
A Multi-Agent Learning Approach for the Multi-Mode
Resource-Constrained Project Scheduling Problem

Tony Wauters, Katja Verbeeck,
Greet Vanden Berghe

Vakgroep IT
KaHo Sint-Lieven

Gebroeders Desmetstraat 1
B-9000 Gent, Belgium

{FirstName.LastName}@kahosl.be

Patrick De Causmaecker
Faculty of Sciences, Department of

Computerscience
K.U. Leuven Campus Kortrijk

Etienne Sabbelaan 53
B-8500 Kortrijk, Belgium

patrick.decausmaecker@kuleuven-
kortrijk.be

ABSTRACT
This paper introduces a novel approach for solving the multi-
mode resource-constrained project scheduling problem (MR-
CPSP), in which multiple execution modes are available for
each of the activities of the project. The new approach ap-
plies simple agent learning devices, i.e. learning automata,
to construct the project schedules. We present some com-
parative results, to show that our decentralized method can
easily compete with the best performing algorithms for the
MRCPSP.

1. INTRODUCTION
In the last few decades, the resource-constrained project

scheduling problem (RCPSP) has become a popular subject
in operations research. It consists of scheduling the activi-
ties from a project by respecting the resource requirements
and precedence relations between the activities.
The MRCPSP is a generalized version of the RCPSP, where
each activity can be performed in one out of a set of modes,
with a specific activity duration and resource requirements
(e.g. 2 people each with their own shovel need 6 days to dig
a pit, while 4 people each with their own shovel and one ad-
ditional wheelbarrow need only 2 days). A comprehensive
survey of the project scheduling problem can be found in
[3]. The latter paper presents a unifying notation, a model,
a classification scheme, i.e. a description of the resource
environment, the activity characteristics, and the objective
function, respectively. The notation is similar to machine
scheduling and allows to classify the most important mod-
els. It also introduces some exact and heuristic methods for
both single and multi-mode problems. In [6] Herroelen et al.
discuss the problem and its practical relevance. Kolisch and
Hartmann [13] provide an update of their survey that was
first published in 2000. They summarize and categorize a
large number of heuristics that have recently been proposed
in the literature together with some detailed comparitive re-
sults. The RCPSP is shown to be an NP-hard optimization
problem [1], thus so is the MRCPSP, because it is a general-

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

isation of the RCPSP [11]. In order to produce good quality
solutions in a short amount of time, different kinds of (meta-
)heuristics have been proposed to address the problem. A
tabu search metaheuristic is applied in [5] for solving the
MRCPSP with generalized precedence relations. In [4, 7,
16, 17] a genetic algorithm is presented for the MRCPSP.

Agent-based approaches have also been succesfully applied
to the MRCPSP. In [10] two types of agents (basic and en-
hanced agents) are used, together with a set of different
priority rules. The two agent types differ by the feasible
execution mode that is selected for each resource. A basic
agent, which is purely reactive, chooses the first feasible ex-
ecution mode that it finds. In contrast, an enhanced agent
deliberates the mode selection according to several rules.
In [9] a number of agents, each representing a different op-
timization algorithm including local search, tabu search, as
well as several specialized heuristics, have been used to work
on a population of solutions in parallel on different comput-
ers. In [8] a population learning algorithm is presented for
solving both the single and the multi-mode rcpsp.
In this paper we present a novel multi-agent based approach,
fundamentally different from these other agent based ap-
proaches. It is based on a graph representation in which
the nodes are agents representing activities. Each agent is
responsible for one activity. The agents make use of two
learning devices, i.e. learning automata (LA) to construct a
schedule. We use a smart coupling mechanism of rewards to
learn both the order of the activities and the modes at the
same time. Further on our approach is inspired by theoreti-
cal results that show how interconnected LA devices are able
to find attractor points in MDP’s and Markov Games [18,
19]. Altough the activity-on-node model for the MRCPSP
problem as we consider here does not satisfy the Markov
property as was assumed in [18, 19], good results are pro-
duced.

This paper is structured as follows. Section 2 gives a brief
problem description, followed by our model and multi-agent
learning algorithm in Section 3. In Section 4 we present
some computational experiments and comparative results.
Finally in Section 5 we draw conclusions and discuss future
work.

2. PROBLEM FORMULATION
The MRCPSP can be formulated as follows. A project

has N activities a1, . . . , aN ; ai ∈ A, with A the set of activ-

ities, where each activity can be performed in one out of a
set of K modes mi1, . . . ,miK ;mij ∈Mi, with Mi the set of
modes for activity i. Each mode corresponds to a specific ac-
tivity duration dmij and resource requirements (renlmij

for

the renewable resources and nrenlmij
for the non-renewable

resources). The dummy start and end activities 1 and N
have zero duration and zero resource usage. These activities
have to be scheduled according to their finish-start prece-
dence relations. Any activity i has a set Pi of activities as
its predeccessors, and also a set Si of activites as its suc-
cessors. The project has some renewable and non-renewable
resources available each with their own availability. For each
renewable resource l the total availability renl is constant
throughout the problem horizon, while the non-renewable
resources have a limited total usage nrenl.

In the MRCPSP, the objective is to find an activity order -
mode combination that produces a schedule that minimises
the project makespan and is subject to two hard constraints:
1) an activity should not be scheduled until all its predeces-
sors have finished (precedence constraint) and 2) the number
of assignments of a resource at any time should not be larger
than the availability of that resource (resource constraint).
With si the start time and di the duration of activity i we
can also formulate the problem as follows:

min sN (1)

s.t.
K∑
j=1

mij = 1 i = 1, . . . , N (2)

sp + dp ≤ si ∀i; sp ∈ Pi (3)

di =

K∑
j=1

mij dmij i = 1, . . . , N (4)

N∑
i=1

K∑
j=1

mij nren
l
mij
≤ nrenl ∀l (5)

N∑
i=1

K∑
j=1

mij ren
l
mij

eit ≤ renl ∀l; t = s1, . . . , sN(6)

{
eit=1 if si≤t<si+di
eit=0 o.w.

}
∀i,t (7)

mij , eit ∈ {0, 1} ∀i,j,t (8)

dmij , si ∈ N ∀i,j (9)

s0 = 0 (10)

3. THE MULTI-AGENT LEARNING
APPROACH

The (M)RCPSP can be presented with an activity-on-
node diagram. It uses a graph to show the precedence rela-
tions between the activities. In Figure 1 we see an example
of a project with 7 activities according to the problem de-
scription in Section 2 (1 and 7 are dummy activities) and
their relations. That respresentation is the starting point,
for the multi-agent based learning algorithm we developed.

Our goal is to create an activity order list and a mapping
from activities to modes, which can later be used to con-
struct a schedule. The activity order list is a permutation of
all the activities, and determines in which order the sched-
ule construction algorithm handles the activities. The mode

A1 A7

A2

A3

A4

A5

A6

Figure 1: An example of an activity-on-node dia-
gram for a project with 7 activities.

Act 1 Act N

Agent 1 Agent N

Dispatcher

Act 2

Agent 2

Act 6

Agent 6

Act 4

Agent 4

Act 5

Agent 5Act 3

Agent 3

Activity Order List:

Mode mapping:

Initial situation

A1 AN

M1 MN

We start in

agent 1

Figure 2: Initial situation, one agent in every activ-
ity node + one extra dispatching agent.

mapping determines in which mode each activity will be ex-
ecuted. We start by placing an agent in every activity node.
Further on we add an extra dispatching agent (dispatcher)
which is needed by our algorithm to construct schedules that
respect the two hard constraints. In contrast to the other
agents, the dispatcher does not represent an activity and
only chooses an other agent to hand over the control. This
initial situation is presented in Figure 2.
The main idea of the algorithm is to enable every agent to
learn which decisions to make, concerning:

1. in which order to visit its successors, and

2. in which mode the activity needs to be performed.

The algorithm works as follows: we start in the situation
as in Figure 2, we give the control to agent 1, this agent
chooses an order to visit its successors and picks the first
agent from this order (Agentnext). Its activity is already in
the activity list so it does not need to choose a mode. Now
the control is given to Agentcurrent ⇐ Agentnext, which also
decides upon an order to visit its successors (e.g. A2 chooses
order |A5, A4|, so it will first take A5 and then A4) and takes
the first agent from this order (Agentnext). Agentcurrent has

Act 1 Act N

Agent 1 Agent N

Dispatcher

Act 2

Agent 2

Act 6

Agent 6

Act 4

Agent 4

Act 5

Agent 5Act 3

Agent 3

Activity Order List:

Mode mapping:

A1 AN

M1 MN

STOP
All nodes are visited at

least once.

We can now construct a

schedule using the activity

order list and mode

mapping.

Order: 2 6 3

A2

M2

Order: 5 4

A5

M5

Order: N

Order: N

A4

M4

Order: N

A6

M6

A3

M3

Order: 5

Figure 3: Final situation, all agents have been vis-
ited at least once.

not been visited before. Consequently the activity it repre-
sents is added to the activty order list, and the agent also
chooses a mode which is added to the mode mapping. This
process is continued until the agent in the last dummy node
is visited. This node is special in the sense that its agent does
not need to choose an activity order or a mode, but always
forwards the control to the dispatcher. The dispatcher has a
certain probability (PrRandToV isited) to choose a random el-
igible agent from the list of already visited agents, otherwise
it chooses a random eligible unvisited agent. An agent is el-
igible when all the predecessors of the activity it represents
have been visited. Note that this simple random dispatcher
strategy can be changed into something else (e.g. a heuristic
strategy). These steps are carried out subsequently until all
agents have been visited at least once.

In addition to all the previous, the agents behave stochas-
tically. At any time they can give the control, with a small
probability PrToDisp, to the dispatcher. This makes it pos-
sible to naturally consider all possible activity-order permu-
tations and hence all the possible schedules.

Now we can construct a schedule with the activity order
and mode mapping with a serial schedule generation scheme
that uses a standard heuristic method for RCPSP (see [12]
for details).

3.1 Algorithm
In this section we present the algorithm behind our ap-

proach in a more formal way by using pseudo code. In Al-
gorithm 1 the global control of the algorithm for construct-
ing an Activity Order List and Mode Mapping is presented.
From there the control is given to individual agents which
use Algorithm 2. The latter returns the next agent to visit
(Agentnext) which is given control by the global control.
For clarity we left out the implementation of the method to
determine if an Agent is eligble.

The method described above for constructing a schedule
can now be used in an iterative way. We use the sched-
ule’s quality (makespan) for the agents to learn the actions
to take. We apply some simple learning automata devices

Algorithm 1 Global Control

Input: Project data and Algorithm parameters
Output: A precedence constraint feasable schedule

initialize ActivityOrderList and ModeMappingList
Agentcurrent ⇐ Agent1
while Not all agents visited do

give the control to Agentcurrent
Agentnext determined by Agentcurrent using Algo. 2
if Agentnext is eligible then
Agentcurrent ⇐ Agentnext

else
Agentcurrent ⇐ Dispatcher

end if
end while
Schedule ⇐ construct a schedule using the obtained
ActivityOrderList and ModeMappingList
return Schedule

Algorithm 2 Single Agent Control

Input: ActivityOrderList, ModeMappingList
Output: Agentnext

rand ⇐ random number between 0 and 1
if (rand < PrToDisp) or (this is AgentN) then
Agentnext ⇐ Dispatcher

else
if Agentcurrent not yet visited then

add Agentcurrent to the ActivityOrderList
Mode ⇐ chooseMode() using Mode LA
add the Mode to the ModeMappingList
Order ⇐ chooseOrder() using Order LA
Agentnext ⇐ first Agent in Order

else
Agentnext ⇐ next Agent in Order

end if
end if
return Agentnext

which we will describe in the next Section.

3.2 Learning Automata
Learning Automata are simple reinforcement learners orig-

inally introduced to study human and animal behavior. The
objective of an automaton is to learn an optimal action,
based on past actions and environmental feedback. Formally
the automaton is described by a quadruple {A, β, p, U}, where
A = {a1, . . . , ar} is the set of possible actions the automa-
ton can perform, p is the probability distribution over these
actions, β is a random variable between 0 and 1 representing
the evironmental response, and U is a learning scheme used
to update p.

A single automaton is connected in a feedback loop with
its environment. Actions chosen by the automaton are given
as input to the environment and the environmental response
to these actions serves as input to the automaton. Several
automaton update schemes with different properties have
been studied. Important examples of linear update schemes
are linear reward-penalty, linear reward-inaction and linear
reward-ε-penalty. The philosophy of these schemes is essen-
tially to increase the probability to select an action when it
results in a success and to decrease it when the response is
a failure. The general algorithm is given by:

pm(t+ 1) = pm(t) + αreward(1− β(t))(1− pm(t))

− αpenaltyβ(t)pm(t) (11)

if am is the action taken at time t

pj(t+ 1) = pj(t)− αreward(1− β(t))pj(t)

+ αpenaltyβ(t)[(r − 1)−1 − pj(t)] (12)

if aj 6= am

The constants αreward en αpenalty are the reward and
penalty parameters respectively. When αreward = αpenalty,
the algorithm is referred to as linear reward-penalty (LR−P),
when αpenalty = 0, it is referred to as linear reward-inaction
(LR−I) and when αpenalty is small compared to αreward it
is called linear reward-ε-penalty (LR−εP).

A motivation for using learning automata is that nice the-
oretical convergence properties are proven to hold in both
single and multi automata environments. One of the princi-
pal contributions of LA theory is that a set of decentralized
learning automata using the reward-inaction update scheme
is able to control a finite Markov Chain with unknown tran-
sition probabilities and rewards. Recently this result was
extended to the framework of Markov Games, a straight-
forward extension of single-agent markov decision problems
(MDP’s) to distributed multi-agent decision problems [15].

3.3 LA for the MRCPSP
For learning the activity order and the best modes we ap-

plied the (LR−I) method because of its ε-optimality prop-
erty in all stationary environments. The learning rate (re-
ward parameter) that is used for learning the activity order,
and the one that is used for learning the mode are named
LRO and LRM. The application of the reinforcement will be
presented in what follows.

After a schedule was constructed, we update all the learn-
ing automata using the following reinforcements. If the
makespan of the constructed schedule was:

• Better: reinforcement = 1

• Equal: reinforcement = req (req ∈ [0, 1])

• Worse: reinforcement = 0

Both req and the learning rates LRO and LRM deter-
mine the speed of learning. A higher req can speed up the
learning, especially for a problem like the MRCPSP where
attempts only rarely result in improvements.
The settings of the 2 learning rates are dependent. A proper
combination will be important for a good overall perfor-
mance.

The viewpoint of a single agent is presented in Figure 4.
Each agent has two learning devices. When the agent is
visited for the first time, the algorithm will ask an agent to
choose an order to visit its successors and a mode. For
both choices the agent consults the corresponding learn-
ing automaton. These learning automata make a choice
according to their probability vector (probability distribu-
tion). When all the agents have been visited at least once,
the algorithm constructs a schedule. Using the information
from this schedule, the reward system will update all the
agents according to the reinforcement (reward) rules men-
tioned above (Equation 11 and 12). The agents forward
the reinforcement signal to their learning automata devices.
These learning automata will then update their probability
vector using the (LR−I) method.

4. EXPERIMENTAL RESULTS
In this section we evaluate the performance of the multi-

agent learning algorithm. The algorithm has been imple-
mented in Java Version 6 Update 11 and run on an Intel
Core 2 Duo E8400 3.0GHz processor, 4GB RAM. To test
the performance of the algorithm, we applied it to instances
of the project scheduling problem library (PSPLIB) [14],
which is available from the ftp server of the University of
Kiel (http://129.187.106.231/psplib/).

First we present the experimental results for the multi-
mode RCPSP in Section 4.1. In Section 4.2 we consider the
single-mode version.

4.1 Multi-Mode
The PSPLIB library contains a number of MRCPSP datasets

with a number of activities ranging from 10 to 30 (J10, J12,
J14, J16, J18, J20 and J30). For all except the last dataset
the optimal solutions are known. All the instances from
these datasets have two renewable and two nonrenewable re-
sources. Each dataset contains 640 instances, of which some
are infeasible. We exclude the infeasible instances from the
tests.

When testing the algorithm we found that the required
number of iterations depends largely on the initial settings.
For that reason we used the algorithm in the common multi-
restart way. This involves restarting the algorithm a number
of times on the same instance and taking the best solution
over all the runs. In Table 1,2,3 and 4 we present the re-
sults of the multi-agent based algorithm for the J10 to J20
datasets from the above mentioned PSPLIB library, using
the following parameters for all the tests: 0.01 for the order
learning rate (LRO), 0.2 for the mode learning rate (LRM),
req = 0.05, 0% PrToDisp, 5% PrRandToV isited and differ-
ent Restarts × Iterations combinations each with a total
of 100, 000 iterations. For these Restarts× Iterations com-
binations we used: 5 × 20, 000 iterations (5 restarts with
20, 000 schedule constructions each), 10× 10, 000 iterations

Algorithm (Control)Agent

LA – Order Learning

LA – Mode Learning

| 1 2 3 | | 1 3 2 |

| 2 3 1 | | 2 1 3 |

| 3 1 2 | | 3 2 1 |

Action set

Action set

Mode 1
Mode 2

Mode 3

Action

Probability

Vector

Action

Probability

Vector

Update

Probabilities

Choose action

Update

Probabilities

Choose action Choose Mode

Choose Order

Update

New ScheduleReward system

Reward

LRO

LRM

Figure 4: The single agent view.

and a tuned combination (see later). The results have been
evaluated in terms of the average procentual deviation from
optimum over all the instances or the relative error (RE),
the maximum RE, the standard deviation over all RE, the
% of optimal solutions found, and the average runtime in
seconds. We compared our algorithm with an other agent
based approach [9], a population learning algorithm (PLA)
[8] and a simulated annealing algorithm [2]. For the pop-
ulation learning algorithm we took the results for 50, 000
schedule constructions and for 2 PLA runs, which is similar
to the total of 100, 000 iterations of the agent based learning
approach.

In Table 5 we present the results for the J30 dataset using
5 × 20, 000 iterations and 5 × 50, 000 iterations. For this
dataset the optimal solutions have not been found by the
research community. We therefore calculated the average
procentual deviation from the best known solutions.

The learning rates LRO and LRM have been determined
empirically by measuring the average performance of some
learning rate combinations on several instances from the dif-
ferent datasets. In Figure 5 we present the average result-
ing makespan of different learning rate combinations for the
J2054 2 instance. Here it seems that the [0.01 − 0.2] and
[0.2 − 0.2] combinations perform best. Similar conclusions
have been made when considering other instances. In any
case, the LRM must be large enough (e.g. LRM = 0.2)
to give good results in the limited interval of 20, 000 itera-
tions. This is probably due to the importance of choosing
proper modes in the MRCPSP. We also added the learning
rate combination [0.0− 0.0] which means that the agents do
not learn, but select random actions. As we expected the
method without learning performs the worst.

To determine the number of restarts together with the
number of iterations per restart we did some experimen-
tal tests on the hardest instances for every dataset(i.e. in-
stances for which our approach performed the worst in ear-
lier tests). For every hard instance we performed 20 runs for
some Restarts× Iterations combinations. These combina-
tions all have a total of 100, 000 iterations. We averaged the
procentual difference with the optimum over the 20 runs. All
tests have been executed using the default parameter values
mentioned in the beginning of this Section. In Figure 6 we
see the results for some hard J20 instances, which shows us
that the 10× 10, 000 combination is the best performing for
this dataset. We can draw similar conclusions from Figure

Figure 5: A comparison of different learning rate
combinations for the J2054 2 instance.

7 and 8 for the J30 and J10 dataset. 5 × 20, 000 seems the
best combination for J30, while 50 × 2, 000 appears to be
the best for the J10 dataset. Using these best performing
Restarts × Iterations combinations for every dataset, we
obtained the ‘Tuned’ results from Figure 4. In general we
can see that larger problem instances need more iterations,
taking into account the fixed 100, 000 iterations this auto-
matically results in fewer restarts.

When considering these results for the MRCPSP we can
conclude that the multi-agent approach performs very well
when comparing it to the methods from the literature. We
even reach 100% optimality for the J10 dataset when using
the Tuned version of the algorithm.

4.2 Single-Mode
Since the MRCPSP is a more general definition than the

RCPSP, the multi-agent learning approach is also suitable
for solving the latter problem. In Table 6 we present the
results for the J120 RCPSP dataset, which is the largest
dataset for RCPSP in the PSPLIB library. The tests were
carried out with the same parameters as in Section 4.1 but
only 5×5, 000 iterations. Since not all the optimal solutions
are known for this dataset we calculate the average procen-
tual deviation from the critical path length. We also provide
the average procentual deviation from the best known solu-

Figure 6: Number of restarts vs number of iterations
for some hard J20 instances

Figure 7: Number of restarts vs number of iterations
for some hard J30 instances

Figure 8: Number of restarts vs number of iterations
for some hard J10 instances

tions.
When looking at these single-mode RCPSP results, which

reveal average performance when comparing it to the best
algorithms reported in the literature, we can conclude that
the power of the approach is its coupling between learning
the activity order and learning the modes.

Note that although our approach is distributed, it does
not require mutual communication between the learning au-
tomata. The coupling of the LA happens through the com-
mon global reward signal. For both the RCPSP and MR-
CPSP, specialized Genetic Algorithms (GA) are among the
best performing algorithms in the literature. When we com-
pare our results, with one of the very best GAs for the MR-
CPSP [17], the results of the multi-agent learning approach
have similar quality and even performs slightly better on
some multi-mode datasets. However this comparison is not
completely fair, because we did use more schedule construc-
tions (> 5, 000).

5. CONCLUSIONS
In this paper we have presented a novel approach for solv-

ing the multi-mode resource-constained project scheduling
problem (MRCPSP) using agents. The agents make use of
simple learning automata for learning both the activity or-
ders and the mode assignments simultaneously.

Based on the results presented in this paper, we can con-
clude that the multi-agent approach performs very well when
comparing it to the methods from the literature, especially
to other agent-based and learning methods. In the future we
will speed up the learning (±5, 000 iterations), by parameter
tuning or incorporation of heuristic information (e.g. dis-
patcher strategy), so we can make a fair comparison with
the most competitive algorithms, which are specialized Ge-
netic Algorithms for the MRCPSP.

Instead of only testing the multi-agent approach on bench-
marks, we expect that the presented approach is also capable
of handling real practical problems.

The ‘rough-and-ready’ aspect of the experimental config-
uration coupled with the good results, strongly suggests a
promising future for further research and the practical ap-
plication of learning automata to several scheduling prob-
lems. Further on, this method can be applied to problems
where one needs to find a permutation of elements which is
restricted by precedence constraints, as in the Precedence
Constraint Traveling Salesman Problem (PCTSP) or the
Sequential Ordering Problem. Finally, we will also investi-
gate how to relate the developed algorithm to the theoretical
frameworks [18, 19] for interconnected LA learning devices.

6. REFERENCES
[1] J. Blazewicz, J. Lenstra, and A. R. Kan. Scheduling

projects subject to resource constraints: Classification
and complexity. Discrete Applied Mathematics,
5:11–24, 1983.

[2] K. Bouleimen and H. Lecocq. A new efficient
simulated annealing algorithm for the
resource-constrained project scheduling problem and
its multiple mode version. European Journal of
Operational Research, 149:268 – 281, 2003.

[3] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and
E. Pesch. Resource-constrained project scheduling:
Notation, classification, models and methods. EJOR,
112:3–41, 1999.

Table 1: Experimental results MRCPSP
J10 J12 J14 J16 J18 J20

Average deviation from optimal (RE) (%):
P. Jedrzejowicz and E. Ratajczak (2007) [9] 0.72 0.73 0.79 0.81 0.95 1.80
P. Jedrzejowicz and E. Ratajczak (2006) [8] 0.36 0.50 0.62 0.75 0.75 0.75

K. Bouleimen and H. Lecocq (2003) [2] 0.21 0.19 0.92 1.43 1.85 2.10
Multi-Agent Learning Approach (5× 20, 000) 0.04 0.11 0.28 0.34 0.45 0.81
Multi-Agent Learning Approach (10× 10, 000) 0.01 0.02 0.17 0.23 0.36 0.72

Multi-Agent Learning Approach (Tuned) 0.00 0.02 0.11 0.18 0.36 0.72

Average runtime (s) 5 6.5 7.5 9 10 11.5

Table 2: Experimental results MRCPSP - 5× 20, 000
J10 J12 J14 J16 J18 J20

Average RE (%) 0.04 0.11 0.28 0.34 0.45 0.81
Std. Dev. RE (%) 0.55 0.79 1.08 1.20 1.36 1.83

Max RE (%) 11.11 8.70 7.69 8.70 12.50 10.71
Optimal (%) 99.44 97.99 93.47 91.82 88.41 80.40

Table 3: Experimental results MRCPSP - 10× 10, 000
J10 J12 J14 J16 J18 J20

Average RE (%) 0.01 0.02 0.17 0.23 0.36 0.72
Std. Dev. RE (%) 0.17 0.28 0.80 0.93 1.14 1.67

Max RE (%) 4 4.76 5 6.25 6 10
Optimal (%) 99.81 99.63 95.64 93.64 90.40 82.03

Table 4: Experimental results MRCPSP - Tuned
J10 J12 J14 J16 J18 J20

Average RE (%) 0.00 0.02 0.11 0.18 0.36 0.72
Std. Dev. RE (%) 0.00 0.29 0.63 0.82 1.14 1.67

Max RE (%) 0.00 5.56 5.26 7.14 6 10
Optimal (%) 100 99.63 96.73 94.91 90.40 82.03

Table 5: Experimental results MRCPSP - J30
Average deviation from

best known solutions (%) Max RE (%) Average runtime (s)
5× 20, 000 iterations 2.03 16.13 39
5× 50, 000 iterations 1.10 11.90 157

Table 6: Experimental results RCPSP - J120
Average deviation from Average deviation from
critical path length (%) best known solutions (%) Average runtime (s)

5× 5, 000 iterations 36.98 4.36 120

[4] S. Hartmann. Project scheduling with multiple modes:
a genetic algorithm. Annals of Operations Research,
102:111–135, 1997.

[5] W. Herroelen and B. De Reyck. The multi-mode
resource-constrained project scheduling problem with
generalized precedence relations. EJOR, 119:538–556,
1999.

[6] W. Herroelen, B. De Reyck, and E. Demeulemeester.
Resource-constrained project scheduling: a survey of
recent developements. Computers and Operations
Research, 25:297–302, 1998.

[7] J.Alcaraz and C. Maroto. A new genetic algorithm for
the multi-mode resource-constrained project
scheduling problem. page 4, 2002.

[8] P. Jedrzejowicz and E. Ratajczak. Population
Learning Algorithm for the Resource-Constrained
Project Scheduling, volume 92 of International Series
In Operations Research & Management Science,
chapter 11, pages 275 – 296. Springer US, 2006.

[9] P. Jedrzejowicz and E. Ratajczak-Ropel. Agent-based
approach to solving the resource constrained project
scheduling problem. 4431/2007(8th International
Conference, ICANNGA 2007):480–487, 2007.

[10] M. D. G. Knotts. Agent-based project scheduling. IIE
Transactions, 32:387–401, 2000.

[11] R. Kolisch. Project scheduling under resource
constraints - efficient heuristics for several problem
cases. Physica-Verlag, 1995.

[12] R. Kolisch and S. Hartmann. Heuristic algorithms for
solving the resource-constrained project-scheduling
problem: Classification and computational analysis.
Handbook on recent advances in project scheduling,
1998.

[13] R. Kolisch and S. Hartmann. Experimental
investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of
Operational Research, 174:23–37, 2006.

[14] R. Kolisch and A. Sprecher. Psplib - a project
scheduling problem library. European Journal of
Operational Research, 96:205–216, 1996.

[15] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In In Proceedings
of the Eleventh International Conference on Machine
Learning, pages 157–163. Morgan Kaufmann, 1994.

[16] M. Masao and C. Tseng. A genetic algorithm for
multi-mode resource constrained project scheduling
problem. EJOR, 100:134–141, 1997.

[17] V. Van Peteghem and M. Vanhoucke. A genetic
algorithm for the multi-mode resource-constrained
project scheduling problem. Working paper, January
2008.

[18] P. Vrancx, K. Verbeeck, and A. Nowé. Decentralized
learning in markov games. IEEE Transactions on
Systems, Man and Cybernetics, 38(4):976 – 981,
August 2008.

[19] R. M. Wheeler and K. Narendra. Decentralized
learning in finite markov chains. IEEE Transactions
on Automatic Control, AC-31:519 – 526, 1986.

