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Abstract. This abstract introduces a novel approach to intelligently
select appropriate modes for each activity in the multi mode resource
constrained project scheduling problem. The mode of an activity deter-
mines its duration and the resources that it requires. In order to obtain
a good (or optimal) makespan, finding an appropriate mode for each
activity is most important.
The approach integrates different components. It applies a serial for-
ward/backward heuristic to construct schedules; learning automata to
come up with good quality modes and a genetic algorithm to explore the
search space.
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1 Introduction

The Multi Mode Resource Constrained Project Scheduling Problem (MRCPSP)
is an extension to the Resource Constrained Project Scheduling Problem (RCPSP).
Given a project with a certain number of scarce (non) renewable resources and
a set of non preemptive activities, each with a set of predecessors, a set of suc-
cessors and resource requirements, the goal is to find a feasible assignment that
minimizes the makespan. The (M)RCPSP is subject to two constraints: 1) an
activity should not be scheduled until all its predecessors have finished (prece-
dence constraint) and 2) the number of assignments of a resource at any time
should not be larger than the availability of that resource (resource constraint).
In the MRCPSP, an activity can have a fixed number of modes. Each mode
defines the number of the resources required to finish the activity within a given
execution time. A feasible schedule for the MRCPSP is determined by the mode
and the start time of each activity, provided that all precedence and availability
constraints are satisfied.



The RCPSP is known to be NP-hard. A comprehensive survey of the project
scheduling problem can be found in [2, 6]. A tabu search metaheuristic is applied
in [5] for solving the MRCPSP with generalized precedence relations. In [4, 10,
7] a genetic algorithm is presented for the MRCPSP.

The contribution of this paper is the introduction of a novel approach to the
MRCPSP that combines ideas from reinforcement learning and metaheuristics.
In contrast with [3], which applies a genetic algorithm to tune parameters, we
integrate learning automata within the genetic algorithm itself. A learning au-
tomaton is a simple decision making device, which, unlike a genetic algorithm,
does not assume complex parameter selection. Moreover, learning automata show
interesting convergence behaviour in stationary environments [11].

This abstract is structured as follows. Section 2 describes the components
of the reactive metaheuristic. Section 3 presents experimental results on a set
of benchmark problems. Finally, Section 4 concludes the paper and points out
directions for further research.

2 A Hybrid Optimisation Approach

The hybrid approach combines three components to create good quality solu-
tions. We first present the algorithm to generate a solution. In Section 2.2, we
present the method that learns which modes contribute best to a small makespan.
Finally, we describe how the components are integrated into a genetic algorithm.

2.1 Serial Schedule Generator

We construct a solution with the iterative forward/backward scheduling tech-
nique [9]. It applies an ordered activity-list and a mode assigned to each activity.
When an activity is scheduled without violating any constraint, the algorithm
continues with the next activity. In case a particular activity cannot be sched-
uled (e.g. when it requires more than the available number of resources), an
infeasible assignment results in a very large makespan (M + r). M is a large
number (related to the maximum scheduling horizon of the project) and r is the
sum of all the resource deficits.

2.2 Learning Automata

In [11] some classical reinforcement learning algorithms for Finite Action Learn-
ing Automata (FALA) are described. These algorithms learn to take the best
action out of a set of possible actions following a reinforcement signal from the
environment. For learning the best modes of every given priority list we have
chosen the Linear Reward-Inaction (LRI) method because of its ε-optimality
property in all stationary environments. An action probability vector p(k) as
described below is maintained and updated:



pi(k + 1) = pi(k) + λβ(k)(1− pi(k)), if action i was chosen at k
pj(k + 1) = pj(k)− λβ(k)pj(k), ∀j 6= i

with k the current iteration number, λ ∈ [0, 1] the reward parameter and β(k) ∈
{0, 1} the reinforcement obtained when choosing action i.

The mode learning method works as follows. For every activity in the list,
a learning automaton chooses a mode out of a fixed set of predefined modes
according to its probability vector. By mapping the mode to each activity, a
new solution can be generated. We compare the new solution to the current
best solution. In case of an improvement, we set it as the new best solution and
perform a positive reinforcement (β = 1) update of all the learning automata
for the mode that they have chosen. In case the new solution was not better, we
update all the learning automata with a negative reinforcement (β = 0). At the
end we return the schedule corresponding to the best solution found.

2.3 Genetic Algorithm

In this section we present the hybrid approach that is based on the genetic algo-
rithm described in [8]. We integrate the mode learning method into the genetic
algorithm and learn the appropriate activity modes for every individual solu-
tion in the population. The learning phase should not require many evaluations
as that would increase the computation time too much. We call this the short
learning phase. At the end of every generation we apply a long learning phase
(with a higher number of learning iterations) to the best individual. If the long
learning phase generates a better solution than the best so far, we store the new
one. Experimental results are presented in Section 3.

3 Results

We performed tests on all instances of the MRCPSP J30 PSPLib library [1]. The
test instances involve 30 multiple mode activities. We carried out the tests with
the following parameters: population size 10, 5 generations, 5.000 iterations with
a learning rate of 0.2 for the short learning phase, and 10.000 iterations with
a learning rate of 0.1 for the long learning phase. We compared our resulting
makespans with the best found for these instances. The results for all MRCPSP
j30 instances are presented in Figure 1. Our method performs equally good as
the best known method for 314 out of 552 instances.

4 Conclusion

We developed a new hybrid metaheuristic method for the MRCPSP. It inte-
grates a learning component into an existing metaheuristic that performs well
on RCPSP, in order to make it fit for the MRCPSP. State-of-the-art solutions
are very often reproduced, which is very promising, given the preliminary state
of the research. Future work will involve fine tuning all the components in order
to improve the overall behaviour of the approach for a larger set of test problems.



Fig. 1. Results for all MRCPSP j30 instances
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