
Tracking and Tracing Containers through Distributed
Sensor Middleware

Klaas Thoelen, Sam Michiels, Wouter Joosen
IBBT-DistriNet - Department of Computer Science - K.U. Leuven

Celestijnenlaan 200A
3000 Leuven, Belgium

{klaas.thoelen,sam.michiels}@cs.kuleuven.be

ABSTRACT
In a container transport system, wireless sensor networks
(WSNs) can be used for monitoring products while they are
being transported. To be commercially interesting, these
WSNs must be integrated with enterprise systems of vari-
ous actors in the supply chain. The need for interoperability
between networks and partners, the heterogeneity of WSN
technologies being used, and the mobility of sensor nodes
make this integration far from trivial. This paper presents
lessons learned from a research project in collaboration with
industry in which we developed a prototype middleware so-
lution for container transport. The prototype triggered valu-
able feedback which is highly relevant to consider when de-
signing middleware for realistic sensor applications.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications; D.2.11 [Software En-
gineering]: Software Architectures—domain-specific archi-
tectures

General Terms
Design, Management

Keywords
Wireless sensor networks, middleware, integration, enter-
prise infrastructure, supply chain management

1. INTRODUCTION
To increase the quality of control during transport, cargo

containers can be equipped with wireless sensor nodes that
are capable of (i) collecting environmental data like temper-
ature, humidity and light intensity, (ii) controlling actua-
tors such as the air conditioning system of a temperature-
controlled container, and (iii) running services like for in-
stance localization, data aggregation, or distance measuring.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008, September 23 - 25, 2008, Turin, Italy
Copyright c© 2008 ICST ISBN # 978-963-9799-34-9.

Since containers are constantly being transported among
storage sites, this causes the formation of ad-hoc wireless
sensor networks (WSNs) at each site, monitoring the cur-
rent local collection of containers.

In order to become useful to logistic companies, WSNs
must be integrated with their existing enterprise servers,
databases, and gateways [1, 3]. Enterprise Resource Plan-
ning Systems and Transport Management systems can ben-
efit considerably from the data supplied by the WSNs. Cus-
toms declaration of content and initial security checks, for
instance, can be handled automatically by inspecting a con-
tainer’s monitored data. This would substantially reduce
the traversal time of containers at each storage site and ul-
timately lead to faster delivery to the end-user.

In addition to this end-to-end integration, the challenge
is to integrate all partners in a supply chain [12]. Every
partner is only a link of the total chain, just as the data
collected by the sensor nodes at its premises is just a piece
of the total monitoring trace of the container. Enterprise
systems of various partners need to be coupled to leverage
on the end-to-end integration and (i) enable the creation of
full monitoring traces of containers along the supply chain
and (ii) allow customers to easily check quality conditions
at all times during transport.

The WSN landscape, however, is still far from standard-
ized and various WSN types might be used with different
data and messaging formats. In a worst case scenario, ev-
ery storage site in the supply chain deploys a different WSN
type, making the initial goal of monitoring a container dur-
ing transport extremely difficult.

In addition, integrating WSNs and existing enterprise sys-
tems creates large-scale and highly heterogeneous network
infrastructures and implies complex end-to-end software de-
ployment. Deploying software at various nodes in the end-
to-end network infrastructure is not a trivial task to accom-
plish; middleware support is needed to enhance application
development and network administration in such environ-
ments.

In conclusion, it can be stated that the development of a
fully integrated platform for container transport in which (i)
various WSN types are used, (ii) sensor nodes need to be able
to migrate between WSNs while guaranteeing continuous
monitoring traces, and (iii) supply chain partners need to be
able to exchange the monitored data, is not a trivial task.

The contribution of this paper is the presentation of the
experiences we gained from developing an end-to-end mid-
dleware for transport of cargo containers. Furthermore, we
report on a number of key issues that have been identified



in the feedback from involved industrial partners.
The paper is structured as follows. In section 2 we de-

scribe the key challenges of developing an end-to-end mid-
dleware for container transport and present an architecture
which handles these challenges. In section 3 we discuss our
prototype implementation of this architecture. After a dis-
cussion of industry feedback (section 4) and related work
(section 5), we end the paper with concluding remarks in
section 6.

2. TOWARDS A DISTRIBUTED MIDDLE-
WARE FOR LOGISTICS

Before going into the details of the middleware architec-
ture (section 2.2), we first describe the key challenges in
the development of a distributed middleware for container
transport.

We consider one company of a supply chain, which is di-
vided over multiple sites, like for instance a warehouse, a
harbor dock and an airport terminal. Each individual site of
the company uses a certain WSN type (e.g. Berkeley motes
[13], Sun SPOTs [10] or Sentilla nodes [9]) to monitor the
local containers, but different sites might use different WSN
types. All monitoring data is stored in a central database
situated at the company’s headquarters and is used in the
company’s backend infrastructure to aid in transport and
resource planning.

2.1 Key challenges
In order to support the integration of WSNs with the

company’s backend infrastructure the distributed middle-
ware needs to handle the following challenges:

1. End-to-end interoperability: successful end-to-end
integration requires coupling sensor nodes, gateways,
backend servers and databases to enable fluent bi-direc-
tional interactions.

2. External data exchange: an interface must be pro-
vided through which monitored data can be exchanged
in a common data format with interested parties like
supply chain partners, customs, or a national food
agency.

3. Heterogeneity of data and messaging formats:
each WSN type uses a custom format to represent
monitoring data and a custom messaging service to
communicate with their gateway. For instance, differ-
ent sensor nodes might measure temperature in Cel-
sius or Fahrenheit and use different message structures
to forward the collected data. These custom formats
need to be abstracted and converted into standardized
formats so that data exchange between gateways and
backend infrastructure is carried out in a common data
format through a standardized interface.

4. Intermittent network connection of sensor nodes:
when network connectivity is lost, sensor nodes must
be able to temporarily store readings locally in order to
guarantee a continuous trace of monitored data. This
is particularly useful when a container is transported
between sites by a carrier without network connectiv-
ity. As soon as connectivity is detected again, the
stored readings need to be forwarded towards the back-
end for processing and persisting.

5. Inter-network mobility of sensor nodes: when
containers are transported among sites which have a
similar WSN technology deployed, the sensor nodes
must be able to migrate between the WSNs without
losing data or requiring manual intervention.

2.2 Distributed middleware architecture
Based upon the challenges discussed in the previous sec-

tion and the nature of the problem context, we propose a
4-tiered architecture as illustrated in Figure 1.

The nodes to which middleware is deployed, are very dis-
similar and range from resource-constrained sensor nodes to
backend servers. Consequentially, the sets of software com-
ponents that compose the middleware will differ among the
various tiers.

Three service layers. The middleware at each tier of the
deployment consists of 3 service layers. On top of the mid-
dleware, an application layer is situated which uses the ser-
vices provided by the middleware.

First of all, the Distribution Services layer takes care of
end-to-end communication; it provides reliable messaging in
the WSN to avoid data loss and a message queue to buffer
bursts of data being forwarded towards the backend.

Secondly, the Common Services layer provides general ser-
vices such as logging, encryption and authentication and
primarily takes care of the respective non-functional require-
ments posed by a container monitoring application.

Thirdly, the Application-Specific Services layer consists
of services like for instance sensing and caching in the WSN
tier, data conversion in the gateway tier and aggregation in
the backend tier. The caching service ensures that sensed
temperature data are cached temporarily in case they cannot
immediately be forwarded towards the backend. The con-
version service at the gateway converts data messages from
the WSN into standard messages; the aggregation service,
for example, triggers an alarm when the measured temper-
ature exceeds a given threshold.

Representative use-case scenarios. We illustrate the work-
ings of our architecture by means of the sequence diagram
in Figure 2. We first discuss the initialization of the sensor
node after which we focus on a single sensor reading being
performed at a sensor node in range of a gateway.

When a container arrives at the company’s dock, it is
equipped with a sensor node. Besides physically attaching
the node to the container, this involves administrative cou-
pling of the node’s unique identifier to the container rep-
resentation in the backend server application. As soon as
the node’s monitoring application is activated the connec-
tivity service starts receiving beacons from the local gateway
and the node will integrate itself into its WSN. At the same
time, the monitoring application initiates the sensing ser-
vice to start the collection of temperature readings. After
each reading, the reliable messaging service is instructed to
forward the data towards the gateway.

The reliable messaging service at the gateway will in turn
acknowledge each received data message and forward it to
the conversion service. The collected data is then trans-
formed into a standardized data format and meta-data such
as time of arrival is added. The standardized data packet is
then added to a message queue where it will be picked up by
the aggregation service of the backend application. In the



Warehouse

Dock

Base station

Data Base

Server

Application

Base station

WSN Gateway Backend

Airport terminal

Base station

Web Service

Internet

Sensing RSSI measurement Conversion Aggregation
LocalizationAggregation

Caching

App. Specific

Services

Distribution 

Services

Common 

Services
Encryption Logging Encryption Authentication Logging Authentication Logging Persistence

Reliable Messaging Reliable Messaging Message queue Message queue

AdvertisingConnectivity

ApplicationMonitoring Monitoring Monitoring

Figure 1: Deployment view of the end-to-end integration at the diverse sites of the company together with
an architectural view of the services offered by the middleware.

backend tier, the aggregation service will process the sensor
reading which possibly triggers an alarm, and call the persis-
tence service to store it in a database. All this monitoring
data, which originated at the sensor node, is also coupled
to the container allowing us to request a monitoring trace
based upon the container’s identifier instead of the sensor
node’s identifier.

In another scenario, a truck without connectivity provi-
sions might transport the container towards the warehouse.
In this case, the sensor node’s connectivity service would
no longer receive beacons from a gateway and instruct the
sensing service to use the caching service and locally store
the temperature readings in flash memory.

When the truck arrives at the warehouse, the sensor node
starts receiving beacons again and registers itself in the new
WSN. The detection of a new gateway also triggers the
caching service to start transmitting its stored data and free-
ing used memory for future caching. This cached monitor-
ing data is again forwarded towards the backend where it is
persisted no differently then the locally collected monitoring
data.

The data, stored at the central database, can then be used
to let interested parties, like supply chain partners, customs
agencies or the national food agency, request a full moni-
toring trace of the container. This trace can be requested
through the web service we provided; it contains all moni-
toring data of the container, no matter at which site of the

company it was collected.

Handling key challenges. Our architecture handles the
challenges described in section 2.1 as follows.

The end-to-end interoperability is fulfilled primarily
by the Distribution Services layer which enables neighboring
tiers to communicate with each other via common distribu-
tion services.

The provided web service enables interested parties to re-
trieve the data collected by the WSNs, thus taking care of
the data exchange requirement.

The heterogeneity challenge is handled by the gateway’s
conversion service by abstracting the different data formats
used in the various WSNs. This allows monitoring data to
be forwarded to the server application in a standard data
format and through a standard interface, regardless of the
WSN type used.

The intermittent network connection of the sensor
nodes is in a large part handled by the caching and connec-
tivity services at the application specific middleware layer
of the WSN-tier. A failing connection is detected by the
connectivity service which triggers the use of the caching
service. Like this, a continuous monitoring trace of the con-
tainer can still be guaranteed, as long as the sensor node is
frequently in range of a gateway to empty its cache memory.

Mobility of sensor nodes is handled by a combination
of services at different tiers. As long as a node’s connec-



Monitoring App Sensing Reliable Mess.Caching Reliable Mess. ConversionAdvertising Queue Aggregation Persistence

Beacon

send() Reading

ACK convert()

Reading

Reading

persist()

Beacon

Sensor Node Gateway Backend

Connectivity

start()

Figure 2: Sequence diagram of a single sensor reading of a sensor node in range of a gateway.

tivity service receives beacons from the advertising service
of a gateway, it considers itself part of the gateway’s WSN.
Only when a node no longer receives beacons from its for-
mer gateway, but does receive beacons from another, will it
migrate to this new WSN and register itself there. In this
way, containers can be moved among sites, using similar
WSN technology, without manual intervention to guarantee
further continuous monitoring.

3. PROTOTYPE: THE MULTITR@NS PLAT-
FORM

Based upon the challenges and the architecture we de-
scribed in the previous sections, we implemented a prototype
(Figure 3) as part of the MultiTr@ns project [6]. The two
lower layers of our middleware were composed by reusing
state-of-the-art software components provided by TinyOS
and the Java Enterprise Edition (Java EE) platform; the
application-specific services and the monitoring applications
were implemented by us.

We developed two TinyOS monitoring applications which
are installed on a set of Crossbow’s micaz sensor nodes; one
for nodes collecting temperature measurements at contain-
ers and another for base stations of the WSNs. Both appli-
cations make use of a set of middleware services deployed
locally on the respective tier.

Each sensor node is programmed with a system-wide unique
node address, and one gateway is deployed for each site of
the company that is considered. We implemented a connec-
tivity service which receives beacon messages containing a
network identifier. This identifier is included as meta-data in
all of the sensor node’s communication with the gateway. As
long as beacons are received, the monitoring data is trans-
mitted reliably towards the base station by the Packet Link
Layer of TinyOS. When the base station is out of range,
the beacon timer will fire which triggers the application to
delegate data to the caching service until new beacons are
received.

The gateway tier consists of a base station node and a
Java EE Application Client. The latter handles the conver-
sion between data formats and forwards data to the server
application. While we had to implement the application

specific conversion service, we could reuse the Java Message
Service (JMS) included in Java EE to handle the communi-
cation towards the server. Upon initialization, our advertis-
ing service, situated at the base station, receives a network
identifier from the application client and starts broadcasting
this by means of the beacon messages.

The backend tier consists of a GlassFish server which runs
a Java EE application and stores monitoring data in a Derby
database by using the Java Persistence API (JPA). Our cus-
tom monitoring application keeps a software representation
of the company up to date. This representation associates
deployed sensor nodes with containers and all monitored
data. Because our prototype includes one application server
and database for the whole company, data can easily be
passed among the various sites and a complete monitoring
trace spanning the container’s presence in the company is
easily generated.

The monitoring trace, together with the current state
of each deployed WSN and some administrative tasks, are
made accessible through a web service that was implemented
using the Java API for XML Web Services (JAX-WS).

4. DISCUSSION
The experience of developing the MultiTr@ns prototype

and various discussions with the industrial partners involved
in the MultiTr@ns project, triggered valuable feedback. We
identified the following main issues:

• Sensor node and data discovery. While our cur-
rent prototype illustrates a one-server setup per com-
pany, it is more realistic that every site will deploy its
own server and WSN to establish full control of the in-
frastructure and to secure private company data. On
an even larger scale, multiple companies might form
a fully integrated supply chain in which a single sen-
sor node monitors a container throughout the total
chain. This implies that while containers are being
transported, data is stored in the current handler’s
database ultimately resulting in federated data man-
agement along the supply chain. It might also not
always be clear at which company the container is cur-
rently located and thus which network to address for



Site A

Site Z

Base station

Derby DB

Java EE

Application

Gateway

Java EE

App. Client

Web Service

JAX-WS

Base station

Gateway

Java EE

App. Client

WSN Gateway Backend Internet

GlassFish
JMS

JMS

Figure 3: Deployment view of the implemented MultiTr@ns platform.

current data. To handle these situations, a resolve
service is needed which matches a container’s unique
identifier to the addresses where current and/or histor-
ical data can be retrieved. The Object Name System
and Discovery Services of the GS1 EPCglobal Archi-
tectural Framework [2] provide this kind of functional-
ity in RFID systems but need further definition to be
applicable in a WSN context.

• Support for heterogeneity in WSNs. Forwarding
agencies will more then likely not all favor the same
sensor node type to monitor their containers. At har-
bor docks for instance, this will cause a variety of sen-
sor nodes which need to communicate with the local
gateway. This means future gateways must be able to
convert a range of messaging and data formats into
standard ones. Such a heterogeneous situation would
benefit considerably from further WSN standardiza-
tion and more specific, the use of a common networking
stack. This requirement is partly handled by the IETF
6LoWPAN standard [4] which, while still in develop-
ment, integrates WSNs into the Internet by extending
IPv6 support towards the sensor nodes.

• Dynamic reconfiguration. During container trans-
port, sensor nodes migrate between different WSNs. A
simple and straightforward requirement like encrypted
transmission of the monitoring data is however not a
trivial task to accomplish. In different WSNs, differ-
ent encryption keys might be used and thus need to
be exchanged securely between nodes and gateways.
To make things even worse, the encryption algorithms
used by a sensor node and its current gateway might
not be the same, requiring a new encryption service
to be deployed on either the sensor node or the gate-
way at runtime. This requires middleware support for

dynamic reconfiguration. Technologies like over-the-
air software distribution [14], OSGi’s orchestration [7]
and the current generation of sensor nodes, like Sun
SPOTs [10] and Sentilla motes [9], which run a Java
VM out-of-the-box, make this a more feasible chal-
lenge.

• Cross-cutting requirements. Non-functional ser-
vices, like for instance a logging service, are crosscut-
ting the functional services like temperature sensing.
They are not always required and/or might need fre-
quent customizations to various application require-
ments. Imagine a logging service in the WSN tier: if
logging is not required, it is better totally shut down
to save on energy and memory usage; if critical data
is to be monitored, data must be logged in a secure,
encrypted manner. Such services are mostly common
to all tiers and need to be implemented and executed
in a non-disruptive manner to not interfere with the
functional services. Interception of the message flow at
crucial places or introduction of Aspect-Oriented Soft-
ware Development (AOSD) seem promising solutions
but need more in depth research as towards feasibility,
especially in the resource constrained WSN tier.

• Support for security. Although we clearly acknowl-
edge the need for security, the current architecture and
prototype pay little attention to it. Various situations
can be identified that need security to be dealt with [5]
like for example (1) malicious node registration which
might corrupt the monitoring data or flood the WSN
preventing real data throughput, (2) user specific ac-
cess levels of historical and real-time data, or (3) user
specific rights for service deployment. Handling these
situations requires the deployment of additional secu-
rity components in both the middleware and the un-
derlying networking stack.



We are currently preparing a second generation architec-
ture in which we try to integrate state-of-the-art approaches
to handle a number of issues discussed.

5. RELATED WORK
Previous efforts have been made to integrate WSNs with

enterprise infrastructure in a container monitoring context.
SAP introduces the Enterprise Integration Component (EIC)

[1] which provides similar functionality as our middleware,
like end-to-end integration, abstraction of different WSN
types and persistence. The EIC implements two interfaces;
one towards the WSNs and one towards backend applica-
tions, and can be compared to a combined gateway- and
backend-tier of our architecture. Although they state sen-
sor node mobility as a requirement, this is not further elab-
orated upon.

IBM’s Secure Trade Lane [8] aims at making container
shipments more predictable and secure. The monitoring of
containers is done by so-called TREC devices which contain
a long range radio like GSM/GPRS and satellite. This long
range radio causes node migration among WSNs to be a non-
issue since connection with the backend is always available.
The Secure Trade Lane does not support WSN heterogene-
ity and uses only TREC devices, which requires a strong
cooperation among supply chain partners. They state that
a central database is unacceptable in an environment where
so many parties are involved due to privacy issues. A service
oriented architecture is proposed in which the owner of the
data can define whom to share data with and under what
conditions.

The MASC (Monitoring and Security of Containers) sys-
tem [5] introduces a container monitoring system that uses
recognized security organizations as trusted third parties
(TTPs) that control access to data collected by sensor nodes
monitoring containers. Although data is stored in a central
database, controlled by a TTP, and node migration is not
elaborated upon, they introduce a tree structure which rep-
resents the supply chain. At the top of the tree, a forwarding
agency, holding the overall responsibility of the container, is
delegating parts of the containers transport to several lower-
level logistic service providers. This means that the feder-
ated data, located at the logistics service providers, might
be aggregated by the root forwarding agency, thus scaling
down the challenge of sensor data discovery.

The EPC Sensor Network [11] introduces a combined global
standard infrastructure for WSNs and RFID systems based
on the EPCglobal Architectural Framework [2] to support
data sharing between partners. The EPCglobal Architec-
tural Framework is a collection of standards and services
which enhance the supply chain through the use of Elec-
tronic Product Codes (EPC) and RFID systems. The EPC
uniquely identifies a product through a hierarchical identi-
fier comprised of a manufacturer id, a product code and a
serial number. The EPC Sensor Network tries to add WSN
support to the initial goals of the framework. Logically they
also refer to the Object Name System and Discovery Ser-
vices of the framework for managing the federated data, but
as stated before, even for RFID systems, the standards do
not fully specify how this should be solved.

6. CONCLUSION
In this paper we presented an end-to-end middleware that

supports the development of applications that monitor the
status of containers during their transport. We identified
key challenges that an end-to-end middleware for container
transport must handle and we presented the design of a
multi tiered middleware architecture. Our prototype imple-
mentation leverages on state-of-the-art software components
(TinyOS, Java EE).

In the context of the MultiTr@ns project, we evaluated
our middleware solution and discussed it with various in-
dustrial partners; this feedback identified a number of key
issues which are highly relevant when designing end-to-end
middleware for realistic applications.

This paper shows that developing realistic sensor appli-
cations is still far from trivial; many challenges have to be
handled, some of which were discussed in this paper. The
prototype we have developed illustrates, however, that it is
feasible to make substantial progress by leveraging on state-
of-the-art middleware components, in combination with spe-
cific services being added.

We will continue this approach and aim for bridging the
gap between industry requirements and middleware support
to develop sensor applications in an efficient manner. The
emergence of a new generation of wireless sensor nodes run-
ning more advanced (Java enabled) platforms (cf. SunSPOT
[10] or Sentilla [9]) confirms the opportunities in the devel-
opment of enhanced sensor middleware and illustrates in-
creasing support for programming sensor nodes.

7. ACKNOWLEDGEMENTS
The authors are grateful to the members of DistriNet’s

WSN team for their valuable comments on the paper and
for proof reading the text.

Research for this paper was sponsored by IBBT, the Inter-
disciplinary institute for BroadBand Technology, and con-
ducted in the context of the MultiTr@ns project.

8. REFERENCES
[1] L. Gomez, A. Laube, and A. Sorniotti. Design

guidelines for integration of wireless sensor networks
with enterprise systems. In MOBILWARE ’08:
Proceedings of the 1st international conference on
MOBILe Wireless MiddleWARE, Operating Systems,
and Applications, pages 1–7, 2007.

[2] GS1 EPCglobal.
http://www.epcglobalinc.org/standards/ (visited June
2008).

[3] W. Horré, S. Michiels, N. Matthys, W. Joosen, and
P. Verbaeten. On the integration of sensor networks
and general purpose IT infrastructure. In MidSens
’07: Proceedings of the 2nd international workshop on
Middleware for sensor networks, pages 7–12, 2007.

[4] IPv6 over Low power WPAN (6LoWPAN).
http://www.ietf.org/html.charters/6lowpan-
charter.html (visited June
2008).

[5] J. O. Lauf and D. Gollmann. Monitoring and security
of container transport. In Proceedings of New
Technologies, Mobility and Security, 2007.

[6] MultiTr@ns: Multimodal transport - mobility and
logistics. http://projects.ibbt.be/multitrans/ (visited
June 2008).



[7] OSGi Alliance. About the OSGi Service Platform,
technical whitepaper, revision 4.1, June 2007.
www.osgi.org/wiki/uploads/
Links/OSGiTechnicalWhitePaper.pdf.

[8] S. Schaefer. Secure trade lane: a sensor network
solution for more predictable and more secure
container shipments. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, pages 839–845, 2006.

[9] Sentilla. http://www.sentilla.com/ (visited June 2008).

[10] Sun SPOT. http://www.sunspotworld.com/docs/
(visited June 2008).

[11] J. Sung, T. S. Lopez, and D. Kim. The EPC sensor
network for RFID and WSN integration infrastructure.
In PERCOMW ’07: Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and
Communications Workshops, pages 618–621, 2007.

[12] A. Talevski, E. Chang, and T. Dillon. Reconfigurable
web service integration in the extended logistics
enterprise. Industrial Informatics, IEEE Transactions
on, 1(2):74–84, May 2005.

[13] TinyOS Community Forum. http://www.tinyos.net/
(visited June 2008).

[14] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming
wireless sensor networks: Challenges and approaches.
IEEE Network Magazine, 20(3):48–55, 2006.


