each of which
costs 216 Dynamic SHA-256 compression function evaluations, resulting in a total
attack complexity of 2216 Dynamic SHA-256 compression function evaluations.

4.3 Application to the Hash Function

Our preimage attack on the compression function directly gives a second preimage
attack on the Dynamic SHA hash function with the same complexity, provided
that there is at least one message block that does not contain any padding in the
challenge message.

For a first preimage, the padding bits limit the control an attacker has over
the message bits. It is not possible to simply copy the padding as in a second
preimage attack. Thus, we use the following approach instead. First, choose a
message length such that the last padded message block only contains 65 bits of
padding, which is the minimum. Then, choose an arbitrary message for all but
the last message block. Finally, a modified version of the attack in Section 4.1 is
used to determine the last message block.

The main difference is that the last 65 bits of the message block can not be
chosen by the adversary, as they are padding bits. Their contents are fixed by the
choice of the message length. However, the same approach as in Section 4.1 can
still be applied, except that fewer bits can be chosen in each bit slice. For Dynamic
SHA-256, the expected number of solutions in the search tree now becomes 26·27 ·
2−42·4 · 2−43·1 = 2−49. A solution is thus only expected to exist with probability
2−49, thus the attack is repeated sufficiently many times with a different message
length. The number of nodes at the widest level of the tree is 26·27, and the cost
for expanding a single node at this level is 214 Dynamic SHA compression function
calls. Thus, the total attack complexity becomes approximately 249 · 26·27 · 214 =
2225 Dynamic SHA compression function evaluations.



276 CRYPTANALYSIS OF DYNAMIC SHA(2)

5 Collision Attack on Dynamic SHA2

To attack Dynamic SHA2, we use similar ideas as for Dynamic SHA. Specifically,
we use the control of the message to ensure that as many rotations as possible
are by the amounts that we need. Moreover, as many of the rotations amounts
are directly determined by the message, our task becomes easier. Our attack is
based on introducing a difference in the most significant bit of two message words,
w8 and w14. As a 32-bit condition is imposed on the chaining value, a two-block
collision finding technique is used, where the first block is searched until a suitable
chaining value is encountered. We describe our attack on Dynamic SHA2-256 here.
It can be adapted to Dynamic SHA2-512, as Appendix C shows.

5.1 First Iterative Part

Given an initial value a, . . . , h, the first iterative part of the compression function
of Dynamic SHA2 updates the chaining value words a, . . . , h by computing

COMP(a, b, . . . , h, w0, w1, . . . , w7) ,

Since there is no difference in the message words w0, . . . , w7 nor in the initial value,
we have no difference at this stage.

Then, Dynamic SHA2 computes

COMP(a, b, . . . , h, w8, w9, . . . , w15) .

To follow our characteristic, the difference in w8 and in w14 should lead to a
difference ∆ = 80000000 in c and in f . Below, we show that, to obtain these
differences, it suffices to set w30

8 = 1 and to ensure that b equals FFFFFFFF after
the first COMP. These conditions are easily satisfied, and do not increase the
complexity of our attack.

We note that w14 is used only once in the first iterative part. Thus the difference
∆ in w14 only propagates to f , when COMP sets f ← e + w14. The word w8,
however, is used eight times, but as only the MSB has a difference, only two
of these require our attention: first, when setting c ← b + w8 (which gives the
difference ∆ in c with probability one), and second when setting

d← Gw8≫30(a, b, c) + w10 .

Here, the two MSBs of w8 encode the index of the function used in G. Since we
have a difference in the MSB of w8, different functions are applied to (a, b, c). To
obtain the same output, we require that the functions G1 and G3 are used, that
is, we set the bit w30

8 = 1. The reason for this is that, when b equals FFFFFFFF,
it is ensured that the outputs of both functions are equal, as can readily be seen
from the definition of the G-functions in Section 2.1.

To summarize, a difference ∆ in w8 and w14 yields a difference ∆ in c and
f after the first iterative part. To have b = FFFFFFFF, it is sufficient to start



COLLISION ATTACK ON DYNAMIC SHA2 277

Table 2 – Differential characteristic for the second iterative part of
Dynamic SHA2. The difference at step t is the difference in the state
before computing step t.

t a b c d e f g h

0 0 0 ∆ 0 0 ∆ 0 0
1 0 0 0 ∆ 0 0 ∆ 0
2 0 0 0 0 ∆ 0 0 ∆
3 ∆ 0 0 0 0 ∆ 0 0
4 0 ∆ 0 0 0 0 ∆ 0
5 0 0 ∆ 0 0 0 0 ∆
6 ∆ 0 0 ∆ 0 0 0 0
7 0 ∆ 0 0 ∆ 0 0 0
8 0 0 ∆ 0 0 ∆ 0 0

from a chaining values that gives at the very first COMP a T such that T + w1 =
FFFFFFFF. Such a chaining value can be reached in about 232 trials, and needs to
be precomputed only once. That is, one first needs to find a message block leading
to a chaining value that satisfies T + w1 = FFFFFFFF, before starting the actual
differential attack with a second block. Actually, by using the freedom in w0 and
w1 rather than fixing them a priori, this step can be accelerated further. However,
as the other parts of the attack dominate the overall complexity, no significant
gains can be made in this way.

5.2 Second Iterative Part

Table 2 describes our differential characteristic for the second iterative part of
Dynamic SHA2. Note that no message word enters this part. A set of conditions
that ensure that this characteristic is followed, is relatively simple. Indeed, except
when t = 2 and t = 5, the two differences ∆ vanish in the first step of the
computation of R1, namely when computing

(((((a + b)⊕ c) + d)⊕ e) + f)⊕ g .

Therefore, particular conditions are only required for t = 2 and t = 5.
When t = 2, the difference in e gives a difference of 16 in the rotation amounts,

and so the function R1 returns h ≫ r and (h⊕∆) ≫ (r+16 mod 32), respectively.
In order to obtain, as required by our differential characteristic, the relation

(h ≫ r)⊕∆ = (h⊕∆) ≫ (r + 16 mod 32) ,

a sufficient condition is to have r = 16, and h invariant under 16-bit rotation, i.e.,
(h ≫ 16) = h. This means that h should be of the form XYZTXYZT, which we call
symmetric. When t = 5, we require similar conditions.



278 CRYPTANALYSIS OF DYNAMIC SHA(2)

Now, observe that the words that should be symmetric are c and f obtained
after the first iterative part. The values of c and f then directly depend on w8

and w14 (see description of COMP in Section 2). We now have to find values of
w8 and of w14 that give symmetric c and f .

Such w8 and w14 can be found as follows: first fix w14 to some arbitrary value,
and search for a w8 that gives a symmetric c, in 216 trials. Then, fix w8 to the
value found, and search for a pair (w5, w14) that gives a symmetric f after the first
iterative part. Here we need w5 to have enough freedom, since for certain choices
of w5, there does not exist a suitable w14. Again, 216 trials are expected. Then
we are enough degrees of freedom in the message words that do not affect c and f
to find rotation r = 16.

Assuming symmetric c and f after the first iterative part, the characteristic is
followed with probability 2−10, since the condition r = 16 is satisfied for both t = 2
and t = 5 with probability 2−5 × 2−5. By trying several values of, for example,
w9, and leaving the other message words fixed, one can thus find a conforming
message pair for the first two iterative parts in about 210 trials.

5.3 Third Iterative Part

Given the final difference of the second iterative part, we found a characteristic for
the second round that yields no difference in the final state, thus given a collision.
Table 6 in Appendix B describes our differential characteristic. Appendix B also
explains in detail why the characteristic can be followed with probability 2−42,
given some conditions on the input.

Combining our differential characteristics with their respective conditions on
the message, we obtain a method for finding a 2-block collision in about 242+10 =
252 trials. The attack succeeds with probability close to one.

6 Conclusion

In this paper we have discussed the security of the two SHA-3 candidates Dynamic
SHA and Dynamic SHA2. We have analyzed their security, and found out that,
despite their reliance on data-dependent rotations and in the case of Dynamic
SHA2 even data-dependent functions, their security is subverted by the vast control
and knowledge the adversary has while attacking a hash function. We also showed
that neither Dynamic SHA nor Dynamic SHA2 are suitable to be selected as SHA-
3, following their lack of security. Table 3 summarizes our results.

Acknowledgements

The research presented in this paper was performed in part while the authors were
visiting Schloss Dagstuhl (http://www.dagstuhl.de/) in January 2009.

http://www.dagstuhl.de/


REFERENCES 279

Table 3 – Summary of our results.

Hash Function Attack Complexity Section

Dynamic SHA-256 Collision 221 3
Dynamic SHA-512 Collision 222 3,C
Dynamic SHA-256 Second preimage 2216 4
Dynamic SHA-512 Second preimage 2256 4,C
Dynamic SHA-256 First preimage 2225 4
Dynamic SHA-512 First preimage 2262 4,C

Dynamic SHA2-256 Collision 252 5
Dynamic SHA2-512 Collision 285 5,C

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.

References

[1] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General
results and applications. In X. Lai and K. Chen, editors, Advances in
Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2006.

[2] C. De Cannière and C. Rechberger. Preimages for reduced SHA-0 and SHA-1.
In D. Wagner, editor, Advances in Cryptology — CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 179–202. Springer, 2008.

[3] J. Kelsey and T. Kohno. Herding hash functions and the Nostradamus attack.
In S. Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer,
2006.

[4] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In R. Cramer, editor, Advances in Cryptology —
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 474–490. Springer, 2005.

[5] A. Klimov and A. Shamir. Cryptographic applications of T-Functions. In
M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography —
SAC 2003, volume 3006 of Lecture Notes in Computer Science, pages 248–261.
Springer, 2004.



280 CRYPTANALYSIS OF DYNAMIC SHA(2)

[6] F. Mendel, N. Pramstaller, and C. Rechberger. Improved collision attack on
the hash function proposed at PKC’98. In M. S. Rhee and B. Lee, editors,
Information Security and Cryptology — ICISC 2006, volume 4296 of Lecture
Notes in Computer Science, pages 8–21. Springer, 2006.

[7] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[8] R. L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast
Software Encryption, Second International Workshop — FSE ’94, volume
1008 of Lecture Notes in Computer Science, pages 86–96. Springer, 1995.

[9] R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin. RC6 as the AES. In Third
AES Candidate Conference, pages 337–342. National Institute of Standards
and Technology, 2000.

[10] S. U. Shin, K. H. Rhee, D. Ryu, and S. Lee. A new hash function based
on MDx-family and its application to MAC. In H. Imai and Y. Zheng,
editors, Public Key Cryptography — PKC ’98, volume 1431 of Lecture Notes
in Computer Science, pages 234–246. Springer, 1998.

[11] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In M. Naor, editor,
Advances in Cryptology — EUROCRYPT 2007, volume 4515 of Lecture Notes
in Computer Science, pages 1–22. Springer, 2007.

[12] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

[13] Z. Xu. Dynamic SHA. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

[14] Z. Xu. Dynamic SHA2. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

A Practical Results

We have implemented our collision attack on Dynamic SHA. Collisions for
Dynamic SHA-256 and Dynamic SHA-512 are found in a matter of seconds on an
average desktop PC. A collision example for Dynamic SHA-256 is given in Table 4.
An all-zero block was appended to both messages to circumvent an error in the
padding routine of the Dynamic SHA reference implementation, which causes part
of the last message block to be reused in the padding block.

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/


DIFFERENTIAL CHARACTERISTIC FOR DYNAMIC SHA2 281

Table 4 – Collision example for Dynamic SHA-256: two messages
and their common digest.

34BC5378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

22FBFA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

B4BC9378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

A2FBBA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

703C40F7 9DDFE2C6 8298F6D0 8D2B45B6 664CBB71 8BAB1BE3 DD563F77 0D0901E6

B Differential Characteristic for Dynamic SHA2

This appendix describes the differential characteristic for the third iterative part
of Dynamic SHA2, used in our collision attack presented in Section 5.

A transition in Table 6 has probability 1/2 when there is a difference in a or b
and G1, G2 or G3 is used. In this case, the difference does (not) propagate with
probability 1/2. When there is a difference only in c, it always propagates to the
output of the G function, independent of the function used. We also note that a
difference ∆ in one operand of R is always transferred to T , and thus to a, except
when wt+1 or wt+4 are w8 or w14, in which case the differences vanish. When two
operands of T have a difference ∆, they cancel out and yield no difference in T .

The probabilities for each step assume some conditions on the message. We
will take as example the first COMP when t = 2: we start with a difference

0 ∆ 0 ∆ 0 0 0 0

in the chaining value a, b, . . . , h. In the computation of COMP (first half), there is
no difference in T , because the ∆ difference in b cancels that of d. The assignment
of the new values of f, g, h requires no condition on the message, for it only involves
words with no difference. To obtain a difference ∆ in e, we need that d is rotated
by zero bit positions, that is, we need the bits 10 to 14 of w2 to be zero. This
is easy as we have direct control over w2. Then, to obtain no difference in d, we
require that the difference in b does not propagate in G. This is only possible if
the Boolean function in G is not x1⊕x2⊕x3 (see Section 2.1). Since the Boolean
function is determined by the last two bits of w2, we require w30

2 ∨ w31
2 = 1, i.e.,

these bits should not be both zero. Now, the difference will not propagate in G
with probability 1/2. Finally, we get a difference ∆ in c with probability 1.

By applying a similar reasoning to all the steps of our differential characteristic,
we obtain conditions on the message w0, . . . , w15 that are sufficient to conform to
the characteristic with probability 2−42. Table 5 summarizes these conditions,
along with the conditions for the other iterative parts.



282 CRYPTANALYSIS OF DYNAMIC SHA(2)

Conditions on w0, . . . , w7 ensure that in the first COMP of each step the
rotations are by bit zero positions, and thus the difference remains in the MSB.
The probabilities smaller than one are the probabilities that the function G absorbs
or passes a difference in a or b. In the second COMP, we need some rotations to
be zero in order the difference to stay in the MSB. This is achieved by setting
conditions on the message, for example at t = 1, the first ten bits of w9 should be
zero. Table 5 summarizes these conditions. After satisfying all these conditions,
about 200 bits of freedom remain; indeed, besides w8 and w14, the message words
w1 to w4 have to be fixed to let the symmetric c and f unchanged after the first
iterative part.

At step t = 6, the difference in the MSB of w14 implies that G will apply
different functions to (a, b, c). Similarly to Section 5.1, we will require w30

14 = 1
and b = EFFFFFFF, which will occur with probability 2−32. The MSB of b should
be zero in order the difference to propagate, which will happen with probability
1/2, thus the total probability for this step 1/2× 2−32 = 2−33

C Extensions to the 512-bit Versions

The attacks presented in this paper can be extended to the 512-bit versions of
Dynamic SHA and Dynamic SHA2 in a straightforward way. This appendix details
how the attacks can be adapted.

C.1 Collision Attack on Dynamic SHA

The attack on Dynamic SHA-256 can be adapted to Dynamic SHA-512 with
almost no change. Due to the different R1 function, the difference word is
∆ = 8000000080000000. Also, the probability of the local collision is lowered
by about 2−1 compared to Dynamic SHA-256, as in the fifth step six rotation bits
have to be fixed to zero instead of only five.

C.2 Preimage Attack on Dynamic SHA

The preimage attack on Dynamic SHA-512 is similar to that on Dynamic SHA-
256, except that the 59 LSBs are determined, instead of the 28 LSBs. Then, when
building the tree, 2224 solutions are expected, leading to an attack complexity of
2256 on the compression function. Calculations for preimages on the full hash
function (with correct padding bits) give a cost of of 2262 compression function
evaluations.

C.3 Collision Attack on Dynamic SHA2

To attack Dynamic SHA2-512 we use a similar differential path. The changes
are that the condition on the first block is on 64 bits (starting from a chaining



EXTENSIONS TO THE 512-BIT VERSIONS 283

Table 5 – Conditions on the message words w0, . . . , w15: sufficient
to follow our differential characteristic in Dynamic SHA.

Word Condition

w0 –

w1 w1 = 0

w2 w10
2 = · · · = w14

2 = 0, w25
2 = · · · = w29

2 = 0, w30
2 ∨ w31

2 = 1

w3 w30
3 ∨ w31

3 = 1

w4 w20
4 = · · · = w29

4 = 0, w30
4 ∨ w31

4 = 1

w5 w5
5 = · · · = w9

5 = 0

w6 w0
6 = · · · = w4

6 = 0, w15
6 = · · · = w19

6 = 0, w20
6 = · · · = w29

6 = 0

w7 w5
7 = · · · = w14

7 = 0, w20
7 = · · · = w24

7 = 0

w8 difference in w31
8 , w30

8 = 1

w9 w0
9 = · · · = w9

9 = 0

w10 w5
10 = · · · = w14

10 = 0

w11 w15
11 = · · · = w29

11 = 0, w30
11 ∨ w31

11 = 1

w12 w10
12 = · · · = w24

12 = 0

w13 w0
13 = · · · = w4

13 = 0, w15
13 = · · · = w24

13 = 0

w14 difference in w31
14, w10

14 = · · · = w14
14 = 0, w20

14 = · · · = w29
14 = 0,

w30
14 = 1

w15 w0
15 = · · · = w9

15 = 0



284 CRYPTANALYSIS OF DYNAMIC SHA(2)

Table 6 – Differential characteristic for the third iterative part of
Dynamic SHA2. The difference at step t is the difference in the state
before computing step t. The column T indicates the difference in the
temporary variable T . The probability on a line is the probability
to reach the next difference, when conditions on the message are
satisfied.

t (message input) a b c d e f g h T prob.

1 (w1, . . . , w0)
0 0 0 ∆ 0 0 ∆ 0 0 1
0 0 0 0 ∆ 0 0 ∆ 0 1

1 (w9, . . . , w8)
0 0 0 0 0 ∆ 0 0 ∆ 1
∆ 0 0 0 0 0 ∆ 0 0 2−1

2 (w2, . . . , w1)
0 ∆ 0 ∆ 0 0 0 0 0 2−1

0 0 ∆ 0 ∆ 0 0 0 0 1

2 (w10, . . . , w9)
0 0 0 ∆ 0 ∆ 0 0 0 1
0 0 0 0 ∆ 0 ∆ 0 0 1

3 (w3, . . . , w2)
∆ 0 0 0 0 0 0 ∆ 0 2−1

0 ∆ 0 0 0 0 0 0 ∆ 2−1

3 (w11, . . . , w10)
∆ 0 ∆ 0 0 0 0 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 0 ∆ 2−1

4 (w4, . . . , w3)
∆ 0 ∆ 0 ∆ 0 ∆ 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 ∆ 0 1

4 (w12, . . . , w11)
0 0 ∆ ∆ ∆ 0 ∆ 0 0 1
0 0 0 0 ∆ ∆ 0 ∆ ∆ 1

5 (w5, . . . , w4)
0 0 0 0 0 ∆ ∆ 0 0 1
0 0 0 0 0 0 ∆ ∆ 0 1

5 (w13, . . . , w12)
0 0 0 0 0 0 0 ∆ ∆ 1
0 0 0 0 0 ∆ 0 0 ∆ 1

6 (w6, . . . , w5)
∆ 0 0 0 0 0 ∆ 0 0 1
0 ∆ 0 ∆ 0 0 0 ∆ ∆ 2−1

6 (w14, . . . , w13)
∆ 0 ∆ ∆ ∆ 0 0 0 ∆ 2−33

0 ∆ 0 ∆ ∆ ∆ 0 0 0 2−1

7 (w7, . . . , w6)
0 0 0 ∆ ∆ ∆ ∆ 0 0 1
0 0 0 0 ∆ ∆ ∆ ∆ 0 1

7 (w15, . . . , w14)
0 0 0 0 0 ∆ ∆ ∆ ∆ 1
0 0 0 0 0 0 ∆ ∆ 0 1

0 0 0 0 0 0 0 0



EXTENSIONS TO THE 512-BIT VERSIONS 285

value with b = FFFFFFFFFFFFFFFF), the fact that in the second iterative part the
probability is 2−6 for each of the two transitions, the decrease in the probability
only of the sixth COMP from 2−33 to 2−65, and the different set of conditions on
the message described in Table 7. Hence, the total time complexity of this attack is
285. We note that in this approach the attack fixes w60

i and w61
i to i mod 4 (which

causes the same function to be used in this case as in the attack on Dynamic
SHA2-256).



286 CRYPTANALYSIS OF DYNAMIC SHA(2)

Table 7 – Conditions on the message words w0, . . . , w15: sufficient
to follow our differential characteristic in Dynamic SHA2-512

Word Condition

w0 –

w1 w1 = 0 ,w18
1 = · · · = w23

1 = 0, w42
1 = · · · = w47

1 = 0, w60
1 =

1, w61
1 = 0

w2 w18
2 = · · · = w29

2 = 0, w42
2 = · · · = w47

2 = 0, w60
2 = 0, w61

2 = 1,
w62

2 ∨ w63
2 = 1

w3 w54
3 = · · ·w59

3 = 0, w60
3 = w61

3 = 1, w62
3 ∨ w63

3 = 1

w4 w6
4 = · · · = w11

4 = 0, w18
4 = · · · = w23

4 = 0, w42
4 = · · · = w47

4 = 0,
w60

4 = w61
4 = 0, w62

4 ∨ w63
4 = 1

w5 w6
5 = · · · = w11

5 = 0, w60
5 = 1, w61

5 = 1

w6 w48
6 = · · · = w53

6 = 0, w60
6 = 0, w61

6 = 1

w7 w6
7 = · · · = w23

7 = 0, w36
7 = · · · = w53

7 = 0, w60
7 = w61

7 = 1

w8 difference in w63
8 , w62

8 = 1

w9 w12
9 = · · · = w17

9 = 0,w36
9 = · = w41

9 = 0, w60
9 = 1, w61

9 = 0

w10 w6
10 = · · · = w11

10 = 0, w18
10 = · · · = w23

10 = 0, w42
10 = · · · = w47

10 = 0,
w60

10 = 0,
w61

10 = 1

w11 w36
11 = · · · = w41

11 = 0, w48
11 = · · · = w59

11 = 0, w60
11 = w61

11 = 1,
w62

11 ∨ w63
11 = 1

w12 w12
12 = · · · = w23

12 = 0, w36
12 = · · · = w47

12 = 0, w60
12 = w61

12 = 0

w13 w36
13 = · · · = w41

13 = 0, w60
13 = 1, w61

13 = 0

w14 difference in w63
14, w12

14 = · · · = w23
14 = 0, w36

14 = · · · = w53
14 = 0,

w60
14 = 0, w61

14 = 1

w15 w6
15 = · · · = w11

15 = 0, w36
15 = · · · = w41

15 = 0, w60
15 = w61

15 = 1



Publication

Practical Collisions for
SHAMATA-256

Publication Data

Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin
Schläffer. Practical collisions for SHAMATA-256. In Michael J.
Jacobson, Jr., Vincent Rĳmen, and Reihaneh Safavi-Naini, editors,
Selected Areas in Cryptography — SAC 2009, volume 5867 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2009.

Contributions

• Contributions to the entire article, and in particular:

– Sect. 2 (Description of SHAMATA),

– Sect. 4 (Finding a Good Differential Path),

– Sect. 5.2 (Practical Collisions for SHAMATA-256), and

– Appendix A (Colliding Message Pair for SHAMATA-256).

287



288 PRACTICAL COLLISIONS FOR SHAMATA-256



Practical Collisions for SHAMATA-256

Sebastiaan Indesteege1,2,∗, Florian Mendel3, Bart Preneel1,2, and Martin
Schläffer3

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
3 Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A-8010 Graz, Austria.

Abstract. In this paper, we present a collision attack on the SHA-3
submission SHAMATA. SHAMATA is a stream cipher-like hash
function design with components of the AES, and it is one of the
fastest submitted hash functions. In our attack, we show weaknesses
in the message injection and state update of SHAMATA. It is possible
to find certain message differences that do not get changed by the
message expansion and non-linear part of the state update function.
This allows us to find a differential path with a complexity of about
296 for SHAMATA-256 and about 2110 for SHAMATA-512, using
a linear low-weight codeword search. Using an efficient guess-and-
determine technique we can significantly improve the complexity of
this differential path for SHAMATA-256. With a complexity of about
240 we are even able to construct practical collisions for the full hash
function SHAMATA-256.

Key words: SHAMATA, SHA-3 candidate, hash function, collision
attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to a fixed-
length hash value h. Informally, a cryptographic hash function has to fulfil the
following security requirements:

• Collision resistance: it is infeasible to find two messages M and M∗, with
M∗ 6= M , such that H(M) = H(M∗).

• Second preimage resistance: for a given message M , it is infeasible to find a
second message M∗ 6= M such that H(M) = H(M∗).

∗F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

289



290 PRACTICAL COLLISIONS FOR SHAMATA-256

• Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials. Due to the birthday paradox, collisions
can be found in a generic way with an effort of only about 2n/2. A hash function
is said to achieve ideal security if these bounds are guaranteed.

In the last few years, the cryptanalysis of hash functions has become an
important topic within the cryptographic community. Especially the collision
attacks on the MD4 family of hash functions (MD5, SHA-1) have diminished
the confidence in the security of these commonly used hash functions. Therefore,
NIST has started the SHA-3 competition [7] to find a successor for the SHA-1 and
SHA-2 hash functions. The goal is to find a hash function which is fast and still
secure within the next few decades.

Many new and interesting hash functions have been proposed. One of them
is SHAMATA [1]. Out of the 51 first round candidates, SHAMATA is one of
the fastest submissions having a speed of 8–11 cycles/byte on 64-bit and 15–22
cycles/byte on 32-bit platforms [1]. It is a register based design, similar to the hash
function PANAMA [4] and also bears resemblance to the sponge construction [2].

In this work, we analyse the security of the hash function SHAMATA. After a
description of SHAMATA in Sect. 2, we analyse some basic differential properties
of the message injection and state update function in Sect. 3. We show how
to efficiently linearise SHAMATA by considering special XOR differences with
an equal difference in all bytes. In Sect. 4, we construct a good differential
path for the linearised variant of SHAMATA using a low-weight codeword
search. Section 5 explains how basic message modification techniques allows us
to construct a collision attack with a complexity of 296 for SHAMATA-256 and
2110 for SHAMATA-512, based on this differential path. For SHAMATA-256, the
attack is improved further to a complexity of only 240 SHAMATA rounds using
a complex guess-and-determine strategy. This attack is practical, and we show
a collision example in App. A. We conclude our analysis of the hash function
SHAMATA in Sect. 6.

2 Description of SHAMATA

In this section, we give a brief description of the hash function SHAMATA.
SHAMATA is a register based hash function design that operates on an internal
state of 2048 bits and produces a hash value of 224, 256, 384 or 512 bits. The
internal state consists of two parts: the main mixing register B3, . . . , B0 and the
second mixing register K11, . . . ,K0. Internally, SHAMATA uses rounds of the
AES block cipher [5] as building blocks.



DESCRIPTION OF SHAMATA 291

First, the message is padded to an integer number of 128-bit blocks using
classical Merkle-Damgård strengthening, like in the MD4 family. The registers
comprising the internal state of SHAMATA are set to their initial values, which
depend on the digest length used. Then, each 128-bit message block is used once
to update the internal state as described below. Finally, the finalisation phase of
SHAMATA generates the output digest from the internal state. For a detailed
description of the initialisation and finalisation phases of SHAMATA, we refer
to [1], as these details are not relevant to our analysis.

2.1 The Message Injection

The message injection of SHAMATA updates the internal state using a 128-bit
message block. The message block M is first expanded as follows:

P = MC
(
MT

)
, Q = MC (M) ,

P ′ = P (1) ||Q(0) , Q′ = Q(1) ||P (0) .
(1)

Here, MC is the MixColumns operation from the AES block cipher [5] and MT is
the transpose of M , where M is viewed as a 4× 4 matrix of bytes. The notation
P (i) denotes the i-th most significant 64-bit half of the 128-bit word P . Thus, P ′

and Q′ are simply recombinations of the columns of P and Q. These expanded
message words and a block counter blockno are then added to six words of the
internal state using XOR:

B2 ← B2 ⊕ P ⊕ blockno , B3 ← B3 ⊕Q⊕ blockno ,
K3 ← K3 ⊕ P ′ , K5 ← K5 ⊕Q ,
K7 ← K7 ⊕ P , K11 ← K11 ⊕Q′ .

(2)

2.2 The State Update Function

After the expanded message words have been added, the state update function
updates the internal state by clocking the registers of the internal state twice, as
is shown in Fig. 1. Formally, these two clockings can be written as

feedK1 = ARF r (B2)⊕B0 , feedB1 = feedK1 ⊕K9 ⊕K0 ,
feedK2 = ARF r (B3)⊕B1 , feedB2 = feedK2 ⊕K10 ⊕K1 ,
Bi ← Bi+2 (i = 0, 1) , Ki ← Ki+2 (i = 0, . . . , 9) ,
B2 ← feedB1 , K10 ← feedK1 ,
B3 ← feedB2 , K11 ← feedK2 .

(3)
The function ARF r consists of r rounds of the AES block cipher [5], omitting
subkey additions. Thus, the ARF function consists of the SubBytes, ShiftRows
and MixColumns operations:

ARF (X) = MC (SR (SB (X))) . (4)



292 PRACTICAL COLLISIONS FOR SHAMATA-256

B[0] B[1] B[2] B[3]

K[0]K[1]K[2]K[3]K[4]K[5]K[6]K[7]K[8]K[9]K[10]K[11]

+

+ +

ARFr

P Q

Q′ P Q P ′

Figure 1 – The state update function of SHAMATA.

For SHAMATA-224 and SHAMATA-256, the number of rounds r is equal to one.
For SHAMATA-384 and SHAMATA-512, r is two.

3 Basic Attack Strategy

In this section, we describe the basic attack strategy to construct collisions for
SHAMATA. The attack is similar to the attack on PANAMA [6, 10], since we
construct a collision in the internal state during the message injection phase. In
this phase, the message input can be used to control the differences in the internal
state. However, since the expanded message block is inserted several times into the
internal state, finding a differential trail seems to be difficult at first. However, by
exploiting some differential properties of the state update, we can find a differential
trail for SHAMATA which results in a collision with a good probability.

3.1 Overview of the Attack

The main idea of the attack on SHAMATA is to insert special message
differences ∆, which do not get changed by the message expansion and the non-
linear function ARF r. Then, the same difference ∆ will be added to six positions
of the internal state by the message injection. By imposing conditions on the input
of ARF r, we can ensure that the difference ∆ does not get changed by this non-
linear function. Hence, all parts of the state update are linear regarding the XOR
difference ∆ and we can search for a differential path using basic linear algebra.



BASIC ATTACK STRATEGY 293

3.2 Choosing the Message Difference

In the message expansion of SHAMATA, the 128-bit message word M is first
arranged in a 4 × 4 array of bytes. Then, the MixColumns transformation is
applied to both M and MT and some columns are rearranged to get the expanded
message blocks P , P ′, Q and Q′. All transformations are applied on the byte level
and we can make the following observation.

Observation 1. A message difference ∆ with equal differences in all 16 bytes,
results in the same difference ∆ in each of the expanded message words P , P ′, Q
and Q′.

Transposition and rearranging columns does not change the value of byte
differences. MixColumns applies the following linear transformation over GF(28)
to each column [5]:

b0 = 2 • a0 ⊕ 3 • a1 ⊕ 1 • a2 ⊕ 1 • a3

b1 = 1 • a0 ⊕ 2 • a1 ⊕ 3 • a2 ⊕ 1 • a3

b2 = 1 • a0 ⊕ 1 • a1 ⊕ 2 • a2 ⊕ 3 • a3

b3 = 3 • a0 ⊕ 1 • a1 ⊕ 1 • a2 ⊕ 2 • a3

. (5)

If all input values are equal to some value a, we get with 2 • a⊕ 3 • a = 1 • a:

bi = 2 • a⊕ 3 • a⊕ 1 • a⊕ 1 • a = 1 • a = a . (6)

and all output values are equal. Hence, for any message difference ∆ with equal
values in all bytes, the same difference ∆ will be injected into the 6 state words
B3, B2, K11, K7, K5 and K3.

3.3 Linearising ARF r

The only non-linear part in SHAMATA is the modified AES-round ARF r. The
function ARF r behaves linearly if a given input difference ∆ results in the same
output difference ∆. This is again possible for certain differences, by additionally
imposing conditions on the input values of ARF r:

Observation 2. There are input differences ∆ of ARF r with equal differences in
all 16 bytes, which result in the same output difference ∆ for certain conditions
on the input values of ARF r.

For example, in the case of ARF 1 (SHAMATA-256), the input difference ∆ =
0xff,0xff,... results in the same output difference ∆ = 0xff,0xff,... if all input
byte values are equal to either 0x7e or 0x81. A more careful choice of the difference
in the input bytes can improve the probability that the differential through ARF r

is followed.
For ARF 1 a careful examination of the difference distribution table (DDT)

of the AES S-box reveals that the best choice is a difference of 0xc5 in each



294 PRACTICAL COLLISIONS FOR SHAMATA-256

byte. Indeed, this difference passes through the S-box unchanged for input values
{0x00, 0x1d, 0xc5, 0xd8} and hence, with an optimal probability of 2−6. Using this
difference, there are 416 values for the input to ARF 1 which exhibit the desired
differential behaviour, corresponding to a differential probability of 2−96.

In the case of ARF 2 (SHAMATA-512), we can no longer view each S-box
independently. Eliminating linear steps at the in- and output, ARF 2 reduces to
SubBytes, followed by MixColumns and another SubBytes operation. Thus, each
column is still independent here. We have performed an exhaustive search to
find the best difference consisting of 16 equal bytes that passes through ARF 2

unchanged. The best choice is a difference of 0x18 in each byte, which passes
through ARF 2 for (22)4 values, corresponding to a differential probability of
2−110.16.

3.4 Basic Message Modification

In this section, we analyse the possibilities to fulfil the conditions on the input of
ARF r. For each active ARF r function, the input value has to be such that the
difference is passed unchanged. The probability of this event was optimised in the
previous section. Note however that in each round, the expanded message word
P is XORed directly to B2. Hence, if the ARF r function in the first clocking
is active, we can simply choose M such that the input to ARF r is X, which is
fixed to one of the “good” values ensuring that the active ARF r has the required
differential behaviour:

M = (MC−1(P ))T = (MC−1(B2 ⊕X))T . (7)

If the ARF r function in the second clocking of a round is active, a similar approach
can be used, as the message is also XORed to B3 via Q, which forms the input to
ARF r in the second clocking:

M = MC−1(Q) = MC−1(B3 ⊕X). (8)

These basic message modification techniques do not work anymore as soon
as two consecutive ARF r functions of a single round are active. If we get a
difference ∆ in both B2 and B3 after the message injection, we can adjust only
one input of the following two ARF r functions. The main problem here is that we
do not have enough freedom to fulfil the conditions on the message input imposed
by both active ARF r functions. Hence, in this case, one of them has to be satisfied
probabilistically. The best probability is 2−96 for ARF 1 and 2−110.16 for ARF 2,
as was shown in Sect. 3.3.

Hence, we will aim for a differential path with a low number of consecutive
active ARF r functions (see Sect. 4). Unfortunately, in any differential path,
we always get a difference in both, B2 and B3 after the first message injection.
However, in Sect. 5.2, we show how we can still fulfil both conditions for
SHAMATA-256 with much less effort, such that the attack becomes practical.



FINDING A GOOD DIFFERENTIAL PATH 295

4 Finding a Good Differential Path

In this section, we first show how to find an efficient collision path for SHAMATA.
Recall from Sect. 3.4 that the new message freedom in each round of SHAMATA
allows an adversary to linearise the ARF r function in one of the two clockings
in a round. Thus, we aim to find a collision differential path that activates the
ARF r function in at most one clocking of each round as well. However, it was
already pointed out in Sect. 3.4 that it is impossible to avoid this in the round
where the first difference is introduced, but we can aim to avoid this in all the
other rounds. We describe two methods to achieve this. The first method is based
on searching low-weight codewords of a linear code and the second method is a
simple exhaustive search. The former is more general and can also be used to find
differential paths spanning a long message. The latter is only feasible for short
messages, but it is simpler. In the case of SHAMATA, either of the methods can
be used to achieve the same result.

4.1 Low-Weight Codewords

For a fixed number of message blocks, all differential paths under consideration
can be seen as the codewords of a linear code. We show that searching for low-
weight codewords in this code is a useful tool to construct good differential paths
for SHAMATA. The use of low-weight codeword search techniques to construct
differential paths was proposed by Rĳmen and Oswald [9] and extended by
Pramstaller et al. in [8].

A codeword of the code under consideration contains, for each round, the
message difference and the differences in the internal state registers immediately
after the new message block was added. As we consider only ∆ differences, each
of these differences is represented by a single bit. Let ∆m(i), ∆b

(i)
3 , . . . ,∆b

(i)
0 and

∆k
(i)
11 , . . . ,∆k

(i)
0 denote these bits for round i. With N the fixed number of message

blocks used, a codeword of the code is then given by
[

∆m(1) · · ·∆m(N) || ∆b
(1)
3 · · ·∆k

(1)
0 || · · · || ∆b

(N)
3 · · ·∆k

(N)
0

]

. (9)

We now construct the generator matrix G of this code. The differences in
a SHAMATA state immediately after the message addition in round i can be
represented by an 1× 16 binary vector ∆s(i),

∆s(i) =
[

∆b
(i)
3 · · · b

(i)
0 || k

(i)
11 · · · k

(i)
0

]

. (10)

As the ARF r function is assumed to behave linearly with respect to the
∆ difference, the state difference vector in round i, ∆s(i), can be written in function
of the state differences vector in round i− 1, ∆s(i−1), as follows

∆s(i) = ∆s(i−1) ·A⊕∆m(i) · w . (11)



296 PRACTICAL COLLISIONS FOR SHAMATA-256

Here, w is a 1× 16 vector indicating to which positions of the internal state a new
message block is added. It is easy to see that

w =
[

1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0
]

. (12)

The 16× 16 matrix A is a transition matrix corresponding to the two clockings in
the round. It is given by

A =






















0 1 0
1 1 1
0 1 0
1 1
0 0 1
0 0 1
1 0 1
0 0 1
...

...
. . .

0 0 1
1 0 1






















2

. (13)

Now, consider the N × 17N generator matrix Gall given by

Gall =











IN×N

w wA wA
2 · · · wA

N−1

w wA · · · wA
N−2

w
...

. . . wA

w











. (14)

This is the generator matrix of a linear code that contains all length N differential
paths of the type we consider. As we are only interested in collision differentials, it
is required that the last internal state has no difference. This can be achieved by
using Gaussian elimination to force zeroes in the last 16 columns of Gall. This gives
the generator matrix G, which generates a linear code containing all differential
paths that result in a collision.

Due to the possibility of message modification in either of the clockings in
a SHAMATA round, but not both (see Sect. 3.4), a good differential path for
SHAMATA activates the ARF r function in at most one clocking per round. As
was already noted, it is impossible to avoid activating ARF r in both clockings of
the round where a difference is first introduced. But we aim to avoid this in the
remainder of the differential path.

Intuitively, a codeword with a low weight in ∆b2 and ∆b3, which are the
input differences to ARF r, is more likely to satisfy this property than a random
codeword. Thus, we look for low-weight codewords in this code, considering only
the weight of these bits, using an algorithm similar to that of Canteaut and



COLLISION ATTACK ON SHAMATA 297

Chabaud [3]. For each codeword below a certain threshold weight, we check if it
satisfies the condition mentioned above. If it does, a suitable collision differential
path has been found. If not, the search is simply continued. Note that this
search method can find collision differential paths shorter than N rounds. Indeed,
nothing prevents the search from padding a shorter differential path to N rounds by
adding rounds without a difference, as we indeed observed. The shortest collision
differential path we found is shown in Table 1. It consists of 25 rounds and, except
for the first round, only activates ARF r in at most one of the clockings of a round.

4.2 An Alternative Approach

Note that, for a given length of N rounds, there are only 2N possible differential
paths of the type we consider. Indeed, as each message block can only have a ∆
difference or no difference at all, there are only 2N possible message differences.
Given the message difference, exactly one differential path follows. Hence, when
N is not too large, a simple brute force search can also be a viable approach.

As the more general approach given above resulted in a differential path of
only 25 rounds, a brute force approach is indeed practically feasible. We have
exhaustively searched all differential paths of length up to 25 rounds. As expected,
this search also found the differential path given in Table 1. Moreover, there is
only one differential path of 25 rounds, and no shorter differential paths of this
type exist. Hence, the differential path in Table 1 is optimal.

5 Collision Attack on SHAMATA

In this section, we put together the various pieces that were introduced, and present
our collision attack on SHAMATA. We search for a message pair which follows the
differential path in Table 1.

5.1 Collisions for SHAMATA-256 and SHAMATA-512

In rounds where none of the ARF r functions is active, the differential path is
always followed, regardless of the message block. Hence, in those rounds, we
make an arbitrary choice for the message block. In rounds with exactly one active
ARF r function, the message modification technique presented in Sect. 3.4 is used
to deterministically construct a message block that ensures that the differential
path is followed. This takes only negligible time, i.e., no more than computing a
single round of SHAMATA.

However, in the first round where a difference is introduced, the ARF r function
is active in both clockings. The message modification technique of Sect. 3.4
can only deterministically satisfy the conditions for one of them. As discussed
in Sect. 3.4, the probability that the path is still followed is 2−96 for ARF 1



298 PRACTICAL COLLISIONS FOR SHAMATA-256

Table 1 – The differential path for 25 rounds of SHAMATA with
differences after each clocking. For differences at the input of ARF r

(word B1, grey column), the differential probabilities of each round
are given in the last two columns for SHAMATA-256 (ARF 1) and
SHAMATA-512 (ARF 2).

round M B3 B2 B1 B0 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 ARF 1 ARF 2

1 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−192 2−220.32

2 ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

3 ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

5 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

6 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

7 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

8 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

9 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

10 ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

11 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

12 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

13 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

14 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

15 ∆ ∆ ∆ ∆

∆ ∆ ∆

16 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

17 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

18 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

19 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

20 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

21 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

22 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

23 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

24 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

25 ∆



COLLISION ATTACK ON SHAMATA 299

(SHAMATA-256) and 2−110.16 for ARF 2 (SHAMATA-512). A prefix with no
difference is used to provide the required message freedom.

Thus, a conforming pair for the first round of the differential path can be
found by performing about 296 trials for SHAMATA-256 and about 2110 trials
for SHAMATA-512. Once such a pair has been found, a colliding message pair
can be constructed with negligible additional effort. Thus, the overall complexity
of our attack is about 296 SHAMATA rounds for SHAMATA-256, and about
2110 SHAMATA rounds for SHAMATA-512. The attack requires only negligible
memory and is easily parallelisable. Hence, for both variants of SHAMATA, the
attack is significantly faster than a brute force attack. Note that the attack also
applies to SHAMATA-224 and SHAMATA-384.

5.2 Practical Collisions for SHAMATA-256

In the case of SHAMATA-256, a more efficient approach exists to control the
values which are input to the ARF r function in both clockings of a round. This
approach exploits the fact that in SHAMATA-256 only a single AES round is used,
i.e., r = 1. Hence, this method can not be applied to SHAMATA-512, where r = 2.

Assume we aim to fix the inputs to the ARF 1 function in both clockings of
round i to X1 and X2, respectively. Let B(i) denote the B-register at the beginning
of round i. Then, this requirement can be written as

{

B
(i)
2 ⊕ P (i) ⊕ i = X1

B
(i)
3 ⊕Q(i) ⊕ i = X2

. (15)

Using the definition of the state update function of SHAMATA in (1)–(3), this
can be rewritten in a function of the internal state at the beginning of round i− 1
and the message blocks Mi−1 and Mi, yielding the following

{
Mi−1 = MC−1

(
D1 ⊕

(
C1 ⊕ SR−1 (Mi)

))

Mi−1
T = MC−1

(
D2 ⊕

(
C2 ⊕ SR−1

(
Mi

T
))) , (16)

where C1, C2, D1 and D2 are constants defined by

C1 = SR−1
(

MC−1
(

B
(i−1)
0 ⊕K

(i−1)
9 ⊕K

(i−1)
0 ⊕ i⊕X1

))

,

C2 = SR−1
(

MC−1
(

B
(i−1)
1 ⊕K

(i−1)
10 ⊕K

(i−1)
1 ⊕ i⊕X2

))

,

D1 = B
(i−1)
2 ⊕ (i− 1) ,

D2 = B
(i−1)
3 ⊕ (i− 1) .

(17)

These constants only depend on the internal state of SHAMATA-256 at the
beginning of round i− 1, and are thus known. Now, we search for message blocks
Mi−1 and Mi such that the conditions of (16) are satisfied.

A straightforward approach to find the message blocks Mi−1 and Mi would be
to guess one of them, compute the other using the first equation of (16) and then,



300 PRACTICAL COLLISIONS FOR SHAMATA-256

check if the second equation of (16) holds as well. This procedure is expected to
find a solution after about 2128 trials. We propose a guess-and-determine approach
which performs significantly better. Our approach is as follows

1. Assume we know the four bytes of Mi indicated in the pattern in Fig. 2 (a).
Note that this pattern is symmetric, i.e., it is invariant under matrix
transposition. This implies that also the same pattern of bytes of Mi

T is
known.

Note that in (16), Mi and Mi
T are input to the inverse ShiftRows operation

or SR−1. This operation performs a circular right shift of the rows of the
state over 0, 1, 2 or 3 bytes for the first, second, third and fourth row,
respectively. Hence, the bytes of Mi indicated in Fig 2 (a) form the first
column of SR−1 (Mi). Similarly, the first column of SR−1

(
Mi

T
)

is known.

All other operations in (16) treat the four columns independently, so
knowledge of the first columns of SR−1 (Mi) and SR−1

(
Mi

T
)

suffices to
compute the first columns of Mi−1 and Mi−1

T. The latter is equal to the
first row of Mi−1, which overlaps with the first column of Mi−1 in exactly
one byte.

Thus, we investigate all 232 guesses for four bytes of Mi as indicated in
Fig. 2 (a). For each guess, we compute the first column and the first row of
Mi−1 using (16). Then, we verify if the overlapping byte matches, and if so,
we save the candidate in a list L1. As this imposes an 8-bit condition, about
224 candidates are expected to remain.

2. The same procedure is repeated with the patterns in Fig. 2 (b), Fig. 2 (c) and
Fig. 2 (d). Each pattern is invariant under matrix transposition, and results
in one column after applying the SR−1 operation. This results in four lists,
L1, L2, L3 and L4 of about 224 elements each.

3. An element of the list L1 contains candidate values of the first row and
column of Mi−1. Similarly, an element of the list L2 contains the second row
and column of Mi−1. Note that these overlap in two byte positions. Thus, we
can merge both lists and store all matching combinations in a new list, LA.
The expected number of entries in the new list LA is 224 × 224 × 2−16 = 232.
If the lists L1 and L2 are sorted according to the overlapping bytes, this
merge operation can be performed very efficiently.

4. The same procedure is used to merge the lists L3 and L4, resulting in a new
list LB which is also expected to contain about 232 entries.

5. Finally, the lists LA and LB are merged. The entries in these lists overlap
in eight byte positions, which corresponds to a 64-bit condition. Again, if
both lists are sorted according to these bytes, merging them can be done
efficiently. The number of expected matches is 232 × 232 × 2−64 = 1.



CONCLUSION 301

(a) (b) (c) (d)

Figure 2 – Patterns used in the guess-and-determine phase.

It is easy to verify that each final match will satisfy (16), and also that every
solution to (16) will be found by this procedure. The time complexity of this
algorithm is dominated by the merging of lists LA and LB , which takes 232

operations. Using hash tables as the data structure to store the lists, an explicit
sorting step can be avoided. The memory complexity is determined by one of the
lists LA or LB , as only one of them really needs to be stored in memory, while the
elements of the other can be computed on-the-fly. This corresponds to a memory
requirement of about 232 AES states.

For a practical implementation, it is better to reduce the memory requirements
of the algorithm, at the expense of an increase in its time complexity. This can
be done by, for instance, fixing the byte in the first row and last column of Mi−1

a priori. Then, the lists L1 and L4 are only expected to contain 216 elements
each, and the lists LA and LB are reduced to about 224 elements. Thus, the total
memory complexity is reduced to about 224 AES states, or 256 MB. However,
as one byte was fixed a priori, the entire procedure has to be repeated 28 times,
increasing the time complexity to 240 operations. We have implemented our attack.
The guess-and-determine phase was run on a cluster using 256 jobs with a running
time of about 5 minutes each. The rest of the attack takes only negligible time
using message modification, as explained in Sect. 3.4. A collision example for
SHAMATA-256 is given in App. A.

6 Conclusion

In this paper, we have presented a practical collision attack on the SHA-3
submission SHAMATA. Due to weaknesses in the message injection and state
update function of SHAMATA it is possible to find certain message differences,
that do not get changed by the message expansion or the non-linear part of the
state update function. These symmetric XOR differences need to be equal in each
byte of the 128-bit words. Using these differences, the non-linear ARF r function
behaves linearly and we can search for a differential path using a linearised variant
of SHAMATA. Moreover, since we use the same difference in every 128-bit word,
we can represent each word of the internal state by a single bit.

The main weakness in SHAMATA is the relatively light message injection
followed by a low number of register clockings. The message injection allows us to



302 PRACTICAL COLLISIONS FOR SHAMATA-256

efficiently fulfil many conditions using basic message modification. This results in
an attack complexity of about 296 for SHAMATA-256 and 2110 for SHAMATA-512.
Using an efficient guess-and-determine technique we are able to improve the
complexity of the attack on SHAMATA-256 to about 240 round computations
and present a practical collision for SHAMATA-256. Possible improvements for
SHAMATA include increasing the number of times the internal registers are
clocked and the use of constants to avoid the use of symmetric differences.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II. The
collision example for SHAMATA-256 was obtained utilizing high performance
computational resources provided by the University of Leuven, http://ludit.

kuleuven.be/hpc.

References

[1] A. Atalay, O. Kara, F. Karakoç, and C. Manap. SHAMATA hash function
algorithm specifications. Submission to the NIST SHA-3 competition, Oct.
2008. Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
In ECRYPT Hash Workshop. European Network of Excellence in Cryptology
ECRYPT, May 2007.

[3] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

[4] J. Daemen and C. S. K. Clapp. Fast hashing and stream encryption with
panama. In S. Vaudenay, editor, Fast Software Encryption, 5th International
Workshop — FSE ’98, volume 1372 of Lecture Notes in Computer Science,
pages 60–74. Springer, 1998.

[5] J. Daemen and V. Rĳmen. The design of Rĳndael: AES — the Advanced
Encryption Standard. Springer, 2002.

[6] J. Daemen and G. Van Assche. Producing collisions for panama,
instantaneously. In A. Biryukov, editor, Fast Software Encryption, 14th
International Workshop — FSE 2007, volume 4593 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2007.

http://ludit.kuleuven.be/hpc
http://ludit.kuleuven.be/hpc
http://csrc.nist.gov/groups/ST/hash/sha-3/


COLLIDING MESSAGE PAIR FOR SHAMATA-256 303

[7] National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212–62220, Nov. 2007.

[8] N. Pramstaller, C. Rechberger, and V. Rĳmen. Exploiting coding theory for
collision attacks on SHA-1. In N. P. Smart, editor, Cryptography and Coding,
IMA International Conference, volume 3796 of Lecture Notes in Computer
Science, pages 78–95. Springer, 2005.

[9] V. Rĳmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, Topics
in Cryptology — CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 58–71. Springer, 2005.

[10] V. Rĳmen, B. V. Rompay, B. Preneel, and J. Vandewalle. Producing
collisions for panama. In M. Matsui, editor, Fast Software Encryption,
8th International Workshop — FSE 2001, volume 2355 of Lecture Notes in
Computer Science, pages 37–51. Springer, 2002.

A Colliding Message Pair for SHAMATA-256

m1 =

00000000: 10 37 fd e7 65 30 1c c0 e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o..|

00000010: 7f 28 81 17 81 4a d1 3f bf 4e ca da 92 f5 35 d0 |.(...J.?.N....5.|

00000020: f0 f0 dc 19 73 d5 a7 07 8c 0b bc 3d b6 85 46 57 |....s......=..FW|

00000030: 02 92 d1 24 00 df 40 67 ca 2c fa 5b 9d 70 2c ce |...$..@g.,.[.p,.|

00000040: de 38 51 f5 01 3c 3b aa d8 ba 38 0e a1 40 b1 91 |.8Q..<;...8..@..|

00000050: 7b 18 18 24 cc d9 76 c0 f7 4a 61 28 86 06 30 8e |{..$..v..Ja(..0.|

00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca |0...bR..]f+..qk.|

00000070: e3 29 f2 2c b3 ed 3d 7e f7 f2 fd 0b 1e c7 d6 e5 |.).,..=~........|

00000080: aa bc bf ab f9 fb 56 d1 b5 8e df 57 ce 90 e8 fe |......V....W....|

00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f 0c c2 69 b6 |.....LoC..W...i.|

000000a0: 7e 29 61 77 24 b7 48 d9 45 27 30 13 b8 19 12 d6 |~)aw$.H.E’0.....|

000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6c ef bc 22 6d |..V.....‘-Rl.."m|

000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |....;-..U...,...|

000000d0: 53 e9 01 66 72 ae 8d cf 68 25 8a b6 ae 64 e7 c1 |S..fr...h%...d..|

000000e0: 5a 39 6b 5a ff 41 0e 5f 6e 60 cb 5d 1c ed ca 01 |Z9kZ.A._n‘.]....|

000000f0: 70 af 0a ab dd ed 2c 32 00 c0 3f 2c 66 22 04 c0 |p.....,2..?,f"..|

00000100: 3b 97 65 9d 01 64 98 7b e6 63 d4 d6 4b 77 00 bb |;.e..d.{.c..Kw..|

00000110: bb ac 35 e3 27 66 55 34 0c 0f db d7 2f 16 19 ae |..5.’fU4..../...|

00000120: 5b 6f 1a 5a b0 28 b9 1e 89 84 7b a5 71 46 a7 e2 |[o.Z.(....{.qF..|

00000130: f5 b1 8d d2 9e b9 04 9e 79 43 ca df 65 cf 9f c1 |........yC..e...|

00000140: bb f6 43 f9 cd 88 af 13 ea 2f 93 e8 cd 39 8c a0 |..C....../...9..|

00000150: 3e ba 1b ef e2 d5 0d 6b 59 89 11 cb cf b8 ad c4 |>......kY.......|

00000160: 1a 3f 2f 9d a3 1d 82 3c e0 75 9d 83 b2 ac 3c bf |.?/....<.u....<.|

00000170: e0 27 0c c5 af b0 be a9 94 1e de 9d 50 69 10 cb |.’..........Pi..|

00000180: 69 3a 97 08 f4 9b a6 6d df 71 4d 44 40 ec 05 7e |i:.....m.qMD@..~|

00000190: a6 21 6d 89 f6 7b f4 4f 04 05 1a d3 bd c7 97 27 |.!m..{.O.......’|

SHAMATA-256(m1) =

00000000: 6e a3 b1 a1 29 75 8d 3f f5 60 f8 1b 6b 11 02 9a |n...)u.?.‘..k...|

00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c 1a 2a |.....*..*....L.*|



304 PRACTICAL COLLISIONS FOR SHAMATA-256

m2 =

00000000: 10 37 fd e7 65 30 1c c0 e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o..|

00000010: 80 d7 7e e8 7e b5 2e c0 40 b1 35 25 6d 0a ca 2f |..~.~...@.5%m../|

00000020: 0f 0f 23 e6 8c 2a 58 f8 73 f4 43 c2 49 7a b9 a8 |..#..*X.s.C.Iz..|

00000030: fd 6d 2e db ff 20 bf 98 35 d3 05 a4 62 8f d3 31 |.m... ..5...b..1|

00000040: 21 c7 ae 0a fe c3 c4 55 27 45 c7 f1 5e bf 4e 6e |!......U’E..^.Nn|

00000050: 7b 18 18 24 cc d9 76 c0 f7 4a 61 28 86 06 30 8e |{..$..v..Ja(..0.|

00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca |0...bR..]f+..qk.|

00000070: 1c d6 0d d3 4c 12 c2 81 08 0d 02 f4 e1 38 29 1a |....L........8).|

00000080: 55 43 40 54 06 04 a9 2e 4a 71 20 a8 31 6f 17 01 |UC@T....Jq .1o..|

00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f 0c c2 69 b6 |.....LoC..W...i.|

000000a0: 81 d6 9e 88 db 48 b7 26 ba d8 cf ec 47 e6 ed 29 |.....H.&....G..)|

000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6c ef bc 22 6d |..V.....‘-Rl.."m|

000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |....;-..U...,...|

000000d0: ac 16 fe 99 8d 51 72 30 97 da 75 49 51 9b 18 3e |.....Qr0..uIQ..>|

000000e0: 5a 39 6b 5a ff 41 0e 5f 6e 60 cb 5d 1c ed ca 01 |Z9kZ.A._n‘.]....|

000000f0: 8f 50 f5 54 22 12 d3 cd ff 3f c0 d3 99 dd fb 3f |.P.T"....?.....?|

00000100: 3b 97 65 9d 01 64 98 7b e6 63 d4 d6 4b 77 00 bb |;.e..d.{.c..Kw..|

00000110: 44 53 ca 1c d8 99 aa cb f3 f0 24 28 d0 e9 e6 51 |DS........$(...Q|

00000120: a4 90 e5 a5 4f d7 46 e1 76 7b 84 5a 8e b9 58 1d |....O.F.v{.Z..X.|

00000130: 0a 4e 72 2d 61 46 fb 61 86 bc 35 20 9a 30 60 3e |.Nr-aF.a..5 .0‘>|

00000140: bb f6 43 f9 cd 88 af 13 ea 2f 93 e8 cd 39 8c a0 |..C....../...9..|

00000150: 3e ba 1b ef e2 d5 0d 6b 59 89 11 cb cf b8 ad c4 |>......kY.......|

00000160: 1a 3f 2f 9d a3 1d 82 3c e0 75 9d 83 b2 ac 3c bf |.?/....<.u....<.|

00000170: e0 27 0c c5 af b0 be a9 94 1e de 9d 50 69 10 cb |.’..........Pi..|

00000180: 69 3a 97 08 f4 9b a6 6d df 71 4d 44 40 ec 05 7e |i:.....m.qMD@..~|

00000190: 59 de 92 76 09 84 0b b0 fb fa e5 2c 42 38 68 d8 |Y..v.......,B8h.|

SHAMATA-256(m2) =

00000000: 6e a3 b1 a1 29 75 8d 3f f5 60 f8 1b 6b 11 02 9a |n...)u.?.‘..k...|

00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c 1a 2a |.....*..*....L.*|



Curriculum Vitae

Sebastiaan Indesteege was born on 9th April, 1984 in Hasselt, Belgium. He re-
ceived the Master’s degree in Electrical Engineering (ICT — Telecommunications)
from Katholieke Universiteit Leuven, Belgium in July 2006. His Master’s thesis
on side-channel attacks on cryptographic chips received an award from Ubizen.

In October 2006, he joined the research group COSIC (COmputer Security and
Industrial Cryptography) at the Department of Electrical Engineering (ESAT) of
K.U.Leuven. His PhD research was sponsored by the Fund for Scientific Research,
Flanders (FWO-Vlaanderen). At the ISC 2008 conference, he received the Best
Student Paper Award for the article ‘Collisions for RC4-Hash’.

He visited the Krypto research group at IAIK, Technische Universität Graz
(TU Graz), Austria in March 2008. From June to September 2009, he visited the
Security Technologies Group of Sony corp. in Tokyo, Japan.

305



306 CURRICULUM VITAE





Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

COmputer Security and Industrial Cryptography (COSIC)

Kasteelpark Arenberg 10 — 2446, 3001 Heverlee, Belgium


	Preface
	Abstract
	Samenvatting
	Contents
	List of Figures
	List of Tables
	I Analysis and Design of Cryptographic Hash Functions
	Introduction
	Cryptology
	Confidentiality and Authenticity
	Cryptanalysis
	About this Dissertation

	Cryptographic Hash Functions
	Introduction
	Security Requirements
	Preimage Resistance
	Second Preimage Resistance
	Collision Resistance

	Applications
	Iterated Hash Functions
	The Merkle-Damgård Construction
	Other Constructions

	Generic Attacks
	Exhaustive Search
	Time-Memory Trade-Offs
	The Birthday Attack
	Generic Attacks on Iterated Constructions

	Conclusion

	Design of Cryptographic Hash Functions
	Introduction
	History and State of the Art
	The NIST SHA-3 Competition

	The Lane Hash Function
	Independent Cryptanalysis of Lane

	On Pseudo-Collisions
	Pseudo-Collision Attacks
	Towards Two-Step Compression Function Collisions
	The Lane Iteration Mode
	A Generic Merkle-Damgård Iteration

	Conclusion

	Analysis of Cryptographic Hash Functions
	Introduction
	Dynamic SHA and Dynamic SHA2
	EnRUPT
	KeeLoq
	Maraca
	RC4-Hash
	SHA-2
	SHAMATA
	Tiger
	Conclusion

	Conclusion
	Directions for Future Research

	Bibliography

	II Publications
	List of Publications
	Preimages for Reduced-Round Tiger
	Introduction
	Description of Tiger
	Preimages for Three Rounds of Tiger
	Preimages for the Compression Function of Tiger-12
	Algorithm
	Extension to Tiger-13

	First and Second Preimages for Tiger-12
	Second Preimages for Tiger-12
	First Preimages for Tiger-12
	Extension to Tiger-13

	Conclusion
	References

	Trivial Collisions for Simplified and Reduced SHA-2
	Introduction
	Description of SHA-256
	A Simplified Variant of SHA-256

	Finding Collisions
	Alternate Description of SHA-256
	Inserting Odd Additive Differences.
	The Message Difference
	The Collision Search

	Conclusion
	References

	A Practical Attack on KeeLoq
	Introduction
	Description and Usage of KeeLoq
	The KeeLoq Block Cipher
	Protocols Built on KeeLoq

	Our Attacks on KeeLoq
	The Slide Property
	Determining Key Bits
	Basic Attack Scenario
	A Generalisation of the Attack
	A Chosen Plaintext Attack

	Experimental Results
	Practical Applicability of the Attacks
	Gathering Data
	Key Derivation

	Conclusion
	References
	Related-Key Attacks on KeeLoq
	A Related-Key Attack Using Keys Related by Rotation
	Improved Slide/Meet-in-the-Middle Attack Using Related Keys


	Collisions and Other Non-Random Properties for Step-Reduced SHA-256
	Introduction
	Previous Work on Members of the SHA-2 Family
	Our Contribution

	Description of SHA-256
	Review of the Nikolic-Biryukov Semi-Free-Start Collision Attack
	The Second Phase of the Attack
	The First Phase of the Attack

	Our Collision Attacks on Step-Reduced SHA-256
	23-Step Collision
	24-Step Collision
	Further Extensions

	Collision Attacks on Step-Reduced SHA-512
	Conclusion
	References
	Detailed Description of the Second Phase of the Nikolic-Biryukov Attack
	Solving L(x+) = L(x) + 

	Collisions for RC4-Hash
	Introduction
	Description of RC4-Hash
	Fixed Points of the Compression Function C
	Fixed Points of Type I
	Fixed Points of Type II
	Relation to Finney States

	Collisions for RC4-Hash
	Discussion
	Conclusion
	References

	Coding Theory and Hash Function Design
	Introduction
	Our Contribution
	Related Work

	A New Parallel Compression Function Design
	Designing the Message Expansion
	A Meet-in-the-Middle Preimage Attack
	Mitigating the Attack
	Assessing Resistance against Differential Cryptanalysis

	Application: the Lane Hash Function
	Conclusion
	References

	The Lane Hash Function
	Introduction
	Specification
	Introduction
	Preliminaries
	Building Blocks
	Preprocessing
	The Lane Compression Function
	The Output Transformation

	Design Rationale
	The Iteration Mode
	The Compression Function
	Advantages and Limitations of Lane

	Security Analysis
	Reduced Versions of Lane for Cryptanalysis
	Standard Differential Cryptanalysis
	Truncated Differential Cryptanalysis
	Higher Order Differential Cryptanalysis
	Cryptanalysis of Wide-Block Rijndael
	Algebraic Attacks
	Attacks Based on Reduced Query Complexity
	Wagner's Generalised Birthday Attack
	Meet-in-the-Middle Attacks
	Long Message Second-Preimage Attacks
	Length-Extension Attacks
	Multicollision Attacks
	On the Mode of Iteration
	Expected Strength of Lane

	Implementation Aspects
	General Purpose CPU's
	Embedded Systems with an 8-bit CPU
	Hardware Implementation

	References
	The Constants Used in Lane

	Practical Collisions for EnRUPT
	Introduction
	Description of EnRUPT
	The EnRUPT Hash Functions
	The EnRUPT Round Function

	Basic Attack Strategy
	Linearising EnRUPT
	The Collision Search
	An Observation on EnRUPT
	Accelerating the Collision Search

	Finding Good Differential Characteristics
	Coding Theory
	Low Weight Codewords
	Estimating the Attack Complexity

	Results and Discussion
	Conclusion
	References

	Practical Preimages for Maraca
	Introduction
	Description of Maraca
	The Maraca Permutation

	Basic Attack Idea
	Linearising the Maraca S-box
	A Preimage Attack on Maraca
	Making Conditions Dependent
	Maraca's Finalisation Phase
	Dealing with Contradictions

	Practical Aspects
	The Precomputation Phase
	The Online Phase

	Conclusion
	References

	Cryptanalysis of Dynamic SHA(2)
	Introduction
	Brief Description of Dynamic SHA and Dynamic SHA2
	Building Blocks
	Compression Functions

	Collision Attack on Dynamic SHA
	A Differential Property of the Function R1
	A 9-Step Local Collision
	The Attack

	Preimage Attack on Dynamic SHA
	Preimage Attack on the Compression Function
	Complexity Evaluation
	Application to the Hash Function

	Collision Attack on Dynamic SHA2
	First Iterative Part
	Second Iterative Part
	Third Iterative Part

	Conclusion
	References
	Practical Results
	Differential Characteristic for Dynamic SHA2
	Extensions to the 512-bit Versions
	Collision Attack on Dynamic SHA
	Preimage Attack on Dynamic SHA
	Collision Attack on Dynamic SHA2


	Practical Collisions for SHAMATA-256
	Introduction
	Description of SHAMATA
	The Message Injection
	The State Update Function

	Basic Attack Strategy
	Overview of the Attack
	Choosing the Message Difference
	Linearising ARFr
	Basic Message Modification

	Finding a Good Differential Path
	Low-Weight Codewords
	An Alternative Approach

	Collision Attack on SHAMATA
	Collisions for SHAMATA-256 and SHAMATA-512
	Practical Collisions for SHAMATA-256

	Conclusion
	References
	Colliding Message Pair for SHAMATA-256

	Curriculum Vitae


