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Abstract— A hyper-heuristic performs search over a set of
other search mechanisms. During the search, it does not require
any problem-dependent data. This structure makes hyper-
heuristics problem-independent indirect search mechanisms. In
this study, we propose a learning strategy to explore elite
heuristic subsets for different phases of a search. For that
purpose, we apply a number of hyper-heuristics with the
proposed approach to a set of home care scheduling problem
instances. The results show that the learning strategy increases
the performance of the different hyper-heuristics by excluding
some heuristics from the heuristic set over the tested problem
instances.

I. INTRODUCTION

Hyper-heuristics are effective high-level search mecha-
nisms [1], [2], [3]. They perform search over a space of
heuristics instead of solutions. This characteristic is sup-
ported with a domain barrier between hyper-heuristics and
problem domains. The domain barrier is used to provide
problem-independency by preventing any problem-dependent
data flow. The duty of hyper-heuristics is to enable efficient
management over a number of utilised heuristics in a problem
independent manner. By using the strengths and preventing
the weaknesses of multiple heuristics, it can be possible
to provide improvement over applying a number of single
heuristics to a problem instance.

Different heuristics can have different abilities and these
abilities may change over a search space. During the search,
different heuristics are selected with the aim of using the
most appropriate one for the current region in the search
space. There is often no heuristic that performs best ev-
erywhere. Hence, using the heuristics when they perform
better may result in a more efficient solution strategy. Hyper-
heuristics search for such a collaboration between the heuris-
tics from a heuristic set.

There are two main types of hyper-heuristics. These hyper-
heuristics are expressed as “heuristics to choose heuristics”
and “heuristics to generate heuristics”. The first category of
hyper-heuristics includes a heuristic selection mechanism(s)
and a move acceptance mechanism(s). Heuristic selection
aims to choose the best possible heuristic(s) based on the
current state of the search. A move acceptance mecha-
nism is used to decide whether to accept or reject a vis-
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ited/constructed solution(s) by the selected heuristic. Choice
Function [4], Reinforcement Learning [5], Tabu Search [6],
Case-based Reasoning [7] are some examples of heuristic
selection. Also, population based approaches such as Genetic
Algorithms [8] and Ant Colony Optimisation [9] can be used.
Simulated Annealing [10], Monte Carlo [11], Great Deluge
[12], Record-to-Record Travel [13], Late Acceptance [14] are
the move acceptance mechanisms that have been used within
hyper-heuristics.

For the heuristic generation, in [15], [16], [17] Genetic
Programming is employed to construct high quality heuristics
dedicated to solving a target problem. In addition to that, it is
being used as a construction mechanism for hyper-heuristic
components. In [18], it was presented how a problem specific
move acceptance mechanism can be generated. More about
hyper-heuristics can be found in a recent survey paper [19]
and a classification paper [20].

In this study, we propose a simple learning mechanism to
exclude some heuristics during a given number of phases. We
employed this strategy within a number of hyper-heuristics
and tested it over a set of home care scheduling problem
instances. The home care scheduling problem is a relatively
new vehicle routing variant. It requires assigning a set
of carers starting from different locations to a number of
tasks requiring various skills, while respecting numerous
constraints. Due to the routing characteristic of the problem,
the total traveling time should be minimised. In addition to
that, the total idle time of the carers should be optimised. The
experimental results show that excluding worse performing
heuristics is useful to find elite heuristic subsets in different
phases of a search.

In the remainder of the paper, the proposed dynamic
heuristic set strategy is explained (Section 2). Then, in
Section 3, the details about the tested hyper-heuristics are
provided. After that, the problem definition is given in Sec-
tion 4. Next, the paper continues with experimental results in
Section 5. Finally, the paper is concluded and future research
directions are discussed.

II. LEARNING THE HEURISTIC SET

The performance of a hyper-heuristic depends on the set
of heuristics it can choose from. A heuristic set composed
of specialised heuristics may be better than a heuristic set
with weak/simple heuristics. Hyper-heuristics should have
the ability to use the available potential of a heuristic set.
That is, even if the heuristic set does not involve any specific
heuristic or if the heuristic set is not highly specialised,
hyper-heuristics should find a way to manage them in the



best possible way. Also, due to the performance changes of a
number of heuristics over a search space, it is not easy to find
a heuristic that always produces the best decisions. For these
reasons, different learning strategies have been employed to
make better selections of heuristics. It may be useful to
look for effective exclusion opportunities and determine elite
heuristic sets during a search.

Using reduction or prohibition mechanisms in hyper-
heuristics is not new. In [21], 95 low-level heuristics are
automatically reduced to a small set to find the best pos-
sible heuristic set among them. In [6], tabu search with
reinforcement learning was used for the heuristic selection
part. Heuristics are ranked based on their improvement
capabilities. The same data are used to make heuristics
tabu or non-tabu. At each iteration, a non-tabu heuristic
with the highest rank is selected. In [22], different fixed
tabu durations are used to make heuristics tabu for at most
4 iterations. In [23], a similar idea was combined with
different hyper-heuristics. In addition to the deterministic
tabu durations, the experiments were repeated with a random
dynamic tabu duration mechanism over a set of examination
timetabling benchmarks. In the random version, tabu duration
is selected randomly from a predetermined range. In [24], a
genetic algorithm based hyper-heuristic was proposed. Each
individual (chromosome) refers to a number of heuristics that
are consecutively applied to a solution. The aim is to find the
best heuristic combination, i.e. the best individual. Based on
the performance of each heuristic located in a chromosome,
some heuristics are prevented from being applied for a
number of generations.

In this study, we developed a simple learning approach to
exclude some heuristics for a number of phases. Phases are
determined by a number of iterations. After n iterations, a
snapshot of the heuristics’ performance is taken. Based on
that knowledge, some heuristics are excluded.

A. The Learning Strategy

In [25], heuristics are scored based on their performances.
The average of all scores was used to divide the heuristic
set into two. Heuristics with a higher or equal score than
the average value are considered to be improving heuristics.
Heuristics with a lower value than the average are considered
as deteriorating heuristics. Instead of directly using such a
scoring approach, we will learn a value so called quality
index (QI) for each heuristic. This value expresses the quality
of the heuristics during one phase and helps to determine
performance differences. If the employed performance metric
is different from zero for heuristic i, then its QI; is set
to a value based on its order among the other heuristics.
Otherwise, QQI; is automatically set to 1. Better heuristics
have higher QI values. The highest possible value is equal
to the number of heuristics (n) and the lowest value is 1. At
the end of each phase, QI values are set and the average QI
(avg) is calculated. For the calculation of avg, tabu heuristics
additionally contribute with QI = 1. This helps the learning
strategy to keep a number of heuristics non-tabu under any
case. The heuristics with a QI value smaller than avg are

excluded from the set for a pre-determined number of phases
(d: tabu duration).

avg = {(i@h)/nJ M

Although the QI values rank the heuristics based on given
performance criteria, they do not reflect the exact perfor-
mances of the heuristics. However, QI values are effective
and accurate enough for the proposed learning strategy.
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Fig. 1. An example of the prohibition mechanism with tabu duration of 2
(d=2)

In Figure 1, an example of the learning mechanism is
shown. The P; denote the phases. At each phase, the tabu
duration of each heuristic is updated if necessary. That is, if a
non-tabu heuristic is determined to be tabu for the next phase,
its tabu duration is set to a fixed value (d). If a heuristic
is tabu, its tabu duration is decremented by 1 after every
phase until it is zero. In the given example, during P, all the
heuristics are non-tabu. In the second phase, h; and h,, have
been set tabu. They are excluded from the heuristic set for the
next two phases (tabu duration = 2). In the next phase, their
tabu durations are decreased by 1 and another heuristic, hs,
is excluded due to its performance. This procedure continues
until the termination criteria are met.

B. Performance Metrics Involved in Learning

There are different elements to measure the performance
of a heuristic. These elements are mainly related to improve-
ment capabilities of the employed heuristics. However, taking
only the improvement/worsening behavior of the heuristics
into account can be misleading. It can be useful to addition-
ally consider the speed of the heuristics during generating a
new solution.

We decided to use three dependent performance metrics
for determining which heuristics are tabu. M;) The first
comparison is made by checking the capabilities of the
heuristics for improving the current best solution. Heuristics
with a higher number of improvements over the current
best solution have higher QI values. M) In the case of
not providing any new best solutions, the QI values of
the heuristics are determined based on their improvement



Algorithm 1: The Learning Strategy
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n: the number of heuristics; d: fixed tabu duration
value; num_of Ziter: current iteration number; ph;ie,:
the phase length in terms of the number of iterations
during the current phase; count(i)pewpBest: the number
of new best solutions found by heuristic ¢ during the
current phase; imp;: the total improvement provided by
heuristic ¢ during the current phase; wrs;: the total
disimprovement caused by heuristic ¢ during the current
phase; ¢;: the total time spent by heuristic ¢ during the
current phase; T'D List(i): the tabu duration of heuristic
i
Input: d > 0 A phjter > 0
if (num_of _iter%phiter) = 0 then
for i < 1 to n do
Ml (Z) = Count(i)newBest;
if t; > 0 then
My (i) = imp; [t
M;s(i) = —(wrs; /t;);

else

| Ma(i) = Ma(i) = 0;
end
end
for : < 1 to n do
for j < 1 to 3 do
if M, (i) # 0 then
QL =1;
for k + 1 to n do
if i # k and TDList(k) =0 and
QI; = 0 then
if M, (i) > M;(k) then

| QL =QI+1;
else if j = 1 and
M (i) > My (k) then

| QL =QIL+1;
end

end

end
break;

end
end
if QI; = 0 then
| QL =1;
end
end
for i < 1 to n do
if TDList(i) = 0 then
if QI; < avg(QI) then
| TDList(i) = d;
end
else
| TDList(i) = TDList(i) — 1;
end

end

end

capabilities per unit execution time. M3) If some of the
heuristics do not provide any improvement but worsen the
solution, then the QI values of these heuristics are determined
based on their worsening characteristics per unit execution
time.

e M; : Number of new best solutions found
e M, : Total fitness improvement / execution time
e Ms5 : Total fitness disimprovement / execution time

Whenever num_of _iter reaches ph;:., and its multiples,
the three performance metrics are checked for the non-tabu
heuristics and based on these values, the QI value of each
heuristic is determined. After that, some heuristics are made
tabu for d phases and the tabu durations of the tabu heuristics
are decreased by 1.

C. Size of the Heuristic Subsets

Based on the proposed learning strategy, the size of a
heuristic subset or the number of non-tabu heuristics have
limits. If none of the heuristics makes a change to a solution,
then the QI value of each heuristic is set to 1. This means
that avg is 1. Since avg = 1 is the lowest possible value,
no heuristic will be excluded. On the other hand, if all the
heuristics are non-tabu and all have a different performance,
then avg = (n+1)/2. If avg > 2, then at least one heuristic
is excluded. From this limit, we can derive the following
formula (2).

(n—z)+x(x+1)/2

>2 (2)
n
After simplification it turns into (3).
z(x—1) > 2n 3)

In this formula z is the total number of non-tabu heuristics.
If this formula is valid, then it is possible to exclude
some heuristics. Whenever it is violated, the size of the
heuristic subset reaches its lowest limit. For instance, for
a large enough tabu duration (d =), which prevent the tabu
heuristics from being added back to the heuristic set before
the number of tabu heuristics reaches its maximum limit, the
minimum size of a heuristic subset is 3 for n=5, 4 for n=10
and 14 for n=100. As seen from the given examples, the
minimum heuristic set for small n is some kind of exclusion
mechanism. On the other hand, for a larger n, it behaves
like a temporary heuristic reduction strategy. Of course, for
larger heuristic sets, higher tabu duration values should be
utilised. Otherwise, the number of non-tabu heuristics will
be too large for an elite heuristic set. The phase length
should also be determined based on the number of heuristics.
For instance, if n = 100, using ph;t, = 1000 is not a
reasonable choice. At best, each heuristic will be called only
10 times. Thus, making a meaningful comparison between
the heuristics will not be possible, especially if most of the
heuristics are non-tabu.



III. HYPER-HEURISTICS

We employed 3 perturbative selection hyper-heuristics in
different configurations from those in [26]. All the tested
hyper-heuristics use the Simple Random (SR) heuristic se-
lection mechanism. Since SR selects heuristics in a random
uniform manner, all the heuristics get equal opportunity to be
explored. For the move acceptance part, one hyper-heuristic
involves Improving or Equal (IE). The other two use Iteration
Limited Threshold Accepting (ILTA) [27] and Adaptive ILTA
(AILTA) move acceptance strategies. The aim is to show
performance changes over a number of hyper-heuristics.

Algorithm 2: ILTA Move Acceptance
Input: £ > 0A R € (1.00 : o0)
if f(S') < f(S) then
S« S’
w_iterations = 0;
else if f(S’) = f(5) then
‘ S« 5
else
w_terations = w_iterations + 1;
if w_iterations > k and f(S’) < f(S») X R then
‘ S < S’ and w_iterations = 0;
end
end

o 0 AN AW N =

The different move acceptance mechanisms considered
here simply work as follows:

- IE : Accepts improving or equal quality solutions.

- ILTA : Accepts improving or equal quality solutions; in
addition to that, accepts worsening solutions based on an
iteration limit and a threshold value.

- AILTA : Adaptive version of ILTA. Adapts the threshold
value if the current best solution is not improved.

In Algorithm 2, the pseudo-code of ILTA is given. k
is the iteration limit for consecutive worsening moves to
accept a worsening solution. R is a range value used to
calculate a threshold level. S is the current solution, S’ is
the new solution found and S is the current best solution.
f(S), f(S) and f(S,) denote the fitness values of these
solutions. Witerations 1 the number of iterations denoting the
consecutive worsening solutions (intermediate equal quality
solutions are ignored).

ILTA has similarities with Record-to-Record Travel (RRT)
[28] and Sequence Heuristic (SH) [29]. The similarity be-
tween ILTA and RRT is related to how the threshold values
are calculated. In RRT, this value is calculated as f(S,) +
Deviation where Deviation is utilised for determining
a threshold value for the acceptance process. ILTA also
calculates the threshold by taking the fitness of the current
best solution into account and employs a dynamic parameter
of Deviation using a fixed R. In [30], a similar dynamic
approach was applied to the heterogeneous fleet vehicle rout-
ing problem. Concerning the iteration limit, ILTA resembles
SH. It checks a fixed number of solutions before accepting

a worsening move, just as SH does. Since each solution
has a lot of neighboring solutions, accepting a worsening
neighbour whenever encountering one can result in missing
some good intermediate solutions. ILTA aims at handling this
problem by employing reasonable iteration limits.

Fig. 2.  Extending the acceptable search space region for worsening
solutions by increasing the range value from R; — R,

AILTA is an adaptive version of ILTA that increases
the value of R in case it is hard to improve the current
best solution. For that purpose, another iteration limit is
added. This limit determines when R should be increased.
To prevent the value of R of becoming very large, an upper
bound for R is provided. Whenever the current best solution
is improved, R is set to its initial value. The adaptation
process is visualised in Figure 2.

IV. THE HOME CARE SCHEDULING PROBLEM

The home care scheduling problem considers assigning a
number of carers to a number of patients who are located at
different places requiring a number of tasks to be tackled.
The problem is relatively new in the research community
and it has not been widely studied. In the literature, the
problem differs based on the type of the tasks. The home care
scheduling problem considers, next to nursing/medical tasks,
also general tasks such as cleaning. The more restrictive
form, the home health care problem, only considers health
related tasks. In [31], a spatial decision support system was
developed to solve the home care problem over a five-day
planning horizon. In [32], [33], [34], the daily problem is
modeled like a multi depot vehicle routing problem with time
windows, by considering each nurse’s home as a separate
depot. In [35], weekly home care schedules were constructed
by assigning patients based on their care plans without fixed
time windows constraints. In [36], particle swarm optimi-
sation was used to determine exact visit times concerning
assigned tasks for a home care problem. In [37], [38], a
software system called LAPS CARE that focuses on home
care by using different activity types such as cleaning for
mostly elderly people was presented. In [39], a VRP software
was applied to solve different scenarios of the home care
problem. In [40], the home health care problem was modeled
as a master schedule problem, which aims to decrease the
number of routes, and an operational planning problem that
is utilised to deal with immediate changes. In [41], the



health care delivery problem for chemotherapy patients at
their home was modeled based on a supply chain strategy
involving drug production, distribution and administration
phases whilst respecting the drugs’ shelf life.

The problem resembles the Vehicle Routing Problem with
Time Windows [42]. However, the home care scheduling
problem includes more constraints and different skills to
cover the given tasks. These characteristics are listed as;

For carers:

o Transportation: Using different transportation means
(car, bicycle, walking) to travel

o Starting Location: The starting location concerning
carers’ working time can differ (a central depot, home
or first visit)

o Working Time Window: Each carer has a duty start time
and a duty end time

o Skill Types: Each carer has different skills

o Excluded Patients: Some patients can be excluded for
some nurses

For tasks:

o Locked Tasks: Some tasks are locked to a specific carer

o Skill Requirement: Each task has different skill require-
ments

o Time Window: Each task has a time window

e Duration: Each task has a duration

o Preferred Carers: Some tasks have preferred carers

o Connected Tasks: Some tasks can be related to each
other. For instance, two related tasks may require to
start at the same time

A. Fitness Function

The problem is tackled using a single fitness function that
equals a weighted sum of objectives and constraint violations.
The objectives that should be minimized are;

o Total traveling time

o Total idle time due to early arrival with respect to the
task time windows and remaining time to the end of the
working time window

Since feasible solutions are not guaranteed in case all the
constraints are hard, we consider the following constraint
violations;

o Task time window violation

« Working time window violation
« Skill requirement violation

o Assignment of unpreferred tasks
o Assignment of unpreferred carers
o Connected task violation

For more details about the fitness function, check [26].

B. Low-level Heuristics

The same low-level heuristics as in [26] are used. The
details are as follows;
LLH, : Swap visits between two routes

LLH, : Swap visits within a route
LLHS3 : Move a visit to the best place within another route

LLH, : Select a route and find the visit that provides the
best improvement when removed and move it to the best
place within another route
LLHj5 : Select a route and find the visit that provides the
best improvement when removed and move it to the best
place within the best route that is determined based on an
individual objective value of each route
LLHg : Select a route and find the visit that provides the
best improvement when removed and move it to the best
place within the most idle route

In fact, promising experiments with a larger set of low-
level heuristics, i.e. 32 instead of 6, have been carried out.
However, it turned out that many of these 32 low-level
heuristics never led to any improvement.

V. EXPERIMENTS

We tested the hyper-heuristics over 6 home care scheduling
problem instances on Pentium Core 2 Duo 3 GHz PCs with
3.23 GB memory. The tests are repeated 10 times. The phase
lengths are set to {1000, 2500, 5000, 10000} iterations. For
the tabu duration, we use 1. For ILTA, k is 100. For AILTA,
the second iteration limit is set to 5000 and the range value
is adapted (R; — R,) by an incrementing factor 1.001.
The parameters regarding the move acceptance part are the
same as in [26]. These parameters were determined after
some preliminary experiments. No special parameter tuning
process was applied.

In Table I, the details about the home care scheduling
instances are given. Among them, the Ah, [[2 and /I3 instances
are taken from [43]. The remaining instances, hhl, Il1]1 and
1121, are the modified versions of the original hh, Il1 and II2.

TABLE I
THE HCSP INSTANCES

Bench.  Num. of Carers  Num. of Tasks  Num. of Patients
hh 15 154 74
hhl 15 150 74
i 9 104 59
12 7 61 30
u2i 7 60 30
13 7 61 30

A. Computational Results

In the following tables the average fitness (AF) values
and the average ranks (AR) belonging to different phase
lengths concerning each hyper-heuristic are provided. The
experimental results with “N/A” denote the hyper-heuristics
with no dynamic heuristic set.

In Table II(a), the results for SR-AILTA with R;=1.003
and R,=1.007 are given. The average rank values show that
all the tested phase lengths improve the performance of the
hyper-heuristic with an initially formed fixed heuristic set.
Among them, 10000 looks like the best option. In Table
II(b), the ranking of the same hyper-heuristic with R,,=1.01
is presented. For this hyper-heuristic configuration, 2500 is
a useful phase length for determining a dynamic heuristic
set. In Table II(c), again the same hyper-heuristic was tested



TABLE I
AVERAGE FITNESS VALUES WITH RANKS OF DIFFERENT HYPER-HEURISTICS OVER 6 HCSP BENCHMARK INSTANCES

(a) SR-AILTA with Ry = 1.003 R, = 1.007

(b) SR-AILTA with R; = 1.003 R, = 1.01

AF PHASE LENGTH AF PHASE LENGTH
N/A 1000 2500 5000 10000 N/A 1000 2500 5000 10000
hh 75121,94 | 74049,25 | 74831,22 | 74772,85 | 74378,76 hh 74213,60 | 73995,66 | 74654,60 | 74808,14 | 74220,70
hhl 43645,46 | 46726,00 | 44719,40 | 43466,85 | 42706,44 hhl 42654,80 | 43415,05 | 43942,63 | 43157,50 | 43001,02
11 50458,76 | 47392,77 | 46408,61 | 47675,16 | 44787,40 11 | 45264,19 | 44730,06 | 44677,35 | 46197,30 | 44996,57
112 9873,51 9650,13 9332,27 9420,47 9352,76 112 9712,77 9491,63 9326,69 9369,95 9322,01
1121 8732,83 9233,70 9174,38 9432,25 9330,76 1121 8739,54 9194,20 8708,62 8935,51 8829,87
113 8775,59 8843,06 8724,14 8688,68 8815,87 113 8636,19 8699,11 8500,31 8628,37 8789,47
(AR | 3,67 | 3,50 | 2,50 | 3,00 | 233 | [AR | 283 | 333 | 233 | 3,67 | 283 |
(c) SR-AILTA with Ry = 1.004 R,, = 1.007 (d) SR-ILTA with R=1.003
AF PHASE LENGTH AF PHASE LENGTH
N/A 1000 2500 5000 10000 N/A 1000 2500 5000 10000
hh 75685,42 | 74241,68 | 74200,68 | 74634,61 | 74019,18 hh 75958,19 | 78077,78 | 74911,15 | 78822,38 | 75234,02
hhl | 43837,95 | 43675,98 | 43155,15 | 43448,52 | 43301,90 hh1 50103,33 | 45625,38 | 45637,32 | 45234,76 | 45057,79
11 47291,00 | 47212,63 | 42774,24 | 44854,42 | 49183,66 111 53289,69 | 46101,79 | 50750,60 | 47830,82 | 49135,72
112 9776,71 9488,96 9296,00 9393,11 9478,91 112 10187,80 9703,55 9661,95 9652,46 9611,41
1121 9057,60 8919,95 8947,66 9014,98 9086,86 1121 9016,99 9462,47 9474,32 9686,57 9595,09
113 8645,29 8574,99 8659,42 8716,54 8819,17 113 8995,84 8984,76 9368,15 8998,98 8995,41
AR | 417 | 2,67 | 1,67 | 3,00 | 350 | [ AR | 3,67 | 2,50 | 333 | 333 | 2,17 |
(e) SR-ILTA with R=1.004 (f) SR-IE
AF PHASE LENGTH AF PHASE LENGTH
N/A 1000 2500 5000 10000 N/A 1000 2500 5000 10000
hh 75155,32 | 77448,89 | 74835,87 | 75125,33 | 74513,35 hh 89286,77 | 87083,58 | 89609,35 | 88606,49 | 87620,99
hhl | 44794,36 | 44407,52 | 44508,57 | 4466296 | 44457,79 hh1 54778,81 | 5565993 | 53259,56 | 50893,50 | 53326,32
111 51109,00 | 48684,60 | 45194,42 | 45532,99 | 46548,59 111 104670,45| 76356,56 | 81872,82 | 85122,85 | 80558,46
112 10047,85 9599,21 9439,91 9685,93 9609,40 112 10339,69 9826,82 9909,80 | 15365,12 | 15353,77
1121 9303,31 9387,10 9433,68 9765,26 9233,92 1121 9418,10 9512,55 9816,59 9527,36 9507,30
113 8752,16 8793,18 8943,88 8933,82 9103,44 113 9395,24 9570,64 9770,43 9784,44 9765,54
(AR | 367 28] 250 | 350 | 250 | [AR ]300 [ 217 | 350 | 367 | 267 |
. . .. TABLE III
with R1=1.004 and R,,=1.007. Learning heuristic subsets for
. R THE AVERAGE BEST RESULTS FOR THE HCSP INSTANCES
different phases on average generates superior results. All the i
d oh 1 th It in i ts. A th Bench. HH Phase Length Fitness
tested phase lengths result in improvements. Among them, T AILTA R1=1.003 R,=1.01 000 73995.66
2500 shows the best performance based on average ranks. hhil AILTA R;=1.003 R,=1.01 N/A 42654,80
In Table II(d), the average performance of SR-ILTA with iu AILTA R,=1.004 R,=1.007 2500 42774,24
.. . 12 AILTA R1=1.004 R,,=1.007 2500 9296
R=1.003 is indicated. The ranking values based on the 21 AILTA R1=1.003 R,=1.01 2500 8708.,62
average fitness values show that all the phase length values u3 AILTA R;=1.003 R,=1.01 2500 8500,31
are useful for determining elite heuristics subsets. Among
them, 10000 performs best. In Table II(e), the performance of TABLE IV
?;f samte hlfl per-lheuglstlc AWIth R;1.0042;(/)2;)s III:jprlo(;/ggOu;mg THE BEST RESULTS FOR THE HCSP INSTANCES
ifferent phase lengths. Among them an ave
p g & . Bench. HH Phase Length Fitness
the same average rank as the best options. Th ATLTA R,=1.003 B, =1.01 10000 71981.80
The last hyper-heuristic, SR-IE, was also tested for differ- hhi AILTA R;=1.004 R,=1.007 N/A 40644,60
. . f ot . i AILTA R1=1.003 R,,=1.007 2500 39046,80
ent Rhase lengths. qu this hyper-heuristic, 1000 provides the 2 AILTA R1=1.004 R.=1.007 1000 8926.25
best improvement with respect to the average ranks. 21 AILTA R;1=1.003 R,,=1.01 2500 8372,40
The comparisons are made based on a fixed phase length ILTA R=1.003 N/A
1 In th f taki diff t ph 1 ths int 13 AILTA R;1=1.003 R,,=1.01 2500 8047,15
value. In the case of taking different phase lengths into AILTA R1=1.004 R, =1.007 2500

account for the same hyper-heuristic configuration, the per-
formance improvement coming from the learning strategy
appears to be higher.

In Table III, the average best results for the tested in-
stances are shown. All the average best results after 10 trails
excluding the hhl were improved. In addition, in Table IV,
some new best results are provided. The current best result
of the hhl could not be improved and for the /[3 the previous
best result is found again. For the rest, new best results were
reached.

In Figure 3, sample QI values for each heuristic by SR-
AILTA R; = 1.003 R, = 1.007 with ph;, = 2500 are
presented. These values show how the performance of the
heuristics changes in time. Especially, LLH, and LLHj5
perform worse than the other heuristics. This causes them
to be frequently excluded from the heuristic set.

All these results show that the proposed learning strategy
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can provide improvement over different hyper-heuristics. SR-
IE without a dynamic heuristic set has been improved by
the learning strategy. For the other hyper-heuristics that
perform significantly better than SR-IE, it is still possible
to provide improvement via the dynamic heuristic set. That
is, regardless of the characteristics of the hyper-heuristics, the
learning strategy can help them to fill the gap between their
current performance and their potential on a given heuristic
set.

TABLE V

SR-AILTA WITH R; = 1.003 R, = 1.01 WITH phjte, = 2500 AND
d=11,2,3,4,5,6}

oF TABU DURATION
1 2 3 4 5 6
Rh | 7465460 | 7429445 | 7384802 | 74457.14 | 7377155 | 74643.89
hhi | 4394263 | 43213.85 | 43096.84 | 43675.20 | 43747.53 | 44921.41
1 | 4467735 | 44080.03 | 42614.54 | 43730.65 | 4552286 | 44714.58
2 | 932669 | 9410.14 | 940652 | 935636 | 9358.18 | 9372.62
1121 | 870862 | 873355 | 8780.35 | 916857 | 8906.54 | 915457
13 | 850031 | 860494 | 871798 | 8574.86 | 866840 | 8610.33

[AR | 300 | 3.7 ] 300 | 307 ] 383 | 483 |

The computational results were generated using a tabu
duration of 1. This means that each excluded heuristic returns
to the heuristic set just after one phase. For that reason more
experiments were carried out to show the effect of different
tabu durations d {2,3,4,5,6}. However, we did not
see a significant performance difference among the hyper-
heuristics with d = {1,2,3,4}. The performance decrease
starts with d = 5. With d = 6, the quality of the solutions
decreases in a significant way. This shows that there can
be a range of tabu durations behaving similarly. Out of that
range, the performance of the hyper-heuristic can decrease
significantly.

VI. CONCLUSIONS

In this study, we propose a learning mechanism for exclud-
ing some heuristics during different phases of the search.

| | I | |
150 200 250 0 50 100 150 200 250

Sample QI values during the first 250 phases over the hh by SR-AILTA R; = 1.003 R, = 1.007 with d = 1 and ph;te, = 2500

The main aim is to find proper heuristic sets that can be
used during different phases of the search. The proposed
mechanism helps to determine elite heuristic subsets during
each phase. This approach can be considered as a learning
mechanism that is repeated at each phase. Any information
learnt during a phase is forgotten in the next phase. To test
the effectiveness of the idea, the hyper-heuristics are used
with different phase lengths regarding the learning strategy
over a set of home care scheduling problem instances.

The experimental results over 6 hyper-heuristic configura-
tions show that this mechanism successfully determines the
performance difference of the utilised heuristics during each
phase. Simple rankings of the average fitness values for 10
trials indicate the performance improvement of the learning
strategy.

In the future, we will work on an adaptation approach for
determining the best phase lengths. The effects of different
performance criteria will be investigated. We will combine it
with a general learning mechanism for learning about the per-
formance of heuristics over the entire search space in order to
increase their effectiveness. In addition, a coupling strategy
will be designed for better cooperation between the dynamic
heuristic set approach and the move acceptance mechanisms.
Furthermore, the behavior of the learning strategy will be
investigated over larger heuristic sets.
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