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Abstract 28 

Forestry science has a long tradition of studying the relationship between stand productivity 29 

and abiotic and biotic site characteristics, such as climate, topography, soil and vegetation. 30 

Many of the early site quality modelling studies related site index to environmental variables 31 

using basic statistical methods such as linear regression. Because most ecological variables 32 

show a typical non-linear course and a non-constant variance distribution, a large fraction of 33 

the variation remained unexplained by these linear models. More recently, the development of 34 

more advanced non-parametric and machine learning methods provided opportunities to 35 

overcome these limitations. Nevertheless, these methods also have drawbacks. Due to their 36 

increasing complexity they are not only more difficult to implement and interpret, but also 37 

more vulnerable to overfitting. Especially in a context of regionalisation, this may prove to be 38 

problematic. Although many non-parametric and machine learning methods are increasingly 39 

used in applications related to forest site quality assessment, their predictive performance has 40 

only been assessed for a limited number of methods and ecosystems. 41 

In this study, five different modelling techniques are compared and evaluated, i.e. multiple 42 

linear regression (MLR), classification and regression trees (CART), boosted regression trees 43 

(BRT), generalized additive models (GAM), and artificial neural networks (ANN). Each 44 

method is used to model site index of homogeneous stands of three important tree species of 45 

the Taurus Mountains (Turkey): Pinus brutia, Pinus nigra and Cedrus libani. Site index is 46 

related to soil, vegetation and topographical variables, which are available for 167 sample 47 

plots covering all important environmental gradients in the research area. The five techniques 48 

are compared in a multi-criteria decision analysis in which different model performance 49 

measures, ecological interpretability and user-friendliness are considered as criteria. 50 
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When combining these criteria, in most cases GAM is found to outperform all other 51 

techniques for modelling site index for the three species. BRT is a good alternative in case the 52 

ecological interpretability of the technique is of higher importance. When user-friendliness is 53 

more important MLR and CART are the preferred alternatives. Despite its good predictive 54 

performance, ANN is penalized for its complex, nontransparent models and big training 55 

effort. 56 

Keywords: Artificial neural networks; Boosted regression trees; Forest site classification; 57 

Generalized additive models; Multi-criteria decision analysis; Multiple linear regression; 58 

Predictive modelling  59 
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1. Introduction 60 

In forestry, accurate estimation of site productivity is crucial for good forest resource 61 

management (Seynave et al., 2005). Productivity is very dependent on the quality of the site 62 

(i.e. the collective of physical and biotic factors present at a given location). Forest research 63 

has a long-standing tradition of studies concerning the impact of biotic and abiotic 64 

characteristics such as climate, topography, soil and vegetation on site productivity (e.g., 65 

Amen, 1945). To estimate forest site quality, foresters face the problem of integrating all 66 

these site factors. Moreover, the forest itself is an important site-forming factor, which makes 67 

only approximations possible unless forest and site are considered as a complex interrelated 68 

ecosystem (Spurr and Barnes, 1980). Because of this complexity, for most areas in Europe 69 

and North America forest site quality has been derived only empirically from the tree species 70 

specific dominant height of an even-aged tree population of known age and rescaled to a 71 

reference age, termed site index (SI) (Fontes et al., 2003).  72 

For several applications, however, it is not possible to measure this site index in a direct way, 73 

e.g. in mixed, uneven-aged stands, for stand conversion to another tree species, for 74 

afforestation of non- forested land, or because site conditions changed over time. By linking 75 

dominant height to environmental variables (Corona et al., 1998; Curt et al., 2001), landscape 76 

characteristics (Iverson et al., 1997) and understory vegetation data (Bergès et al., 2006), site 77 

quality can be estimated at non-monitored sites.  Most of the early site studies predicted forest 78 

growth from one or a few environmental variables that could be measured in the field 79 

relatively easy and at low cost. Several studies have tried to model site index by coupling age 80 

and tree height measurements to abiotic site properties but with alternating success (see e.g., 81 

Corona et al., 1998; Chen et al., 2002; Bergès et al., 2005). Many of these yielded low 82 

accuracy and a high degree of variation (Kayahara et al., 1998; Curt et al., 2001).  83 
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Linear regression is one of the oldest and most widely used statistical techniques for 84 

modelling site quality because of its easy use and straightforward interpretability (Curt et al., 85 

2001; Seynaeve et al., 2005). Although a powerful approach in particular situations when 86 

appropriately applied, many ecological relations are typically non-linear. Data often have a 87 

non-constant variance distribution and many explanatory variables show collinearity. As a 88 

consequence, linear regression may not be appropriate or may lead to high unexplained 89 

variation (Guisan et al., 2002).  90 

More recently, the development of more advanced non-parametric and machine learning 91 

techniques and the growing availability of geodatasets at high spatial resolution are opening 92 

up plenty of opportunities to predict forest site quality with greater accuracy. Despite the 93 

flexibility of these techniques to account for non-linear relationships, they are more 94 

vulnerable for overfitting the data, i.e. fitting noise resulting in unstable regression 95 

coefficients (Harrell et al., 1996; Guisan and Thuiller, 2005). Also the implementation, the 96 

capacity to integrate the models with other software and the interpretability of these models 97 

can become complicated and should be weighted against the improvement in accuracy and 98 

precision.   99 

Non-parametric and machine learning techniques that may be better fit to address the 100 

mentioned problems of linear regression should be identified and their performance 101 

compared. In the domain of forest site quality assessment McKenny en Pedlar (2003) 102 

successfully used classification and regression trees (CART) to model site index from 103 

environmental variables for two boreal tree species in Canada. The performance of non-104 

parametric techniques as CART, generalized additive models (GAM) and artificial neural 105 

networks (ANN) compared to parametric techniques was investigated by Moisen and 106 

Frescino (2002) for the prediction of several species independent forest characteristics in the 107 
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Interior Western United States. Wang et al. (2005) also evaluated these techniques for the 108 

spatial prediction of site index of Lodgepole pine in Canada. Both studies concluded that 109 

these non-parametric approaches can be more effective predictors. Boosted regression trees 110 

(BRT), an extension of CART, is a promising technique used in ecological research on 111 

species distributions and seems to be a powerful tool for all kind of ecological modelling 112 

(Leathwick et al., 2006; Guisan et al., 2006; Elith et al., 2008). Recently, a number of 113 

software programs have been developed, incorporating many of the mentioned techniques for 114 

the prediction of species distributions (Thuiller et al.,2009). Yet no such tool exists for the 115 

prediction of continuous response variables as site index. Many studies already concluded that 116 

there is no general best modelling technique, but depending on the scope and the goal of the 117 

study some techniques will probably be better suited than others in particular situations. This 118 

study can be a good guideline to acquire more insight in the strength of the different 119 

techniques to model site index. 120 

There is no single definite test to evaluate models, and many model predictive performance 121 

measures have been formulated (Guisan and Zimmermann, 2000; Moisen and Frescino, 2002; 122 

Wang et al., 2005). Moreover, other factors such as the ecological interpretability or the user-123 

friendliness of a technique can be of importance in making a final evaluation and ranking of 124 

site index modelling techniques (Maggini et al., 2006). Multi-criteria decision analysis 125 

(MCDA) is a family of commonly used methodologies to assist in complex decision-making 126 

situations, as it allows the consideration of multiple criteria in incommensurate units (i.e. 127 

combination of quantitative and qualitative criteria) to provide a final ranking of alternative 128 

decisions (Herath, 2004; Mendoza and Martins, 2006). The aim of this study is to compare 129 

and evaluate two statistical non-parametric (GAM, CART), one machine-learning (ANN) and 130 

one hybrid modelling techniques (BRT) for modelling site index. Although not expected to 131 

provide the best performance, multiple linear regression (MLR) is included in this study for 132 
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its straightforward interpretability and as a benchmark against which other techniques can be 133 

compared. Each method is used to model site index in homogeneous stands of three important 134 

tree species of the Taurus Mountains (Turkey): Pinus brutia Ten. (Calabrian pine), Pinus 135 

nigra ssp. pallasiana (Arnold) K. Richt (Crimean pine) and Cedrus libani A. Rich. (Lebanon 136 

cedar). The specific objectives of this study are: 137 

(1) to compare the modelling techniques with respect to their predictive performance; 138 

(2) to rank the modelling techniques according to predictive performance and user-139 

oriented criteria including user-friendliness and ecological interpretability. 140 

2. Material and methods 141 

2.1 Study area  142 

The study area (55 000 ha) covers the Ağlasun forest district (37°33′N, 30°32′E, 350–2200 m 143 

above sea level) in southern Anatolia, Turkey. The region has a cold and sub-humid 144 

Mediterranean climate with pronounced winter precipitation and summer drought (Paulissen 145 

et al., 1993). Limestone is the predominating parent material. Locally also conglomerates and 146 

sandstones are present. Soil depth, moisture regime and stoniness vary with topography. Most 147 

soils can be classified as leptosols, regosols or cambisols (FAO et al., 1998), depending on 148 

shallowness and stoniness (Fontaine et al., 2007).  149 

The study area is covered for 53% by Mediterranean mountain forests mainly composed of 150 

Quercus coccifera (Kermes oak) (11 000 ha), Pinus  brutia (Calabrian pine) (10 500 ha), 151 

Juniperus spp. (6000 ha) and Pinus nigra (Crimean pine) (2500 ha). Some relic stands of 152 

Cedrus libani (Lebanon cedar) (about 900 ha) forest occur as well (Fontaine et al., 2007). The 153 

study focuses on three tree species with expected distribution and corresponding site quality 154 

needs along a height gradient: Pinus brutia, Pinus nigra and Cedrus libani.  155 
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Pinus brutia is a characteristic species of the eastern Mediterranean basin and is ecologically 156 

and economically one of the most important tree species of Turkey. Its typical elevation range 157 

is between 0 and 1500 meter above sea level (a.s.l.) with a mean annual temperature between 158 

12 and 20°C and a mean annual precipitation between 400 and 2000 mm (Boydak, 2004).  159 

Pinus nigra subsp. pallasiana also occupies the eastern Mediterranean basin but is typical for 160 

higher elevations. Its optimum is located between 1000 and 1200 m a.s.l.. The species 161 

occurence in humid conditions in Greece and in drier environments in Turkey illustrates its 162 

ecological flexibility (Quézel, 1980; Fontaine et al., 2007).  163 

Cedrus libani is significant from the historical, cultural, aesthetic, scientific and economic 164 

perspectives and is presently found primarily in the Taurus Mountains of Turkey. Socio-165 

economic problems associated with grazing and other land uses have reduced its historical 166 

distribution drastically, but the almost inaccessible topography of the Taurus Mountains has 167 

prevented the species from becoming locally extinct. Cedrus libani occurs generally between 168 

800 and 2100 m a.s.l. with a mean annual temperature ranging from 6 to 12°C and a mean 169 

annual precipitation between 600 and 1200 mm (Boydak, 2003). 170 

2.2 Data collection  171 

Data were collected in the summers of 2005 and 2006. To maximize spatial variation in the 172 

dataset, transects were established throughout the study area, principally oriented from valley 173 

to ridge, perpendicular to the contour lines, according a random-stratified sampling design. 174 

Due to the limited number of appropriate cedar forests in the Ağlasun forest district, 175 

additional cedar forests in neighbouring districts were selected (i.e. Kasnak National Forest 176 

(37° 44' N, 30° 49' E), Prof. Dr. Bekir Sıtkı Evcimen Taurus cedar Protection forest, Senirkent 177 

(38° 05' N, 30° 41' E) and Gölishar forest (36° 53' N, 29° 27' E)). Along those transects, 167 178 
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plots (20 m × 20 m) were established at random intervals, covering contrasting topographic 179 

situations: 65 plots of Pinus brutia, 46 of Pinus nigra and 56 of Cedrus libani. Plot locations 180 

were mapped using altimeter and GPS (Fig. 1). The mean distance between neighbouring 181 

plots was 614 m (with a minimum of 71 m), and no relevant spatial dependency has been 182 

observed.  183 

Environmental variables collected as a basis for modelling site index are summarized in Table 184 

1. The position of the plots in the landscape along the vertical gradient, soil surface roughness 185 

and landform were recorded at sight. Surface stoniness (%) and soil depth were assessed 186 

using the rod penetration method (Eriksson and Holmgren, 1996) at 10 random locations in 187 

each plot. Slope (%) was measured using a clinometer. Aspect was recorded as the azimuth 188 

(θ) measured from true north and transformed to a radiation index using the equation 189 

TRASP = [1 − cos((π/180)(θ-30))]/2. This assigns a value of zero to land oriented in a north-190 

northeast direction (typically the coolest and wettest orientation) and a value of one on the 191 

hotter, drier south-southwesterly slopes (Moisen and Frescino, 2002). The depth of the 192 

ectorganic horizon was measured and separated into three sublayers if present (litter–193 

fermentation–humus).  194 

To quantify nutrient availability, five topsoil samples (0–10 cm) were randomly collected 195 

inside each plot. Samples were mixed and analyzed in the laboratory. Soil texture was 196 

determined using the Bouyoucos hydrometer method (Bouyoucos, 1962), soil acidity (pH) 197 

was measured in distilled water, total inorganic carbonate was assessed with the Shiebler 198 

calcimeter method (Allison and Moodie, 1965) and total soil organic matter was assessed with 199 

the Walkley–Black wet oxidation method (Allison, 1965).  200 
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The species composition of each plot (woody and herbaceous) was recorded as species cover 201 

using the Braun–Blanquet scale. Plots were assigned to plant communities according to 202 

Fontaine et al. (2007). 203 

Tree height was assessed by means of a Blume–Leiss clinometer and tree age by counting 204 

growth rings on core samples obtained using a Pressler increment borer. Site index (SI) was 205 

obtained by recalculation of the dominant height to the reference age of 100 years by means 206 

of site index tables (Kalipsiz, 1963; Öktem, 1987; Palahí et al., 2008). 207 

2.3 Modelling techniques 208 

2.3.1 Multiple linear regression (MLR) 209 

The most widely used technique in site quality assessment is linear regression. Where early 210 

studies predicted site index from a single variable (single linear regression), recent studies 211 

mostly combine many predictor variables into multiple linear regression models (MLR) 212 

which leads to a higher accuracy. Using Matlab 7.5.0 (The MathWorks Inc., Natick), stepwise 213 

as well as backward MLR techniques were tested on each studied species for selecting the 214 

most important predictor variables from the suite of environmental data. Variables of nominal 215 

or ordinal scale are recoded into dummy variables (0-1 values) for correct analysis (Field, 216 

2005). 217 

2.3.2 Classification and regression trees (CART) 218 

CART encompasses a non-parametric regression technique, that ‘grows’ a decision tree based 219 

on a binary partitioning algorithm that recursively splits the data until groups are either 220 

homogeneous or contain not less observations than a user-defined threshold. The predicted 221 

value of a ‘terminal’ node is the average of the response values in that node (Breiman et al., 222 

1984). CART is a popular technique because it represents information in a way that is 223 
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intuitive and easy to visualize. Preparation of candidate predictors is simplified because 224 

predictor variables can be of any type (numeric, binary, categorical, etc.), model outcomes are 225 

unaffected by monotone transformations and differing scales of measurement among 226 

predictors. Regression trees are insensitive to outliers, and can accommodate missing data in 227 

predictor variables by using surrogates (Breiman et al., 1984). The hierarchical structure of a 228 

regression tree means that the response to one input variable depends on values of inputs 229 

higher in the tree, so interactions between predictors are automatically modelled. 230 

Regression trees were built with the classregtree-function of the statistics toolbox of Matlab 231 

7.5.0. This generally results in an over-complex decision tree that needs to be ‘pruned’ in 232 

order to convey only the most important information (i.e. the nodes that explain the largest 233 

amount of deviance) (McKenny and Pedlar, 2003).   234 

2.3.3 Generalized additive models (GAM) 235 

GAM is a non-parametric extension of Generalized Linear Models (GLM), which is in turn an 236 

extension of the MLR (Hastie and Tibshirani, 1990). GAM uses transformation techniques 237 

that are independent for each predictor variable, which are counted together to calculate the 238 

response variable (Guisan and Zimmerman, 2000). This allows exploration of shapes of 239 

species response curves to environmental gradients, and allows the fitting of statistical models 240 

in better agreement with ecological theory (Frescino et al., 2001; Austin, 2002; Lehmann et 241 

al., 2003).  242 

GAM were constructed using R version 2.7.0 (R Development Core Team, 2006) with the 243 

GRASP (Generalized Regression Analysis and Spatial Prediction) software, an extension for 244 

the R package gam that combines the algorithms of GAM with spatial predictions (Lehmann 245 

et al., 2003). A simple Gaussian family was specified as a link function for the normally 246 
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distributed response data. Predictor variables entered the models individually using a 247 

smoothing spline with only 2 degrees of freedom to avoid overfitting.  248 

2.3.4 Boosted regression trees (BRT) 249 

BRT is a combination of statistical and machine learning techniques. It is one of several 250 

techniques that aim to improve the performance of a single model by fitting many models and 251 

combining them for prediction (Schapire, 2003). BRT uses two algorithms: regression is from 252 

the CART group of models, and boosting builds and combines a collection of models. This 253 

method deals with each of these components in turn (Elith et al., 2008). Boosting is a method 254 

for improving model accuracy, based on the idea that it is easier to find and average many 255 

rough rules of thumb than to find a single, highly accurate prediction rule (Schapire, 2003). 256 

Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their 257 

relatively poor predictive performance. Although BRT models are complex, they can be 258 

summarized in ways that give powerful ecological insight (Elith et al., 2008). Despite its 259 

apparent good predictive power, this technique is not so much used in ecological research. 260 

Boosted regression trees were developed in R version 2.7.0, with the help of the BRT-261 

extension for the gbm package (Ridgeway, 2006), developed by Elith et al. (2008). Models 262 

were fitted using the gbm.step function, and the model was simplified by reducing the number 263 

of explanatory variables with the gbm.simplify function. 264 

2.3.5 Artificial neural networks (ANN) 265 

ANN belongs to the ‘machine learning’ techniques. This technique makes links without 266 

worrying about their form, as in reality links between variables are also not always linear or 267 

exponential. In fact it mimics the human brain’s problem solving process. The network 268 

consists of several layers of nodes (neurons) that are in connection with each other. Every 269 
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node is connected to the nodes in the next layer. In the input layer, the predictor variables are 270 

inserted; the output layer delivers one or more predictive values for the response variable(s). 271 

In between there are one or more hidden layers and the network is trained using an iterative 272 

method to adjust the weights of the connections between the units. 273 

ANN has the advantage over other statistical techniques that it is more accurate, particularly 274 

when the problem or task addressed is either poorly defined or misunderstood. It is also faster 275 

than other techniques when the problem is extremely complex; and it does not require a priori 276 

knowledge of underlying process or assumptions of the structure of the target function. There 277 

are also some drawbacks of ANN: it is a ‘black-box’ method, in which the weights are not 278 

interpretable due to the presence of hidden layers and the non-linearity of the activation 279 

function.  280 

In this study several supervised feed-forward neural networks were trained with one hidden 281 

layer containing several hidden nodes. Different training algorithms were tested including 282 

Backpropagation, Quasi-Newton and Levenberg-Marquardt. To contribute to the problem of 283 

overfitting, an ‘early-stopping’ mechanism was applied on the training process when the 284 

minimal error on a separate validation set was obtained. Neural networks were built and 285 

trained with the Neural Network toolbox of Matlab 7.5.0. 286 

2.4 Model evaluation 287 

A critical consideration in the evaluation of models is the selection of fair means to compare 288 

their outcome. There is no universal measure of model performance and the metrics that are 289 

chosen should correspond to the particular needs of each individual application. Single 290 

measurements are mostly insufficient. The use of multiple measurements of performance is a 291 

common and more objective occurrence (Dawson et al., 2007). Several global measures were 292 
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selected to assess the predictive performance of the models and calculated with HydroTest, a 293 

web-based toolbox of evaluation metrics (Dawson et al., 2007). In the following equations, iQ  294 

is the observed value, iQ̂  is the modelled value (with i=1 to n data points), Q is the mean of 295 

the observed values, Q
~

is the mean of the modelled values and p is the number of parameters 296 

used in the model.  297 

The most commonly used criterion of model performance has been the coefficient of 298 

determination (R²) (Pearson, 1896). However, a number of authors have concluded that R² is 299 

not a good measure to compare different models because it only informs on how well the 300 

model fits the data used to build the model, and not on how well it performs on external data. 301 

Overfitting is often the result (Cerrato and Blackmer, 1990; Drummond et al., 2003).   302 
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Better suited to evaluate the goodness-of-fit is the coefficient of efficiency (CE) (Nash and 304 

Sutcliffe, 1970), because CE is sensitive to additive and proportional differences between 305 

simulations and observations. However, like R², CE is overly sensitive to extreme values 306 

because it squares the values of paired differences (Harmel and Smith, 2007).  307 
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The root mean square error (RMSE) is a well accepted absolute goodness-of-fit indicator for 309 

continuous response variables, which describes the difference in observed and predicted 310 
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values in the appropriate units (Harmel and Smith, 2007). The relative root mean square error 311 

(RRMSE) is calculated by dividing the RMSE by the mean observed data. 312 
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Some modelling techniques are over-parameterized, which may lead to uncertainty in 315 

parameter estimation and consequently to uncertainty in model predictions. The purpose of 316 

using Akaike information criteria (AIC) or Bayesian information criteria (BIC) is to find an 317 

optimal trade-off between an unbiased approximation of the underlying model and the loss of 318 

accuracy caused by estimating a number of parameters, and the number of data points used in 319 

its calibration. These criteria combine some measure of fit with a penalty term to account for 320 

model complexity, and therefore tend to result in more parsimonious models (Senthil Kumar 321 

et al., 2005; Dawson et al, 2007).   322 

AIC = nln(RMSE) + 2p             [5] 323 

BIC = nln(RMSE) + pln(n)          [6] 324 

Finally, the adjusted coefficient of determination (adjusted R²) is a modification of R² that also 325 

adjusts for the number of explanatory terms used in a model. Unlike R², adjusted R² increases 326 

only if the new term improves the model more than would be expected by chance. Adjusted 327 

R² can be negative, and will always be less than or equal to R². 328 
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2.5 Model predictive performance 330 

A common way to measure the predictive performance on a test set is by means of a ‘split 331 

sample’, in which a subsample of the observation data is withheld from training and used to 332 

measure the accuracy of prediction. In small data sets, this single measure can be quite 333 

misleading and very dependent on the validation subset, and cross-validation has generally 334 

been accepted to be superior to the split-sample techniques (Stone, 1974; Drummond et al., 335 

2003; Maggini et al., 2006). In this study 10-fold cross-validation is used to assess model 336 

predictive performance. In 10-fold cross-validation, the data are divided into 10 subsets of 337 

equal size. The regression technique is then applied 10 times, each time leaving out one of the 338 

subsets and using that subset to compute the prediction accuracy. Predictive performance is 339 

quantified by calculating model evaluation measures on the predicted values for cross-340 

validation. 341 

2.6 Other model evaluation criteria 342 

Model predictive performance measures are not the only criteria for evaluating modelling 343 

techniques, also qualitative criteria as ‘ecological interpretability’ and ‘user-friendliness’ can 344 

be of importance in the evaluation. ‘Ecological interpretability’ is referring to the degree in 345 

which the model incorporates the relative importance of predictor variables and how site 346 

index is changing with changes in predictor variable(s). This is particularly important for 347 

understanding and checking the ecological soundness of the model. ‘User-friendliness’ is 348 

referring to the simplicity of the technique, the statistical and technical background necessary 349 

to apply the technique and the simplicity to upscale the results to full-coverage site index 350 

maps. 351 
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2.7 Multi-criteria decision analysis (MCDA) 352 

MCDA is applied to make a final ranking of site index modelling techniques. MCDA 353 

techniques provide solutions to problems involving multiple and conflicting objectives. 354 

Analytic hierarchy process (AHP) is a powerful and flexible MCDA technique for dealing 355 

with complex problems where both quantitative (e.g. predictive performance) and qualitative 356 

(e.g. ecological interpretability) aspects need to be considered (Saaty, 1980), and is therefore 357 

chosen as the appropriate technique for this study. AHP compares alternatives pair-wise and 358 

provides an overview of the complex relationships between decision elements (i.e. criteria and 359 

alternatives). The resulting rankings of alternatives are both transitive and complete (Gilliams 360 

et al., 2005). The essence of the process is the decomposition of a complex problem into a 361 

hierarchy with the goal (objective) at the top of the hierarchy, criteria and sub-criteria at levels 362 

and sub-levels of the hierarchy, and decision alternatives at the bottom of the hierarchy (Fig. 363 

2). Elements at given hierarchy levels are compared in pairs to assess their relative preference 364 

with respect to each of the elements at the next higher level. The method computes and 365 

aggregates their eigenvectors until the composite final vector of weight coefficients for 366 

alternatives is obtained. The entries of the final weight coefficients vector reflect the relative 367 

importance (value) of each alternative with respect to the goal stated at the top of the 368 

hierarchy (Pohekar and Ramachandran, 2004). MCDA-analysis was performed with Super 369 

Decisions 2.0.8 software.  370 

Four hierarchical levels were defined for the MCDA; with three main criteria at the second 371 

level: predictive performance, ecological interpretability and user-friendliness (Fig. 2). Where 372 

ecological interpretability and user-friendliness are not further divided into sub-criteria, model 373 

evaluation is split into three uncorrelated performance measures (i.e. RMSE, AIC and 374 

adjusted R²), after combined correlation and principal component analysis.  375 
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Because the determination of the weights can vary very much depending on end-user 376 

preferences, two different scenarios were developed: a scientific scenario and a forest 377 

management planning scenario. Scenarios are implemented by defining different weights at 378 

the second level (Table 2). Since it is obvious that the models should be a good representation 379 

of the reality, predictive performance is given in both scenarios the highest weight. The 380 

scientific scenario defines further weights from the point of view of a typical researcher, for 381 

whom the ecological interpretability of model outcome is more important than the user-382 

friendliness of the technique. The planning scenario, on the other hand, assumes that for 383 

forestry or restoration purposes the main interest lies in the possibility of applying models in a 384 

straightforward way to new field situations, and hence in the user-friendliness of the 385 

technique. At the third level predictive performance is subdivided into three uncorrelated sub-386 

criteria: RMSE, AIC and adjusted R². Whereas the RMSE is an absolute goodness-of-fit 387 

indicator, both AIC and adjusted R² are indices considering also model complexity. For this 388 

reason, half of the weight is given to RMSE while the other half is divided over AIC and 389 

adjusted R². The weights at this level remain identical under both scenarios. For both 390 

scenarios MCDA is applied to each species separately, and for all species together (keeping 391 

all previous weights the same, and with identical weights for the individual tree species). A 392 

sensitivity analysis reveals how the preferences are changing with changing weights. 393 

3. Results  394 

A total of 15 SI-models were built, using 5 modelling techniques for each of the 3 species. All 395 

models were critically investigated for confounding factors and collinearity between 396 

explanatory variables and checked whether all basic assumptions were met. The three studied 397 

species clearly differ in site quality needs, as expressed by the different models (Table 3). 398 

Only easting and soil organic matter content seem to be common predictors for site index for 399 
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all species, whereas Pinus brutia further responds to e.g. landscape position, Pinus nigra to 400 

soil pH and Cedrus libani to average soil depth. Elevation is important for both Pinus species, 401 

while Cedrus is more affected by slope. 402 

The number of predictor variables entering the models is ranging from one to six, while also 403 

the predictor variables selected by each technique are not identical. Model output of the Pinus 404 

nigra models obtained with MLR, BRT and GAM are given as an example in equation [8], 405 

Fig. 3 and Fig. 4 respectively. 406 

SI(P. nigra) = 100.7 - 2.7*10-4 * Easting – 0.3 * % Lime in the soil - 2.3 * Rough soil  [8]  407 

The measures of performance are summarized for each model in Table 4. Better model 408 

performance is realized with lowest (R)RMSE, AIC and BIC values and with R², adjusted R² 409 

and CE closest to unity. A distinction is made between the values for model calibration and 410 

values for 10-fold cross-validation, while for the evaluation of the performance only the 411 

predictive performance, i.e. the validation values, are taken into account. By comparing the 412 

predictive performance of all models, similar trends can be observed for each species. The 413 

best goodness-of-fit, i.e. lowest values for RMSE and the highest R² and CE, is obtained by 414 

the ANN-models, followed by the GAM and BRT-models respectively. MLR and especially 415 

CART are scoring worse for these indicators. When the complexity of the models is taken 416 

into account, which is the case for the AIC, BIC and adjusted R² evaluation measures, ANN 417 

suddenly performs extremely poor in most cases. GAM is still performing very well for Pinus 418 

nigra and Cedrus libani and only worse for Pinus brutia, while the opposite is observed for 419 

BRT. The less complex models like MLR and CART score relatively better when model 420 

performance is penalised for the complexity of the model.  421 
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Plotting the model residuals versus the predicted values learns that for all the models the 422 

residuals are randomly distributed and no trends or bias are observed. For all techniques but 423 

especially for CART and BRT the range of the predicted values, i.e. the difference between 424 

the maximum and the minimum value, is narrowed very much in comparison to the range of 425 

the observed values (Table 5). 426 

Scores of the modelling techniques for the quantitative sub-criteria, i.e. RMSE, AIC and 427 

adjusted R², at the bottom level of the MCDA, are a rescaling of their quantitative outcomes, 428 

which is species dependent. For the qualitative criteria ‘ecological interpretability’ and ‘user-429 

friendliness’ a relative ranking was made of the alternatives on a [1-10] scale, based on the 430 

experiences of the authors, and rescaled into relative importance vectors (Table 6, see 431 

discussion section for details). Final MCDA rankings of the modelling techniques for the 432 

different species under the two scenarios are expressed on a relative scale compared to the 433 

preferred technique (Fig. 5). For the scientific scenario, GAM seems to be the overall best 434 

modelling technique, where BRT is a good alternative technique in case of Pinus brutia and 435 

Pinus nigra, but less for Cedrus libani, while in latter case CART and MLR are the best 436 

alternatives. For the planning scenario the preferences are less consistent between the 437 

different tree species. Due to the high weight of user-friendliness in this scenario, easy 438 

applicable techniques as MLR and CART score remarkably better than in case of the 439 

scientific scenario. Nevertheless, GAM is still scoring the best for Pinus nigra and in the 440 

overall situation, and scoring moderately good for Pinus brutia and Cedrus libani. 441 

Unexpectedly, ANN reaches the best score for Pinus brutia; apparently the high predictive 442 

performance for this species outweighs the penalty for user-friendliness and ecological 443 

interpretability in this case. 444 
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The performances of the different techniques for Pinus brutia are very similar (Fig. 5) and 445 

consequently the relative ranks may change considerably with different weights. The 446 

sensitivity analysis reveals that ANN remains the preferred technique as long as the weight of 447 

the ecological interpretability is below 0.2; for weights higher than 0.2 GAM becomes the 448 

preferred technique, whereas CART scores the best for weights of user-friendliness higher 449 

than 0.45. Conversely, the models for Pinus nigra are rather insensitive to changes in weights 450 

at this level. The preferences remain identical under both scenarios (Fig. 5). Only in case the 451 

weight of the user-friendliness would rise above 0.5, CART would be preferred above GAM.  452 

For the Cedrus libani models preferences change little between the two scenarios. GAM 453 

remains the preferred model as long as the weight of the user-friendliness is lower than 0.35; 454 

for weights higher than 0.35 CART becomes the preferred technique. This is exactly the point 455 

that defines the planning scenario, which explains the little difference in preference between 456 

GAM and CART for this scenario. ANN would only become the preferred technique here in 457 

case the weight of the predictive performance would rise above 0.8.  458 

4. Discussion 459 

4.1 Predictive performance 460 

Based on our data, non-parametric techniques outperform MLR for predicting site index. 461 

Only CART performed for all species worse than MLR, which was also observed by Moisen 462 

and Frescino (2002) in predicting other forest characteristics. Leathwick et al. (2006) 463 

concluded from their study on modelling demersal fish species richness that due to their 464 

capability for fitting interactions among predictor variables, BRT appears to offer 465 

considerable performance gains over modelling techniques as GAM. Also Moisen et al. 466 

(2006) found for the prediction of basal area that, although the predictions were poor, BRT-467 

like models (stochastic gradient boosting in their study) performed better and obtained more 468 
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stable results than GAM. Our study cannot confirm these findings, as based on most 469 

evaluation measures GAM models are performing better than BRT models. This may be due 470 

to the fact that BRT models, together with CART, tend to overfit stronger (cf. the difference 471 

between evaluation measures for the calibration and validation, Table 4) and to restrict the 472 

range of model predictions (cf. Table 5) more than other techniques. Nevertheless, the 473 

predictive success of ANN models in terms of goodness-of-fit, i.e. R², CE and RMSE, is 474 

always the highest of all modelling techniques, which makes ANN at first sight the most 475 

suited technique for predicting SI. However, when model complexity is taken into account 476 

(AIC, BIC and adjusted R²), ANN is penalized for its complex models. 477 

At first sight the overall performance of all models seems to be rather weak (Table 4). There 478 

are many potential sources of error in the data sets used for modelling, including 479 

measurement errors, sampling bias, limitations in field data collection, genetic variability, etc. 480 

These errors may be affecting the overall accuracies of the models (Moisen et al., 2006). All 481 

the models, except the CART-model for Pinus nigra, performed better on the validation data 482 

than simply predicting the sample mean (as indicated by a positive CE). With R² values for 483 

the best models ranging from 0.55 to 0.84, the results look satisfactory compared to other 484 

studies with R² values ranging from 0.4 to 0.8 (McKenny and Pedlar, 2003). Also the 485 

predictive performances of this study, with RRMSE’s for cross-validation ranging between 14 486 

and 21%, are comparable or better than those found in other studies (Corona et al., 1998; 487 

Chen et al., 2002; McKenny and Pedlar, 2003; Szwaluk and Strong, 2003). 488 

4.2 Ecological interpretability 489 

The application of different techniques is expected to result in models which may differ 490 

considerably, as they are based on different algorithms. Both the number but also the type of 491 

explanatory variables can vary strongly (Table 3). However, the example of Pinus nigra 492 
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shows that easting is selected by every technique as a predictor variable (Table 3), leading to a 493 

decline in SI from east to west (Eq. [8], Fig. 3 and Fig. 4). Easting is however an indirect 494 

variable, indicating a regional gradient not (well) covered by the variables measured in this 495 

study. Probably, in this case, easting is a proxy for maritime influence: a humid wind blown 496 

through the ‘Kovada channel’-valley from the south-eastern to the western part of the study 497 

area, by which the air becomes drier along its way. The use of indirect gradients as predictive 498 

parameters has the drawback that the predictions are less ‘eco-mechanistic’ compared to 499 

predictions by models which are  based on resource and direct gradients only, and so less 500 

general and applicable over large areas (Guisan and Zimmerman, 2000; Leathwick et al., 501 

2006; Elith et al., 2008). 502 

While the predictive success can be very high, it does not mean automatically that the shape 503 

of a response curve for an environmental predictor is ecologically rational (Austin, 2007). 504 

Both MLR and CART are techniques that are easy and straightforward to interpret, but too 505 

simple to describe many real-world situations (Elith et al., 2008). The recognized strength of 506 

more advanced techniques as GAM and BRT to model natural phenomena with non-linear 507 

relationships is confirmed by the SI-models of Pinus nigra. The partial dependence plots of 508 

the BRT (Fig. 3) and GAM model (Fig. 4) indicate an almost quadratic response of SI to soil 509 

pH with an optimum around 7.4, a variable that does not appear in the MLR or CART model. 510 

The GAM partial dependence plots for P. nigra (Fig. 4) together with the Gaussian link 511 

function used, could give the impression that a second order polynomial regression would 512 

also be able to fit the same quadratic response. Second order polynomial regression models 513 

have been built for this situation but they showed even no predictive improvement over the 514 

first order MLR and so the GAM is still preferred (data not shown). Where GAM seems to 515 

smoothly model the important ecological relations, BRT partial dependence plots often show 516 

a more erratic course. The unexpected little peaks are sampling data dependent and often 517 
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difficult to explain or understand (Fig. 3). On the other hand, clear threshold values present in 518 

the data, are more explicitly represented in the BRT partial dependence plots by a sudden 519 

jump, and can be interesting for ecological interpretation. ANN is a “black-box” technique, 520 

with weights that are uninterpretable due to the presence of hidden layers and the non-521 

linearity of the activation function. Its ecological interpretability is therefore poor. Foresters 522 

not inclined to make use of them when other, more easily understandable models are available 523 

(Changhui Peng and Xuenzhi Wen, 1999). Based on these experiences each technique is 524 

scored for the criterion ecological interpretability which is further used in the multi-criteria 525 

decision analysis (Table 6). 526 

4.3 User-friendliness 527 

Due to recent developments towards more integrated software packages, encompassing 528 

several modelling techniques and increased computational capacity, the user-friendliness of 529 

the applied techniques is improving.  Nevertheless, important differences in user-friendliness 530 

between techniques are still present. Moisen et al. (2002) considered already the computation 531 

run time in the discussion about the suitability of different techniques. Also the theoretical 532 

background needed to apply the techniques or the easiness to upscale the information to 533 

develop site index maps can be of importance. CART is probably the easiest technique used 534 

in this study. Predictor variables can be of any type and the technique is little influenced by 535 

outliers or missing data in the predictor set (Elith et al., 2008). MLR is also straightforward, 536 

but requires some more data preparation as nominal and ordinal data need to be transformed. 537 

Also the underlying assumptions should be controlled for every model. The more advanced 538 

statistical techniques as GAM and BRT require a broader statistical background and running 539 

these models is more time consuming. Thanks to the software packages GRASP (Lehmann et 540 

al, 2003) and gbm (Ridgeway, 2006) developed for R, spatial predictions are facilitated. 541 
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Although this still remains more complicated and time consuming than for the MLR and 542 

CART models of which the results can be directly implemented in most GIS packages. ANN 543 

is the most complicated technique as it is based on artificial intelligence. Discovering the 544 

suitable number of nodes and layers by training the networks, for optimizing accuracy and 545 

generalization power, can be a big effort. The learning curve is steep and only developers with 546 

experience will become more efficient applying this technique (Changhui Peng and Xuenzhi 547 

Wen, 1999). Spatial predictions in GIS software are still complicate. Based on these 548 

experiences each technique is scored for the criterion user-friendliness which is further used 549 

in the multi-criteria decision analysis (Table 6). 550 

Multi-criteria decision analysis 551 

The understanding of the interrelationship between ecological theory, statistical theory and 552 

performance of statistical models is a complex issue. The assessment of ecological models 553 

may not depend solely on the prediction success (Austin, 2007). Even if the predictive 554 

performance is high, this does not necessarily mean that the relation is ecologically rational. 555 

Moreover different performance indices can result in opposite outcomes, as is shown in this 556 

study. Multi-criteria decision analysis was therefore applied and indicates GAM as the overall 557 

best modelling technique, for both scenarios and within a wide range of weightings. Only in 558 

very specific situations where very low importance is given to ecological interpretability 559 

(<0.2 for Pinus brutia or <0.15 for Cedrus libani) other techniques have a slight advantage 560 

over GAM. GAM is a flexible method offering both good model performance and good 561 

ecological insight and is therefore the preferred technique for modelling site index. Wang et 562 

al. (2005) concluded in a comparable study that GAM presented a better fit and better 563 

adaptability to extreme observations than other nonlinear and nonparametric techniques. The 564 

bad scores for ecological interpretation, user-friendliness and performance measures which 565 
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account for model complexity make the MCDA ranking of ANN in most cases very low. 566 

ANN would probably perform better on very complex and large datasets, where its benefits 567 

over the other techniques would become greater than its drawbacks.  568 

As expected BRT showed great potential for predictive modelling of site index, although this 569 

was not the case in all situations. Scores for ecological interpretability and user-friendliness 570 

were similar to those of GAM, but for the predictive performance BRT is slightly worse than 571 

GAM. Nevertheless, in another context where the predictive performance is of less interest, 572 

and analysis only serve to investigate the ecological relations between variables in a sample 573 

population, BRT can probably be preferred over GAM because of its capability for fitting 574 

interactions among predictor variables and its better fit of the calibration data (Table 4), 575 

explaining more of the variance. While overfitting is often seen as a problem in statistical 576 

modelling, it can enable an accurate description of the relationships in the data, provided that 577 

the overfitting is appropriately controlled (Elith et al., 2008). 578 

Finally, despite the advantages of GAM over MLR to model non-linear relationships between 579 

response and predictor values, it should be noted that in case only linear relationships are 580 

existent or of importance, MLR models should be preferred over GAM models because of the 581 

lower risk of overfitting and the fewer degrees of freedom consumed for fitting the model. 582 

5. Conclusions 583 

Five modelling techniques were compared and evaluated for predicting the site index of three 584 

tree species in the Taurus Mountains of Turkey. Based on a multi-criteria decision analysis 585 

that simultaneously evaluated ‘Predictive performance’, ‘Ecological interpretability’ and 586 

‘User-friendliness’ of the models, GAM is the preferred technique for modelling site index of 587 

these species. BRT is a good second choice in case the ecological interpretability of the 588 
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technique is of high importance. When user-friendliness is more important MLR and CART 589 

are the preferred alternatives. ANN scores poor in most cases. Despite its very high goodness-590 

of-fit ANN is penalized for its complex, nontransparent models and big training effort. 591 

Although in an MCDA, the determination of the criteria and their weights remains a more or 592 

less subjective matter, the outcome of the different scenarios, the sensitivity analysis and the 593 

consistency of our results over three species having clearly different site requirements 594 

suggests that also for other species and in other forest ecosystems GAM should be preferred 595 

for site index modelling.  596 

Acknowledgements 597 

This research was supported by the Research Fund K.U.Leuven (OT/07/046) and a Concerted 598 

Action of the Flemish Government (GOA 02/2) in the framework of the Sagalassos 599 

Archaeological project. Special thanks go to the Turkish Forest Administration offices at 600 

Burdur and Ağlasun for granting access permission to the forests and for providing valuable 601 

forest inventory data. 602 

References 603 

Allison, L.E., 1965. Organic carbon: Walkley-Black method. In: Agronomy Monographs 9, 604 

Part 2. Methods of analysis.  American Society of Agronomy, Madison, Wisconsin, USA, pp. 605 

1367-1378. 606 

Allison, L.E., Moodie, C.D., 1965. Carbonate: Volumetric Calcimeter Method. In: Agronomy 607 

Monographs 9, Part 2. Methods of analysis.  American Society of Agronomy, Madison, 608 

Wisconsin, USA, pp. 1389-1392. 609 

Amen, J.T., 1945. Prediction of site index for Yellow-poplar from soil and topography. J. 610 



 29 

Forest. 43, 662-668. 611 

Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and 612 

some possible new approaches. Ecol. Model. 200, 1-19. 613 

Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological 614 

theory and statistical modelling. Ecol. Model. 157, 101-118. 615 

Bergès, L., Chevalier, R., Dumas, Y., Franc, A., Gilbert, J.M., 2005. Sessile oak (Quercus 616 

Petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged 617 

high-forest stands in northern France. Ann. Forest Sci. 62, 391-402. 618 

Bergès, L., Gegout, J.C., Franc, A., 2006. Can understory vegetation accurately predict site 619 

index? A comparative study using floristic and abiotic indices in Sessile oak (Quercus 620 

Petraea Liebl.) stands in northern France. Ann. Forest Sci. 63, 31-42. 621 

Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of 622 

soils. Agron. J. 54, 464-465. 623 

Boydak, M., 2003. Regeneration of Lebanon Cedar (Cedrus libani A. Rich.) on karstic lands 624 

in Turkey. Forest Ecol. Manage. 178, 231-243. 625 

Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. - 626 

A review. Plant Ecol. 171, 153-163. 627 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and regression 628 

trees. Wadsworth International Group, Belmont. 629 

Cerrato, M.E., Blackmer, A.M., 1990. Comparison of models for describing corn yield 630 

response to nitrogen-fertilizer. Agron. J. 82, 138-143. 631 



 30 

Changhui Peng, Xuezhi Wen, 1999. Recent applications of artificial neural networks in forest 632 

resource management: an overview. Environmental decision support systems and artificial 633 

intelligence. Aaai Workshop 15-22 634 

Chen, H.Y.H., Krestov, P.V., Klinka, K., 2002. Trembling aspen site index in relation to 635 

environmental measures of site quality at two spatial scales. Can. J. Forest Res. 32, 112-119. 636 

Corona, P., Scotti, R., Tarchiani, N., 1998. Relationship between environmental factors and 637 

site index in Douglas-fir plantations in central Italy. Forest Ecol. Manage. 110, 195-207. 638 

Curt, T., Bouchaud, M., Agrech, G., 2001. Predicting site index of Douglas-fir plantations 639 

from ecological variables in the Massif Central area of France. Forest Ecol. Manage. 149, 61-640 

74. 641 

Dawson, C.W., Abrahart, R.J., See, L.M., 2007. Hydrotest: a web-based toolbox of evaluation 642 

metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 22, 643 

1034-1052. 644 

Drummond, S.T., Sudduth, K.A., Joshi, A., Birrell, S.J., Kitchen, N.R., 2003. Statistical and 645 

neural methods for site-specific yield prediction. Trans. Asae 46, 5-14. 646 

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. 647 

Anim. Ecol. 77, 802-813. 648 

Eriksson, C.P., Holmgren, P., 1996. Estimating stone and boulder content in forest soils - 649 

evaluating the potential of surface penetration methods. Catena 28, 121-134. 650 

FAO, IRIC, ISSS, 1998. World Reference Base for soil resources. Food and Agricultural 651 

Organisation of the United Nations, Rome. 652 



 31 

Field, A. 2005. Discovering statistics using SPSS. SAGE Publications Ltd, London, 779 pp. 653 

Fontaine, M., Aerts, R., Ozkan, K., Mert, A., Gulsoy, S., Suel, H., Waelkens, M., Muys, B., 654 

2007. Elevation and exposition rather than soil types determine communities and site 655 

suitability in Mediterranean mountain forests of southern Anatolia, Turkey. Forest Ecol. 656 

Manage. 247, 18-25. 657 

Fontes, L., Tome, M., Thompson, F., Yeomans, A., Luis, J.S., Savill, P., 2003. Modelling the 658 

Douglas-fir (Pseudotsuga Menziesii (Mirb.) Franco) site index from site factors in Portugal. 659 

Forest. 76, 491-507. 660 

Frescino, T.S., Edwards, T.C., Moisen, G.G., 2001. Modeling spatially explicit forest 661 

structural attributes using generalized additive models. J. Veg. Sci. 12, 15-26. 662 

Gilliams, S., Raymaekers, D., Muys, B., Van Orshoven, J., 2005. Comparing multiple criteria 663 

decision methods to extend a geographical information system on afforestation. Comput. 664 

Electron. Agric. 49, 142-158. 665 

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized additive 666 

models in studies of species distributions: setting the scene. Ecol. Model. 157, 89-100. 667 

Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R., Hastie, T., 668 

2006. Making better biogeographical predictions of species' distributions. J. Appl. Ecol. 43, 669 

386-392. 670 

Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple 671 

habitat models. Ecol. Lett. 8, 993-1009. 672 

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. 673 

Model. 135, 147-186. 674 



 32 

Harmel, R.D., Smith, P.K., 2007. Consideration of measurement uncertainty in the evaluation 675 

of goodness-of-fit in hydrologic and water quality modeling. J. Hydrol. 337, 326-336. 676 

Harrell, F.E., Lee, K.L., Mark, D.B., 1996. Multivariable prognostic models: Issues in 677 

developing models, evaluating assumptions and adequacy, and measuring and reducing 678 

errors. Stat. Med. 15, 361–387. 679 

Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Chapman and Hall, 680 

London. 681 

Herath, G., 2004. Incorporating community objectives in improved wetland management: the 682 

use of the analytic hierarchy process. J. Environ. Manage. 70, 263-273. 683 

Iverson, L.R., Dale, M.E., Scott, C.T., Prasad, A., 1997. A GIS-derived integrated moisture 684 

index to predict forest composition and productivity of Ohio forests (USA). Landsc. Ecol. 12, 685 

331-348. 686 

Kalipsiz, A., 1963. Türkiyede Karaçam (Pinus nigra Arnold) mesçerelerinin tabii bünyesi ve 687 

verim kudreti üzerine arastirmalar (In Turkish). Istanbul Üniversitesi Orman Fakultesi, 688 

Istanbul. 689 

Kayahara, G.J., Klinka, K., Marshall, P.L., 1998. Testing site index site-factor relationships 690 

for predicting Pinus contorta and Picea engelmannii x P. glauca productivity in central 691 

British Columbia, Canada. Forest Ecol. Manage. 110, 141-150. 692 

Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., Taylor, P., 2006. Variation in demersal 693 

fish species richness in the oceans surrounding New Zealand: an analysis using boosted 694 

regression trees. Mar. Ecol.-Prog. Ser. 321, 267-281. 695 

Lehmann, A., Overton, J.M., Leathwick, J.R., 2003. GRASP: generalized regression analysis 696 



 33 

and spatial prediction. Ecol. Model. 160, 165-183. 697 

Maggini, R., Lehmann, A., Zimmermann, N.E., Guisan, A., 2006. Improving generalized 698 

regression analysis for the spatial prediction of forest communities. J. Biogeogr. 33, 1729-699 

1749. 700 

Mckenney, D.W., Pedlar, J.H., 2003. Spatial models of site index based on climate and soil 701 

properties for two boreal tree species in Ontario, Canada. Forest Ecol. Manage. 175, 497-507. 702 

Mendoza, G.A., Martins, H., 2006. Multi-criteria decision analysis in natural resource 703 

management: a critical review of methods and new modelling paradigms. Forest Ecol. 704 

Manage. 230, 1-22. 705 

Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann, N.E., Edwards, 706 

T.C., 2006. Predicting tree species presence and basal area in Utah: a comparison of 707 

stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol. 708 

Model. 199, 176-187. 709 

Moisen, G.G., Frescino, T.S., 2002. Comparing five modelling techniques for predicting 710 

forest characteristics. Ecol. Model. 157, 209-225. 711 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models 1: a 712 

discussion of principles. J. Hydrol. 10(3), 282-290. 713 

Öktem, E., 1987. Kizilçam (In Turkish). Ormancilik Arasterma Enstitüsü (Forest Research 714 

Institute) P.K. 24, Bahçelievler, Ankara. 715 

Palahí, M., Pukkala, T., Kasimiadis, D., Poirazidis, K., Papageorgiou, A.C., 2008. Modelling 716 

site quality and individual-tree growth in pure and mixed Pinus brutia stands in North-East 717 

Greece. Ann. Forest Sci. 65, 501-514. 718 



 34 

Paulissen, E., Poesen, J., Govers, G., De Ploey, J., 1993. The physical environment at 719 

Sagalassos (Western Taurus, Turkey). A reconnaissance survey. Waelkens, M. and Poblome, 720 

J., Sagalassos II. Report of the Third Excavation Campaign of 1992, Leuven.  721 

Pearson, K., 1896. Mathematical contributions to the theory of evolution. III. Regression, 722 

heredity and panmixia. Philosophical Transactions of the Royal Society of London 187, 253-723 

318. 724 

Pohekar, S.D., Ramachandran, M., 2004. Application of multi-criteria decision making to 725 

sustainable energy planning - a review. Renew.  Sustain. Energy Rev. 8, 365-381. 726 

Quézel, P., 1980. Biogéographie et écologie des coniferes sur le pourtour méditerranéen. In: 727 

Pesson, P. (Ed.), Actualités d’écologie forestière. Gauthier-Villars, Paris, pp. 205–255. 728 

R Development Core Team, 2006. R: A language and environment for statistical computing. 729 

R Foundation for Statistical Computing. Vienna. 730 

Ridgeway, G., 2006. Generalized boosted regression models. Documentation on the R 731 

Package ‘gbm’, version 1·5–7. Available at: http://www.i-pensieri.com/gregr/gbm.shtml 732 

Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, NewYork, 287 pp. 733 

Schapire, R.E., 2003. The Boosting Approach to Machine Learning: an Overview. Nonlinear 734 

Estim. Classif. 171, 149-171. 735 

Senthil Kumar A.r., Sudheer K.p., Jain S.k., Agarwal P.k., 2005. Rainfall-runoff modelling 736 

using artificial neural networks:  comparison of network types. Hydrol. Process. 19(6), 1277-737 

91. 738 

Seynave, I., Gegout, J.C., Herve, J.C., Dhote, J.F., Drapier, J., Bruno, E., Dume, G., 2005. 739 



 35 

Picea abies site index prediction by environmental factors and understorey vegetation: a two-740 

Scale approach based on survey databases. Can. J. Forest Res. 35, 1669-1678. 741 

Spurr, S.H., Barnes, B.V., 1980. Forest ecology. John Wiley & Sons, New York, 687 pp. 742 

Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. 743 

Soc., B 36, 111-147. 744 

Szwaluk, K.S., Strong, W.L., 2003. Near-surface soil characteristics and understory plants as 745 

predictors of Pinus contorta site index in Southwestern Alberta, Canada. Forest Ecol. 746 

Manage. 176, 13-24. 747 

Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD – a platform for 748 

ensemble forecasting of species distributions. Ecography 32, 369-373 (version 0). 749 

Wang, Y.H., Raulier, F., Ung, C.H., 2005. Evaluation of spatial predictions of site index 750 

obtained by parametric and nonparametric methods - a case study of Lodgepole pine 751 

productivity. Forest Ecol. Manage. 214, 201-211. 752 



 36

Tables753 

Table 1. Summary of the continuous site characteristics and levels of the factor variables stratified according to the three studied tree species  
 Pinus brutia (n=65)  Pinus nigra (n=46)  Cedrus libani (n=56) 
Variable Mean (S.D.) Min. Max.   Mean (S.D.) Min. Max.   Mean (S.D.) Min. Max. 
Site index (m) 20.28 (4.45) 12.50 34.33  21.24 (4.10) 13.84 30.75  20.70 (4.75) 11.26 31.00 
Easting* (m) 292130 (8412) 270577 302160  290235 (5103) 279456 297528  268863(45450) 179794 309263 
Northing* (m) 4164409 (4188) 4157659 4172002  4167419 (3596) 4161088 4173650  4158382 (42512) 4080436 4220520 
Elevation (m) 974 (255) 340 1345  1228 (162) 976 1775  1442 (147) 1170 1775 
TRASP 0.55 (0.32) 0.02 0.98  0.45 (0.35) 0.00 0.98  0.41 (0.37) 0.01 1.00 
Slope (%) 40 (21) 5 95  43 (17) 15 90  40 (17) 5 90 
Surface stoniness (%) 28 (22) 0 80  38 (26) 0 80  55 (18) 20 90 
Ectorganic horizon (cm) 2.5 (1.7) 0.2 8.0  2.2 (1.9) 0.2 8.5  1.4 (1.1) 0.0 3.5 
Litter layer (cm) 1.3 (0.7) 0.2 4.0  1.1 (0.7) 0.2 3.0  0.6 (0.4) 0.0 2.0 
Fermentation layer (cm) 0.7 (0.7) 0.0 3.0  0.7 (0.8) 0.0 4.0  0.5 (0.5) 0.0 2.0 
Humus layer (cm) 0.4 (0.6) 0.0 3.0  0.5 (0.7) 0.0 3.0  0.3 (0.4) 0.0 1.0 
Average soil depth (cm) 49 (28) 10 120  39 (22) 8 80  26 (11) 8 50 
Sand (%) 35.78 (14.43) 3.19 74.15  40.24 (14.60) 14.06 85.08  40.42 (12.85) 21.7 78.2 
Loam (%) 24.09 (5.86) 8.18 42.03  24.49 (5.45) 8.18 37.15  23.86 (5.40) 9.0 33.1 
Clay (%) 40.44 (12.83) 17.67 78.69  35.27 (11.21) 5.41 55.21  34.02 (9.73) 5.4 50.8 
pH 7.40 (0.24) 6.80 7.90  7.42 (0.24) 6.90 7.80  7.37 (0.56) 4.9 7.9 
Total lime (%) 6.10 (9.80) 0.00 54.59  4.19 (5.87) 0.00 18.66  2.90 (4.43) 0.0 27.7 
Organic matter (%) 6.40 (2.17) 1.61 10.99  7.67 (5.06) 2.20 31.23  7.97 (3.35) 2.7 26.6 
Landscape position Ridge, Upper slope, Middle slope, Lower slope, Valley        
Surface roughness Flat, Flat-rough, Rough, Rough-rocky, Rocky       
Landform Linear, Undulating, Convex, Concave          
Plant community Eu-Mediterranean, Supra-Mediterranean with thin litter layer, Supra-Mediterranean with thick litter layer,    
 Dry mountainous Mediterranean, Humid mountainous Mediterranean      
Geology Limestone, Alluvium, Conglomerate, Micrite, Other             
* Universal Transverse Mercator (UTM) zone 36N       
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Table 2. Weights of the second level criteria under two scenarios for the multi-
criteria decision analysis for the best technique for modelling site index  
 Weights  

  Scientific scenario Planning scenario 
Model evaluation 0.50 0.50 
Ecological interpretability 0.35 0.15 
User-friendliness 0.15 0.35 
 754 
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Table 3. Overview of the predictor variables selected by the site index models developed with 
five techniques  
Tree species Modelling 

technique 

Variable(s) selected by the model 

Pinus brutia  MLR Easting, Elevation, Ridge (dummy)  
(n= 65) CART Easting, % Organic matter 
 BRT Easting, Elevation, Thickness of the litter layer 
 GAM Easting, Northing, Elevation, Landscape position, Plant 

community, % Loam 
 ANN Easting, Elevation, Landscape position 
Pinus nigra  MLR Easting, % Lime in the soil, Rough soil (dummy) 
(n=46) CART Easting, % Organic matter 
 BRT Easting, Elevation, pH of soil, Slope 
 GAM Easting, Elevation, pH of soil, % Organic matter, TRASP 
 ANN Easting, Elevation, pH of soil, % Organic matter, TRASP, % 

Lime in the soil 
Cedrus libani  MLR Easting,  Slope, Average soil depth 
(n=56) CART Slope 
 BRT Slope, % Organic matter, Average soil depth 
 GAM Slope, Average soil depth 
 ANN Easting,  Slope, Average soil depth, % Organic Matter 
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Table 4.  Performance indices of all SI-models for the three tree species and five modelling techniques: multiple linear regression (MLR), classification 
and regression trees (CART), boosted regression trees (BRT), generalized additive models (GAM) and artificial neural networks (ANN). Best model 
performance for every evaluation measure, based on the validation data, is highlighted in bold. 
Statistical 
index 

 
MLR 

 
CART  BRT  GAM  ANN 

  Calibration Validation  Calibration Validation  Calibration Validation  Calibration Validation  Calibration Validation 
P. brutia                

R²  0.52 0.33  0.58 0.22  0.64 0.35  0.62 0.43  0.70 0.60 
CE  0.52 0.28  0.58 0.17  0.63 0.35  0.62 0.42  0.70 0.58 

RMSE  3.07 3.74  2.87 4.02  2.70 3.57  2.74 3.36  2.41 2.86 

RRMSE  0.15 0.18  0.14 0.20  0.13 0.18  0.13 0.17  0.12 0.14 

AIC  78.91 91.73  72.48 94.40  72.52 90.71  77.45 137.28  81.08 92.31 
BIC  85.43 98.25  76.83 98.75  81.22 99.41  90.50 123.74  107.18 118.40 

R²adj  0.50 0.26  0.57 0.20  0.62 0.31  0.58 0.37  0.64 0.50 

P. nigra                
R²  0.31 0.11  0.21 0.03  0.57 0.20  0.56 0.33  0.84 0.42 

CE  0.31 0.09  0.21 -0.33  0.55 0.19  0.54 0.33  0.84 0.41 
RMSE  3.38 3.87  3.60 4.67  2.72 3.65  2.75 3.32  1.61 3.12 

RRMSE  0.16 0.18  0.17 0.21  0.13 0.17  0.13 0.15  0.07 0.14 
AIC  62.01 68.22  60.90 72.90  54.02 67.50  56.61 65.19  70.02 100.32 
BIC  67.49 73.71  62.73 74.73  61.33 74.81  65.75 74.34  113.91 144.21 

R²adj  0.26 0.04  0.20 0.01  0.53 0.12  0.50 0.25  0.66 -0.24 
C. libani                

R²  0.34 0.27  0.28 0.21  0.44 0.26  0.34 0.30  0.74 0.42 
CE  0.34 0.27  0.28 0.20  0.43 0.26  0.34 0.30  0.74 0.40 

RMSE  3.82 4.03  3.98 4.20  3.55 4.05  3.83 3.95  2.39 3.64 
RRMSE  0.18 0.19  0.19 0.20  0.17 0.20  0.18 0.19  0.12 0.18 

AIC  81.10 83.99  79.38 82.39  76.96 84.35  79.15 80.91  72.85 96.36 
BIC  87.18 90.06  81.41 84.42  83.03 90.42  83.20 84.96  97.16 120.66 

R²adj  0.30 0.23  0.27 0.20  0.41 0.22  0.31 0.27  0.67 0.25 
R

2 = Coefficient of determination, CE = Coefficient of Efficiency, RMSE = Root mean squared error, RRMSE = relative RMSE, AIC = Akaike 
Information Criterion, BIC = Bayesian Information Criterion, R²adj = adjusted R². 
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Table 5. Minimum, maximum and the range of site index values (dominant height at 100 years, in meters) as 
observed in the field data and modelled from environmental variables with five modelling techniques  
 Pinus brutia  Pinus nigra  Cedrus libani 

 minimum maximum range  minimum maximum range  minimum maximum range 
Observed  12.50 34.33 21.83  13.84 30.75 16.91  11.26 31.00 19.74 
Modelling technique           
ANN 12.81 34.33 21.52  13.84 28.20 14.36  15.98 31.04 15.07 
BRT 15.16 26.81 11.65  17.17 26.88 9.70  16.34 24.64 8.30 
CART 17.18 31.43 14.25  19.87 23.80 3.93  17.81 22.86 5.06 
GAM 12.64 29.93 17.29  14.82 27.28 12.45  12.76 26.77 14.01 
MLR 15.03 34.33 19.31  15.15 26.05 10.90  12.72 26.95 14.23 
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 757 
Table 6. Scores of the modelling techniques for the qualitative sub-criteria of the 
multi-criteria decision analysis for the best technique for modelling site index 
 Scores1  
 Ecological interpretability User- friendliness 
ANN 0.05 0.07 
BRT 0.25 0.17 
CART 0.20 0.33 
GAM 0.30 0.17 
MLR 0.20 0.27 
1 Scores are based on the authors experiences explained in the discussion section 
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Figures 759 

 760 

Figure1. Location of the sample plots in the Ağlasun forest district of southern Anatolia, 761 

Turkey (bottom inset).  Sample plots are labelled according to the dominant tree species. 762 
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 763 

Figure2. Hierarchical structure of the multi-criteria decision analysis to evaluate the 764 

suitability of five modelling techniques for predicting site index. 765 
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 766 

Figure 3. Partial dependence plots of the four predictor variables in the BRT-model for 767 

predicting the site index of Pinus nigra. The relative contribution of each predictor is reported 768 

between brackets. Rug plots at inside top of graph show distribution of sample sites along that 769 

variable, in deciles. 770 
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 771 

Figure 4. Partial dependence plots of the five predictor variables in the GAM-model for 772 

predicting the site index of Pinus nigra (full line). Dashed lines represent upper and lower 773 

twice-standard-error curves. Rug plots at inside bottom of graphs show distribution of sample 774 

sites along that variable. 775 
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 776 

Figure 5. Results of the multi-criteria decision analysis for the suitability of five modelling 777 

techniques for predicting site index. Analysis is carried out for two scenarios for the three tree 778 

species separately and also all species together. The preferred technique is given as a value of 779 

1, while the performance of the other techniques is expressed relatively to the best technique. 780 


