REVIEW ARTICLE

Necrosis Avid Contrast Agents
Functional Similarity Versus Structural Diversity
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Abstract: Two categories of necrosis-avid contrast agents
(NACAs), namely porphyrin- and nonporphyrin-based complexes,
have thus far been discovered as necrosis-targeting markers for
noninvasive magnetic resonance imaging (MRI) identification of
acute myocardial infarction, assessment of tissue or organ viability,
and therapeutic evaluation after interventional therapies. In addition
to necrosis labeling, other less-specific functions, such as first-pass
perfusion, blood pool contrast effect, hepatobiliary contrast en-
hancement (CE), adrenal and spleen CE, and renal functional
imaging, also are demonstrated with NACAs. Despite various in-
vestigations with a collection of clues in favor of certain hypotheses,
the mechanisms of such a unique targetability for NACAs still
remain to be elucidated. However, a few things have become clear
that porphyrin-like structures are not necessary for necrosis avidity
and the albumin binding is not the supposed driving force but only
a parallel nonspecific feature shared by both NACAs and non-
NACA substances. Although the research and development of
NACAs still remain in preclinical stage at a relatively small scale,
their significance rests upon striking enhancement effects, which
may warrant their eventual versatile clinical applications. The
present review article is intended to summarize the cumulated facts
about the evolving research on this topic, to demonstrate experimen-
tal observations for better understanding of the mechanisms, to
trigger broader public interests and more intensive research activi-
ties, and to advocate, toward both academics and industries, further
promotion of preclinical and clinical development of this unique and
promising class of contrast agents.
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M agnetic resonance imaging (MRI) has evolved rapidly
into a major player in the armamentarium of clinical
imaging diagnoses because of its multiple inherent advan-
tages. Despite this, it is now of no doubt that only when
complemented with the use of contrast agents (CAs), MRI
can fully play its pivotal role in clinical diagnosis and
therapeutic decision-making. The extracellular fluid (ECF)
space CAs, such as Gd-DTPA (ie, Magnevist, Berlex Labo-
ratories, Wayne, NJ), have been widely applied for enhancing
MRI contrast in both clinical practice and experimental re-
search because of their immediate availability and excellent
safety. However, for instance, in the field of cardiac MRI,
despite the considerable consensus regarding these ECF CAs
as viability markers with “necrosis-specific” property to dis-
criminate between viable and nonviable myocardium at
delayed phase contrast enhanced MRI,'~* inaccuracy, uncer-
tainty, and dependency of using them on multiple influential
factors for imaging interpretation also have been evi-
denced.”” In particular, they are still incapable of making
explicit distinctions between reversible and irreversible in-
jured myocardium, between acute and chronic myocardial
infarction (MI), and between ischemic and inflammatory
lesions. Such imperfect competence may satisfy some of the
present clinical needs but will neither meet the ever-raising
healthcare requirements nor match the pace of ever-advanc-
ing MRI technologies. Therefore, there has been a continuing
strategy for searching more specific CAs that can always
offer unambiguous and indisputable imaging diagnosis, of
which a particular branch is addressed herewith. Differing
from an ordinary research paper, the present article has been
structured as a mini-review, in which a few subtitled sections
have been organized according to the chronological order of
the events with regard to exploration of a unique type of
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targeting contrast agents, namely necrosis-avid contrast
agents or NACAs.

PREVIOUS EFFORTS IN SEARCHING
NECROSIS-SPECIFIC MARKERS

During the past couple of decades, necrosis imaging has
been one of the focused interests, particularly in nuclear scin-
tigraphy,'® which also has affected the research in MRI. Phos-
phonate-modified Gd-DTPA complexes could produce a persis-
tent and strong contrast enhancement (CE) in diffuse and
occlusive MI as the result of their affinity for calcium-rich
tissues and subsequent formation of insoluble calcium phosphate
precipitates in the damaged myocardium. However, they may
cause calcium-homeostasis disorder and consequently impair
ventricular contractility.'! Besides, studies with technetium-99m
pyrophosphate, a scintigraphic analog of this type, have shown
a lack of specificity between ischemic and necrotic myocardi-
um,'? leading to a significant overestimation of the infarct size."?
Antimyosin-antibody labeled magnetopharmaceuticals represent
another appealing approach. However, the unaffordable costs,
possible immunogenic side-effects, insufficient expression of
antigens and limited MRI sensitivity to the currently available
relaxation enhancers, and complexity in preparation and han-
dling of the antibody-agents all challenge their ultimate clinical
utility.'*

DISCOVERY OF PORPHYRIN-BASED NACAS

What do x-rays, nylon, and vaccination have in com-
mon? They were discovered serendipitously or by accident.
The word “serendipity” was first introduced in the middle of
18th century to express the phenomenon of discovery “by
accident and sagacity.”'> What likely also belongs to this type
is the discovery of another category of necrosis targeting
CAs, which represents an ongoing multiepisode story.

Porphyrin derivatives have been investigated for
decades in the diagnosis and treatment of malignant tu-
mors.'®'? The rationales governing porphyrin-mediated can-
cer photodynamic therapy are based on “tumor-localizing”
and photosensitizing properties of the agents. By analogy, the
tumor “preferential uptake” of porphyrins also has been
exploited for developing paramagnetic metalloporphyrins as
“tumor-seeking” MRI CAs.?% !

However, the research activities from this laboratory
have led to changing metalloporphyrins from being used as
tumor seeking CAs into magnetic markers of acute MI.>
During the early 1990s, in an attempt to screen and confirm
a few potentially tumor-specific porphyrin CAs including
bis-Gd-DTPA-mesoporphyrin (later renamed as gadophrin-2)
and Mn-tetraphenylporphyrin (Mn-TPP) produced and pro-
vided by the former Institut fiir Diagnostikforschung, Berlin,
Germany,?® we conducted a series of experiments on well-
established animal models of primary and secondary liver
tumors.>® By using the methodologies dissimilar to those in
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the previous studies,'® ' we found that the reported “spe-

cific” CE could be attributed only to nonviable (typically
necrotic) instead of viable tumor components,** an observa-
tion just opposite to the assumption raised by an earlier
study.”® To support our findings and to convince people that
porphyrins are indeed tumor-nonspecific, more metallopor-
phyrins were assessed in animals with various induced
“benign” necroses and the so called “tumor-localizing” phe-
nomenon could be reproduced without exceptions in these
nontumoral lesions.®> Therefore, certain nonviable tissues
(typically necrosis) are thus explicitly identified as the real
targets of the studied paramagnetic porphyrin CAs, whereas
other intact organs and tissues including viable tumor parts
were only enhanced nonspecifically with these agents being
treated as certain chemical metabolites.®3>3*35 Indeed, ne-
crosis-specific CE and tumoral nonspecific CE could fre-
quently be confused or admixed in animal studies due to most
likely the methodological limitations.>*2¢-7

To distinguish from other antibody or receptor medi-
ated tissue specific CAs that feature apparently different
mechanisms of targetability, we proposed to nominate these
newly discovered porphyrin compounds and later developed
nonporphyrin species as necrosis-avid contrast agents, or
NACAs, because of their extraordinary avidity to necrotic
and/or infarcted tissues.®* %3

GENERAL PERFORMANCE
OF PORPHYRIN-BASED NACAS ON
CONTRAST-ENHANCED MRI

Although, unfortunately, these porphyrin-based CAs
can no longer be considered tumor-specific, their superb
necrosis targetability has elicited novel and even more
exciting utility for MRI visualization of acute myocardial
infarction®®~*® and brain infarction.*’ After a few years’
experience of peer-suspicion or reluctance likely as one of the
common manifestations of the so-called “NIH” (Not Invented
Here) syndrome in the academic circle and the industry,”®
eventually the potent effects of gadophrin-2 for labeling
necrotic myocardium on MRI have been widely recognized
after multi-institutional reproducibility studies.®>'’ In ad-
dition to intravenous doses of porphyrin-NACAs at 0.05-0.1
mmol/kg for cardiac MRI to visualize acute MI with an
extended imaging window during 3—48 hours,®40 4751757
intracoronary delivery of gadophrin-2 at a tiny dose of 0.005
mmol/kg in combination with the percutaneous transcatheter
coronary angioplasty procedure could function as a diagnostic
adjuvant for myocardial viability determination and therapeutic
assessment for this common cardiac intervention.***® Such a
smart approach was rated by the French experts as one of the
best cardiac imaging techniques in 2002.°® Nevertheless,
improper methodologies often may lead to invalid study
conclusions about porphyrin-based NACAs for their applica-
tions in experimental MI, causing either the undervalued
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capacity for enhancing the occlusive MI*® or the inaccurate
delineation of MI when comparing with ECF CAs,® as indi-
cated in the more recent literature.*>°!% Other than spontaneous
necroses, such as acute MI, porphyrin-based NACAs also could
label tissue death after interstitial thermal therapies including
radiofrequency ablation (RFA) of solid tumors.®**

So far, triphenyltetrazolium chloride (TTC) staining
has been used as the only gold standard for macroscopic
identification and quantification of acute MI. However, it is a
postmortem technique and hardly applicable in clinic. Studies
with both intravenous and intracoronary NACA injections
have revealed that actually what is specifically enhanced on
cardiac MRI corresponds exactly to what TTC dye does not
stain on the excised heart, resulting in the same accuracy for
MI delineation.®®*°~4831"57 The measured local concentra-
tion of gadolinium is frequently tens of times higher in
infarcted over normal myocardium. Experimentally, gadoph-
rin-2-enhanced MRI has been used as a reverse surrogate of
TTC histochemical staining or an in vivo viability gold
standard for evaluation of medicinal myocardial protection®’
and interventional RFA.%*** By chelating a copper ion in the
center of the cyclic tetrapyrrole ring, gadophrin-3 has been
introduced to improve its structural stability and safety yet
still retain its targeting efficacy.®®°>> Novel applications of
porphyrin-based NACAs in the preclinical experiments on
cardiovascular, oncological and even molecular imaging top-
ics are still emerging from different research centers.’’ %’
Except for slight discoloration that faded considerably over
the course of 24 hours, during animal experiments no detect-
able side effects were reported with porphyrin agents at a
0.05-0.1 mmol/kg dose range.®*®*7:49-31765 Nevertheless,
despite optimistic expectations,®® further commercial devel-
opment of these colored porphyrin complexes has unfortu-
nately been abandoned by the industry (Weinmann, Schering
AG, personal communication), most likely because of the
predicted unsatisfactory clinical tolerance and adverse effects
upon the unchangeable natures of these dark pigments (Fig. 1).

»d-NMP

20 mmol/l

FIGURE 1. A vial containing gadoph-
rin-2 at a concentration of 20 mmol/L
shows a nontransparent dark color
(left) and its corresponding chemical
structure (right).
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FURTHER DEVELOPMENT OF
NONPORPHYRIN-BASED NACAS

To overcome the discoloration, phototoxicity and other
side-effects related to the use of porphyrin derivatives, we
have made our continuing efforts to search for more-effec-
tive, less-toxic, and less-colored compounds. First, to verify
whether the cyclic tetrapyrrole structure characteristic of all
porphyrins is essential or not for the observed necrosis
targeting, we checked more metalloporphyrins and found that
4 of 9 metalloporphyrins did not prove necrosis avid.®® Such
unequal performances among different porphyrins, also oc-
curring in cancer photodynamic therapy'®'”' and tumor
imaging,”® suggest that the tetrapyrrole ring does not appear
to be a common structural requirement for the specific tar-
getability. Furthermore, other Gd-chelates conjugated to ei-
ther open chain tetrapyrroles such as bilirubin and biliverdin
or smaller constituents such as mono-, bis-, and tri-pyrrole
derivatives, also failed to convincingly reveal a necrosis-
specificity.*' These findings not only disprove an inevitable
linkage between porphyrin-related structures and the affinity
to necrosis but also implicate the possibility to generate some
totally different nonporphyrin molecules that could be more
effective and less colored or even colorless and, therefore,
deprived of any unwanted effects associated with porphyrins.
After a rational roadmap with certain conceptual break-
throughs, we have been able to successfully synthesize a few
promising leading compounds such as the light yellowish
ECII-60 (bis-Gd-DTPA-pamoic acid, Fig. 2) and the color-
less ECIV-7 (bis-Gd-DTPA-bisindole, Fig. 3),*"%*% with
both featuring extraordinary necrosis avidity (Fig. 4). The
former is derived from pamoic acid, which is a common
matrix for pharmaceutical preparations,”! whereas the later
indole derivative partially simulates catabolic metabolites of
organisms,’” and both are presumably more biocompatible
than those manufactured materials.”> Some physicochemical
features of porphyrin and nonporphyrin NACAs are com-
pared in table 1.
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FIGURE 2. A vial containing the non-
porphyrin  NACA ECIII-60 (bis-Gd-
DTPA-pamoic acid derivative) at a
concentration of 20 mmol/L shows
a transparent light yellow color (left)
and its corresponding chemical struc-
ture (right).
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FIGURE 3. A vial containing the non-
porphyrin  NACA ECIV-7 (bis-Gd-
DTPA-bis-indole derivative) at a con-
centration of 20 mmol/L appears as a
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MULTIFUNCTIONAL FEATURES OF NACAS

All studied NACAs, whether porphyrin or nonporphy-
rin species, allowed differential diagnoses between reversible
ischemic injury and irreversible infarct, acute and healing M1,
and occlusive and reperfused MI.%83849:3162.66 Eyep peg-
ative findings after CE with NACAs help to reliably exclude
the presence of necrosis and reaffirm tissue viability, which
would also be of high significance for differential diag-
noses.>®*** Local high concentrations of chemotactically ac-
cumulated NACAs enabled both T1 and T2 CE in reperfused
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transparent colorless solution (left)
and its corresponding chemical struc-
ture (right).

rKCOO}I

FIGURE 4. Nonporphyrin NACAs at
the same intravenous dose of 0.05
mmol/kg induce both T1 and T2 CE
with MRI relevant sequences in
reperfused MI on postmortem im-
ages of a dog overnight after injec-
tion of ECIII-60 (top row) and on in
vivo images of a pig 6 hours after
injection of ECIV-7 (bottom row),
suggesting the chemotactic accu-
mulation of NACAs in the necrotic
myocardium as proven by the corre-
sponding TTC stained specimens.
The imaging was performed at a
1.5-T magnet.

MI at relevant MRI sequences, suggesting their extraordinary
bifacial capacities (Fig. 4). In a recently proposed “one-stop-
shop” comprehensive package of cardiac MR for myocardial
viability assessment, the NACA serves as the only key factor
that can provide a clear-cut distinction between viable and
necrotic myocardium, which is crucial for stratification of
patients with acute coronary syndrome and subsequent ther-
apeutic planning in potential clinical applications.>®

On the other hand, an urgent need for NACAs in
therapeutic assessment after RFA of malignant tumors to
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TABLE 1. Features of Some Necrosis Avid Contrast Agents for MRI
Generic MW Plasma
Name Name (Dalton) Color Half-life Excretion References
Bis-Gd-DTPA- Gadophrin-2, 1697 Dark red ~2.5h* Urine and bile 6,8,28,32,34,35,38-49,51-59,
mesoporphyrin Gd-MP 61,63,64,66-68,74,88,89
Bis-Gd-DTPA- Gadophrin-3 1759 Dark red 2.0h Urine and bile 60,62,65
mesoporphyrin-Cu
Mn-tetraphenylporphyrin Mn-TPP 1111 Green ~2.5h Urine and bile 28,32,34,35,44,45,47,66,68
Bis-Gd-DTPA-pamoic acid ECIII-60 1560 Yellow ~2.5h" Urine and bile 41-43,69,91
derivative
Bis-Gd-DTPA-bis-indole ECIV-7 1582 Colorless ~2.5h" Urine and bile 41-43,70,74,75,78,79,91
derivative

*From the dog.
"From the pig.
MW, molecular weight.

differentiate residual tumor tissue and periablational benign
reactive tissues has been recently emphasized.”*”> Although
most unlikely achievable with the use of less tissue specific
CAs such as macromolecular blood pool CAs or commercial
ECF CAs,”"7 the use of new NACAs in this regard may
fundamentally solve the problems posed by the 2 recent
articles.”®’” Thus, functioning as a virtual biopsy technique,
the resultant NACA-enhanced MRI would provide uncondi-
tional and unambiguous imaging outcomes for physicians to
make early differential diagnosis and therapeutic adjust-
ment,”*”>7%7 hence higher cure rate for this type of anti-
cancer therapies. Studies with a new nonporphyrin NACA
has demonstrated that with the nonspecific liver CE gradually
diminishing from a few hours to a few days postcontrast, a
specific rim or “O”-type CE around the RFA lesion indicates
a complete tumor ablation, whereas an incomplete rim or “C”
type enhancement with moderately discernible contrast at the
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residual viable tumor suggests an incomplete tumor abla-
tion.”*”>787% Therefore, NACAs are advantageous over any
other existing contrast agents for this particular application
because of their characteristic CE and optimal phase in
relation to the cell type (malignant or benign) and tissue
viability (living or necrotic).”*7578.7

In addition to the necrosis-targeting property, NACAs
also share some exploitable features commonly seen with
other existing CAs,' >%%8! for instance, their relatively long
plasma half-life as the result of protein binding facilitates
their utility as blood pool CAs for MR angiography (Fig. 5),
especially of coronary arteries; their amphiphilicity as well as
hepatobiliary and renal excretion pathways may render ap-
plications for liver and kidney specific CE (Fig. 6). Therefore,
with combined specific and nonspecific capacities, NACAs
may serve well as versatile or multipurpose contrast-enhancing
agents.*> A similar example can be found with Gd-BOPTA or

FIGURE 5. MR angiography of rabbit
aorta (arrow) at 1.5 T comparing
Gd-DTPA at 0.1 mmol/kg (top row)
and the nonporphyrin NACA ECIV-7
at 0.05 mmol/kg (bottom row) dis-
plays rapid clearance of Gd-DTPA
from the circulation and BP effect
of ECIV-7 over the course of 70
minutes.
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FIGURE 6. Ten minutes after intravenous injection, both the
liver specific CA Mn-DPDP (top row) and the nonporphyrin
NACA ECIV-7 (bottom row) at the same dose of 0.01 mmol/kg
enhance the tumor conspicuity on T1-weighted MR images in
the rats with liver implantation of rhabdomyosarcoma, sug-
gesting additional hepatobiliary CE function of the NACA.

trade-named MultiHance,®* which is albeit void of necrosis
avidity. Indeed, it appears that both porphyrin and nonporphyrin
NACAs exert their necrosis targeting function only when there
exists denatured nonviable tissue debris in the living being,
otherwise they just behave like other less specific CAs such as,
for instance, ECF CAs used for the first-pass myocardial perfu-
sion, blood pool CAs used for MR angiography, and hepatobili-
ary and urinary CAs for liver and kidney CE. NACA-induced
strong adrenal CE also has been noticed in animal experi-
ments.*>”* Interestingly, porphyrins and an expanded porphyrin
are reportedly able to target atherosclerotic plaques because of
their preferential accumulation in the nonviable matrices of the
plaques with or without uptake by macrophages.>**~%° Macro-
phage approach for plaque imaging has been documented with

other particulate CAs.%*®” Given the equivalent performances
observed in studies on porphyrin and nonporphyrin NACAs, it is
logical to expect that such an extra potential utility would apply
to not only the complexes with multipyrrole rings but also other
nonporphyrin NACAs. Further studies may reveal that plaque-
targeting could well be one of the NACAs’ versatile functions.
Table 2 compares qualitatively some of the contrast enhancing
properties between NACAs and other representative albumin
binding blood pool, hepatobiliary, and ECF CAs.

INVESTIGATIONS OF THE MECHANISMS
BEHIND NACAS

Regarding the mechanisms of NACAs, Hofmann et a
attributed specific accumulation of gadophrin-2 to its binding
to albumin in the plasma and interstitium and subsequent
trapping in intratumoral necrotic regions. However, this con-
clusion could not be proven in another study comparing
gadophrin-2 and a strong albumin-binding blood pool CA
MP2269.% This result suggests that only few albumin-bind-
ing CAs may possess the NACA property, although to some
extent almost all NACAs tend to bind plasma proteins (typ-
ically albumin); in other words, the necrosis avidity is an
outstanding feature beyond general pharmacokinetics of al-
bumin-binding mediated drug transportation.

Hypothetically and partially supported by experimental
observations, NACA-induced necrosis targeting may arise in
a likely chemotactic fashion as follows.®* While circulating in
the blood pool after administration, the agents approach the
necrotic region by a time-consuming process of perfusion
through residual vessels, extravasation, and interstitial diffu-
sion, wherein reperfused infarction is more favorable than
occlusive infarction for NACA accumulation due to the
ampler access. The disintegrated cell-membrane after autol-
ysis facilitates contact and communication of NACAs with
the tissue debris. After enzymatic denaturation, certain ex-
posed radicles that are normally hidden inside intact macro-
molecules of cells and tissues may physicochemically attract
and interact with a variety of internal and external chemicals
to form strong bonds. Such interactions are usually indiscern-

188

TABLE 2. Comparison of the Functions Between NACAs and Control Agents

Properties NACAs MP-2269 Mn-DPDP ECF CAs
First-pass perfusion + + + +
Hepatobiliary CE + + + —
Albumin-binding + + ? -
Blood pool effect + + — —
Necrosis-avid CE + — — —
Plasma half-life* 2.0~25h ~25h <0.5h <03 h

*From animal experiment.

+, effective; —, ineffective; ?, uncertain.

© 2005 Lippincott Williams & Wilkins
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ible unless involving discernable labels such as dye, fluores-
cence, radioactive tracers, and magnetic metals. In the latter
case, further augmentation of the relaxivity as the result of
macromolecular interactions may in turn lead to a striking CE
of the infarct on T1-weighted MRI*® (Fig. 4). By ex vivo
measurement, the T1 and T2 relaxivity of water protons with
NACAs are typically close to 10 (mM - s) !, which are more
than twice of that with ECF CAs such as Gd-DTPA at about
4 (mM - s)” 1634394557 However, once accumulated in ne-
crosis, their relaxivity may be further unproportionally in-
creased.>>*

Because of local high concentration of Gd resulting
from such chemotactic accumulation, T2 and/or T2* suscep-
tibility contrast enhancing effect can become predominant,
especially on T2-weighted MRI (Fig. 4). Our recent studies
suggest that such local interaction and retention seems strictly
dependent on chemo-structure rather than a simple trapping
or sluggish wash-in and washout because either a slight
modification or even an isomer transformation may drasti-
cally switch off the necrosis-targeting effect of certain NACA
molecules.”’*? In respect to target tissues, the size and site of
infarcted areas as well as the presence or absence of post-
ischemic reperfusion determine what kind of NACA-induced
necrosis-specific CE appears (ie, patchy or bulky, subendo-
cardial or transmural, and complete or rim-like) and how long
the CE may persist.*® Unlike the “detrapping” process of
nonspecific CAs over a few quarters of time, #4757 the
eventual clearance of NACAs from necrotic foci typically
takes a few days after administration and parallels the natural
healing process,®>*** during which necrotic tissues are pro-
gressively infiltrated and phagocytized by inflammatory cells
(mainly neutrophils, monocytes, and/or macrophages) and
replaced by granulation tissues. Therefore, the retained NA-
CAs in necrosis are most likely removed together with
necrotic materials by phagocytosis. Thus, the secondary mac-
rophage uptake after NACA-necrosis binding also may ac-
count for their local enrichment. Questions remain as for
whether the Gd-complex of NACAs is still stable after being
taken up by macrophages and what about the fate and
consequence of this small necrosis-binding fraction of NA-
CAs in the human body.>®*” These details have to be further
elucidated. Alternatively, to substitute the bio-incompatible
lanthanide element Gd*" with the physiological trace metal
element Mn? " in the complex of NACAs might eliminate the
concerns about any potential side effects as the result of
gadolinium body retention.®””°

EXPANDED SCOPE ON THE RESEARCH
OF NACAS
Besides the aforementioned porphyrin and nonporphy-
rin NACAs, there appears to be a large variety of synthetic or
natural, endogenous or exogenous substances, which all seem
to share a common necrosis-avidity. These include the syn-
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thetic dye Evans Blue used for intravital staining,”* the botanical
extract hypericin derived from St. Johns Wort,”-**%> the
heme-related cofactor hematoporphyrin for oxygen transpor-
tation,'® ™' and the urinarily excreted glucarate catabolized
from UDP (uridine diphosphate)-glucose.”®” They all may
firmly bind to the denatured nonviable tissue components,
such as positively charged histone, collagen, and other re-
duced subcellular organelle proteins found in necrotic de-
bris.”* 7 However, unless being inherently colored or fluo-
rescent, their existence can hardly be discerned before their
labeling with detectable markers as to form radio-'%'>93"%7
and magneto-pharmaceuticals,®5-38~49-51-69.88.89

FROM FUNCTIONAL SIMILARITY TO
STRUCTURAL DIVERSITY TO FINAL
APPLICATIONS OF NACAS

The generally perceived structural diversity versus
functional similarity, ie, the presence of porphyrin versus
nonporphyrin, cyclic versus linear, natural versus artificial
NACA-like chemicals,”’ 7 supports our hypothesis that the
avidity of certain chemicals to necrotic debris in the living
body is an ever-existing phenomenon as part of the native
wound healing process, which has never been well recognized
yet deserves to be wisely exploited for medical purposes. To
realize this goal, research gathering cross-disciplinary expertise
is critically necessary. The key steps include understanding the
underlying mechanisms of necrosis avidity and identifying
the exact local configurations responsible for such strong
physicochemical reactions through careful analyses on the
structure—function relationship from all available NACA-like
substances. Then, it might be possible to create dedicated
all-in-one multifunctional CAs by purposely tailoring their
chemical structures. Such molecular engineering might ren-
der additional NACA targetability onto any known sub-
stances, which could be derived from more physiological life
molecules such as vitamins, amino acids and simple carbo-
hydrates, as well as existing nontoxic medications already in
use such as anti-ischemic and thrombolytic drugs or antineo-
plastic agents. This strategy may avoid hazards inherent with
extreme artificial manipulations as exemplified to some de-
gree by the development of “intelligent” CAs’ consisting of
totally nonphysiological substances.”® The latter approaches
are simply unrealistic for human applications and would ever
remain investigational;>*® whereas the exploration utilizing
natural processes may form a more operable, biocompatible,
economical and ecological platform for research and devel-
opment of CAs wherein more constructive interactions be-
tween academics and industries are supposed to be necessary
and should be encouraged.
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