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Developmental Engineering: A New Paradigm
for the Design and Manufacturing of Cell-Based Products.
Part Il. From Genes to Networks: Tissue Engineering
from the Viewpoint of Systems Biology
and Network Science

Petros Lenas, Ph.D."? Malcolm Moos, Jr., M.D., Ph.D.? and Frank P. Luyten, M.D., Ph.D*

The field of tissue engineering is moving toward a new concept of “in vitro biomimetics of in vivo tissue
development.” In Part I of this series, we proposed a theoretical framework integrating the concepts of devel-
opmental biology with those of process design to provide the rules for the design of biomimetic processes. We
named this methodology “developmental engineering” to emphasize that it is not the tissue but the process of
in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way
that will allow a computational design, we should refer to mathematical methods to model the biological process
taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex
interactions between the numerous components of a cell and interactions between cells in a tissue that form a
network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-
established principles of process engineering, a scientifically rigorous formulation is needed of the general design
rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental
processes could be related to the design parameters. Now that sufficient experimental data exist to construct
plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using
computational approaches to facilitate process design. Recent progress in systems biology has shown that the
empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process
design can be expressed in rigorous mathematical terms. This allows the accurate characterization of
manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In
addition, network science has recently shown that the behavior of biological networks strongly depends on their
topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper
understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a
transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline
comparable to other branches of engineering.

1. Introduction

IN Part I' we introduced the term “developmental engi-
neering” for a methodology to design in vitro biomimetic
processes for bioartificial tissue formation. This methodology
is based on the empirical concepts of developmental biology

that can be translated directly to process engineering con-
cepts and terms. According to this design methodology, the
overall process is assembled from a series of several sub-
processes, each one of these recapitulating one of the stages
of in vivo tissue development. These subprocesses lead to
the formation of intermediate tissue forms, some of them
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exhibiting modular behavior, that is, structural stability and
robustness, determined by intrinsic factors, and therefore
could be used as building blocks of more complex tissues in
other processes; for example, the growth plate could be used
for the formation of osteochondral tissue.

Although the proposed methodology is sound, it makes
use of qualitative information regarding the developmental
phenomena. Therefore, the design of such processes requires
considerable efforts to select the information needed from the
existing literature of developmental biology. In addition, the
pieces of information encountered in various studies cannot
be processed and integrated efficiently as would be the case
for information that could be treated computationally. This
unavoidably limits the information that could be used in
process design to that which can be processed mentally by
the designer, with the danger that information or correlation
of data is left out, and the process has to be redesigned and
reimplemented.

The current lack of rigorous formalization of the empirical
concepts prevents resolution of critical questions raised re-
cently in the literature. An important practical question is, for
example, the degree of match that is needed between the
in vitro and the corresponding in vivo processes.” It is not
feasible to transfer accurately in vitro in their entirety the
numerous interrelated in vivo conditions; we do not even
know what these are with accuracy and completeness. Are
all these conditions necessary, or is a subset sufficient to
direct the developing tissue into its natural pathway?® To
begin with, this requires a rigorous definition of what the
“match” between in vivo and corresponding in vitro processes
means in measurable/computable terms, so that the degree
of match can be quantified and correlated. Here we will
show that this degree can be defined accurately in scientific
terms through the topological properties of networks of in-
teracting genes/proteins, that is, how they influence the ex-
pression of each other to form densely interconnected signals
that are activated as a whole and take over the develop-
mental process, resisting environmental noise as the macro-
scopic modular intermediate tissue develops. Next, for
engineers to develop robust manufacturing processes, they
will need to know what this relevant subset is and how to
use it to define a biomimetic process unambigouosly. We
will show that this is a much more tractable problem than
recreating all processes occurring in vivo, since not all of
these developmental mechanisms have the same importance
in optimizing the properties of a bioartificial tissue. We will
show that behind each mechanism is a network of interacting
genes overlapping with networks of other mechanisms, or
comprising part of a larger network, and that the preferential
activation of a network that corresponds to a particular
mechanism can best be addressed with detailed computa-
tional analysis of the activated gene networks to identify
conditions that could assure the modularity and robustness
of the activated gene network.

Practical questions relating the concepts of developmental
biology to design in vitro biomimetic processes cannot be
answered without a rigorous mathematical formalism unless
extensive experimentation is undertaken. One of the most
important of these questions is whether the intermediate
tissue form (or final product) displays modularity, that is,
relative independence from other tissues because of the in-
ternal interactions on which its structure depends (e.g., the
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structure of the growth plate, which depends on the nega-
tive feedback loop of Indian Hedgehog (Ihh)/parathyroid
hormone-related protein (PTHrP) among differentiating
chondrocytes inside the growth plate). It is this property that
assures stability of such intermediates. Rational process de-
sign according to accepted engineering principles requires a
method to determine modularity from measurable or calcu-
lable variables instead of evaluating this property with la-
borious, empirical experimentation, which in any case would
not yield a useful quantitative model of the process. Mod-
ularity and robustness are equally desirable in the final
product, because it is destined to be implanted in vivo, and
therefore subject to uncontrollable disturbances in the local
environment. A final product not in a modular state might
well disintegrate after implantation, as shown by the failure
of chondroprogenitors to make stable cartilage in an in vivo
nude mouse model.* Indeed, the same questions are also
relevant for cells destined for implantation in a state short of
terminal differentiation (e.g., some products derived from
various types of stem cells). Even if further differentiation is
expected following administration, it is important that the
final product be in a stable, modular state corresponding to
the last production subprocess, as defined by the network of
activated genes. A rigorous definition of the final product
will be equally useful for regulatory purposes, including
such considerations as appropriate process controls, release
specifications that ensure product safety and effectiveness,
and design of comparability protocols to allow for post-
approval manufacturing changes. Here we will show how
modularity at the macroscopic level of a developing tissue or
cell arises from similarly modular design at the microscopic
level of networks of interacting genes, and that this modu-
larity can be expressed mathematically. Thus, we will be able
to define a stable, modular state with desirable properties in
precise mathematical terms, which in turn will allow the
questions posed above to be addressed. In conclusion, we
will reexamine the concepts for design of biomimetic pro-
cesses we used in Part I' from a different standpoint. Instead
of relying primarily on empirical approaches based on
known developmental pathways, we will examine how in-
teracting genes that form dense interconnected networks
can be treated computationally to answer process design
questions. We will see from where robustness of the devel-
opmental process arises, why some external perturbations
causing changes in the expression of some genes do not
disturb their natural developmental pathway, why other
perturbations do, and how the range of disturbances with no
effect on a developmental process could be determined ac-
curately instead of only through empirical experimentation.
We will then explore how computationally based process
design, evaluation, and optimization could be done to mini-
mize development time, increase accuracy, and assure the
fidelity of biomimicry needed for production of safe and ef-
fective products.

We will look into the applicability of systems biology and
network science to the design of processes that are fully
biomimetic, yet simple and robust enough to be practical,
since in vivo developmental processes are by default robust.
We attempt this using the concepts and terminology of these
disciplines to position developmental engineering on a solid
scientific foundation. Network science, in general, and its
application to problems in biology, in particular, is still in its
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infancy. Nevertheless, we present critical aspects from these
two fields that can be applied to process design so that fur-
ther discussion between developmental biologists and tissue
engineers will focus on these aspects to help crystallize this
methodology into a practical approach with immediate
utility.

Structure of the article

In section 2, we introduce systems biology. The need for
the use of its concepts and methods arises from the fact that
cell, tissue, organ, or organism functions can not only be
attributed solely to single genes or linear cascades of gene
activation but also require extensive crosstalk and feedback
of signaling pathways that form networks of interacting
genes. Because of the high complexity of the interactions in
comparison with linear cascades, it is not possible to describe
the network dynamics only by intuition, because the changes
caused by the input (e.g., addition of growth factor) are
spread throughout the whole network omnidirectionally and
iteratively until the gene expression stabilizes. Therefore, the
concepts and mathematical methods used in systems biology
to decipher what the gene/protein network does and to what
cell/tissue function its operation corresponds are of great
relevance to tissue engineering.

In section 3, we present an example from the literature of
developmental biology (segment polarity pattern formation in
Drosophila), in which systems biology methods were used to
determine the gene/protein network responsible for the for-
mation of the segment polarity pattern, a macroscopic de-
velopmental module at the tissue level. This example not only
clarifies how systems biology is used in development for the
determination of modularity of tissue forms but also indicates
how it should be used to design in vitro biomimetic processes
that simulate development in vivo. The important issue here
is that the macroscopic modularity of tissue forms is attrib-
uted to autonomous (no external factors involved) operation
of a gene/protein network that is equally modular. In other
words, the macroscopic modularity of the engineered tissue
intermediate results from corresponding modularity of a set of
genes that define that state. This set of genes is relatively
isolated from the rest of the genes/proteins of the overall
network operating in the cell, but the connections between its
member genes/proteins are strong and not easily affected by
perturbation of its parameters and initial conditions.

In section 4, we use the methodology of systems biology
presented in section 3 to design a biomimetic process for
growth plate development, which we presented briefly in
Part I. The purpose of the design is to determine the initial
conditions and parameters of the process, so that the
gene/protein modular network responsible for the macro-
scopic modularity of the columnar pattern of the growth
plate will be activated, thereby establishing the spatially
differential gene expression pattern observed in the growth
plate. We will confine discussion of mathematical modeling
of gene/protein interactions to the interactions observed
in vivo during development, and thus restrict to processes
that are biomimetic by default. In general, these concepts do
not apply to one-step concerted manufacturing schemes,
which therefore will not be examined further.

In section 5, we deal with the problem of having several
stable states, instead of one, in which a gene network can
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settle as it is usual in the process of cell differentiation. The
robustness of the gene/protein network, that is, its ability to
give the correct gene expression observed in differentiated
cells despite environmental disturbances, is reflected in the
properties of the mathematical model, which gives the same
correct solution despite changes in the initial conditions, as
mentioned in section 2. This solution represents a stable
state, called an attractor because it “attracts” initial condi-
tions that become finalized through network dynamics. Such
a representation is useful, especially when several stable
states coexist. Which one will be realized at the end depends
on the initial conditions that could direct cells to any of the
several different stable states. Several examples are given
from the literature referring to cell differentiation, where this
representation has proven useful in organizing and ex-
plaining experimental observations. It is again the stability of
the states and the determination of the initial conditions
leading to each one that can solve the problem of process
design in an accurate computational way.

In section 6, we introduce several concepts from the sci-
ence of networks and show how they are important in pro-
cess design. Network science, as systems biology, deals with
networks. However, although systems biology focuses on
component, for example, gene or protein, interactions in
networks from the point of view of regulatory mechanisms
as described in section 2, network science is a new scientific
field that examines the topology of the networks in a more
abstract form, trying to decipher common organizational
principles among diverse networks. Work done to date
suggests strongly that the mathematical behavior of net-
works will be instrumental in providing tissue engineering
with a solid theoretical background comparable to that of
other engineering fields. In any case, design questions could
be answered with both systems biology and network science.
For example, the mathematical model presented in section 2
from the point of view of systems biology, which includes
several regulatory mechanisms in the details of protein-to-
protein/gene interactions, has a corresponding abstract
model consisting only of gene-to-gene interactions described
exclusively by the network topology (see section 2).

In section 7, we present as an example an in vitro biomi-
metic process of pancreatic induction in endodermal cells by
mesoderm, where we try to answer the process design
questions from the point of view of network science.

2. Systems Biology Relates Cell/Tissue Functions
to Underlying Gene/Protein Interactions

Systems biology: From component interactions
to systems behavior

The genocentric paradigm of biology, which placed the
gene and its function as primary in biological studies, has
provided an enormous amount of data concerning the indi-
vidual cell components and their functions. However, only
limited information about functions can be extracted directly
from the genome. Biological functions cannot be attributed to
individual molecules but rather to complex interactions be-
tween the numerous components of a cell for cell functions
or between cells for tissue functions and so on, spanning the
levels of hierarchical organization of organisms. For exam-
ple, most diseases are not caused by a single gene defect but
rather by a malfunctioning network of interacting genes and



398

their coded proteins. More than 100 genes have been iden-
tified as contributing to the coronary artery disease.” It is
therefore apparent that instead of dealing with single genes,
in this case we instead have to generate information con-
cerning the behavior of these genes in an ensemble of 100
interacting genes and proteins in a functional network. Even
collections consisting of a small handful of components may
display a behavior markedly different from those of the in-
dividual components. A very simple example is the mark-
edly cooperative binding of oxygen to a system of four
hemoglobin subunits, starkly different qualitatively from the
noncooperative binding displayed by myoglobin. Of more
direct relevance to cell fate decisions taking place during
development, a cascade of three MAP kinases displays
stimulus-response characteristics profoundly different from
those expected for a single component.® A model composed
of a set of ordinary differential equations based on accepted
principles of enzyme kinetics,” with parameters that may be
determined by experiment or estimated, predicts that in
contrast to a graded stimulus-response relationship for a
single component, the cascade exhibits switch-like, “all
off/all on” behavior.

Currently, there is a gradual emergence of a new para-
digm, which treats biological phenomena from the systems
point of view with a bottom-to-up approach, trying to de-
cipher the system properties from the properties and inter-
actions of the Cornponents,8 instead of analyzing the system
to its components. The path for this change has already led
to the development of systems biology. Systems biology
seeks to understand how all the individual components of a
biological system interact in time and space to determine the
function of the system, be it cell, tissue, organ, or organism. It
makes use of the large amount of data from molecular bi-
ology and genomics to develop mathematical models of the
complex function of such systems. Systems biology will
change research practice and lead to the integration of in-
formation from the molecular up to the organism level. For
example, in experiments designed to elucidate the under-
lying pathophysiology of a disease, data collection and
interpretation are of equally important. For complete inter-
pretation in terms of physiology to be achieved, the use of
mathematical models to integrate huge amounts of data
describing gene expression, protein function, cell function,
and whole-body physiology are needed.” Clinical efficacy of
drugs can be also predicted using physiological models of
disease and disease processes.'’ Several applications in
health have been already published. Gadkar et al. have de-
veloped a mathematical model of the pathogenesis of type 1
diabetes, and they used it to study the effects of anti-CD40L
therapy, determining optimal treatment protocols."' Rull-
mann ef al. have developed a mathematical model to describe
the inflammatory and erosive processes in afflicted joints of
people suffering from rheumatoid arthritis, including in this
several processes such as the life cycle of inflammatory cells,
endothelium, synovial fibroblasts, and chondrocytes, as well
as their products and interactions, since it is actually the
interplay between these processes that determines the clini-
cally relevant measures for inflammation and erosion.'* The
authors used the model to predict the therapeutic effect of
modulating several molecular targets.

From the above examples, it becomes evident that the
methods of systems biology are relevant when we have to
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integrate information at one level (e.g., gene expression), to
find answers to questions referring to a higher level (e.g.,
pathophysiology at the level of organism or drug effect to the
patient). There are many such questions in biology and
medicine that are now being approached with systems bi-
ology methods."

Systems biology in tissue (developmental) engineering

In the case of tissue engineering, such questions are also
critical for the process design, since the essence of the task is
to find in vitro conditions in which the integration of gene
and cell interactions will lead to differentiated cells that are
in a stable state, or bioartificial tissues that are functionally
integrated and robust entities. A random distribution of
cells in scaffolds, even if cell viability is retained by the so-
phisticated methods/tools of tissue engineering, is much less
likely to closely resemble an authentic living tissue that ex-
hibits properties that arise from sequential cell interactions
that occur during natural development and are qualitatively
different.'* Internal integration of developmental modules
through cellular interactions that makes this cell collection
behave as a distinct unit signifies that these entities are au-
tonomous (see Part I). Such a living entity has distinct
properties, which are qualitatively different from the prop-
erties of its component cells. For example, the control of
growth plate elongation is not a chondrocyte property but a
property of the growth plate module arising from the inter-
action between chondrocytes participating in the negative
feedback loop of Thh/PTHrP." Similarly to the intermedi-
ate modular tissue forms, tissues in their final form constitute
integral entities with properties arising from interactions
between their cells. For example, glucose homeostasis in the
liver is a function of the liver as a whole, not of isolated
hepatocytes, which emerges from the metabolic cooperation
of glycolytic (periportal) hepatocytes, which take up glucose
during the absorptive phase, and gluconeogenic (perive-
nous) hepatocytes, which release glucose during the post-
absorptive phase.'® Another example is the controlled release
of insulin, which is not a function of beta cells but a function
of the organized beta cells within the islet structure.'”'®
Perhaps the clearest example is the neural tissue; its signal
processing functions are based on the topology of the syn-
aptic network instead of on single neurons.

Systems biology in development

In development, systems biology aims to extract the gen-
eral design rules of the network of interactions of genes,
proteins, and/or cells that are responsible for integrating the
behavior of components—genes, proteins, or cells into the
system, the most important property being the modularity/
robustness of cell states or intermediate tissue forms.** This
effort has already provided important information allowing
detection of general architectural characteristics of the net-
works in development, such as the feedback loops that en-
sure the progression of development and the repressing
interactions that participate in spatial control.”! As numerous
recent studies show (e.g., Refs.zz_zs), it is clear that systems
biology has already gained wide acceptance by develop-
mental biologists.

For many signaling pathways controlling cell specifica-
tion, sufficient information now exists to construct and test
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models built from several individual pathways. These
models open the door to a rigorously scientific, quantitative
description of modular behavior observed in empirical ex-
periments by developmental biologists for decades. This will
allow direct experimental evaluation of modular properties
in a tissue engineered in vitro, instead of approaches relying
only on macroscopic phenomena, which might require ex-
tensive experimental work. This is no longer just a theoretical
possibility: robust models have predicted behavior of sys-
tems as complex as the developing fly and frog embryo re-
liably*?*; these will be discussed further. This suggests
strongly that existing technology can model individual de-
velopmental modules determined to be needed in a given
manufacturing scheme to guide the nature and extent of
externally imposed controls and also set limits for measur-
able parameters consistent with process design objectives.
Below, we will describe how systems biology is applied to
development in vivo, what kinds of questions can be an-
swered and what methods are used (section 2), and then how
to transfer these concepts and methods to the design of
in vitro biomimetic processes (section 3), thereby transform-
ing the questions of section 2 to process design questions.
The example presented in section 3, selected because of its
simplicity, makes clear how a multicellular system can be
robust because of the cell-to-cell interactions that maintain
intracellular gene/protein interaction networks leading to
spatially differentiated gene expression. This is the aspect of
development most relevant to developmental engineering.
The model presented is based on mathematics no more
complicated than ordinary differential equations. This makes
the incorporation of process design parameters, such as ini-
tial cell concentrations and cell-to-cell interaction through
diffusing signaling proteins, a fairly straightforward exercise.

3. The Mathematical Properties of Interacting Gene/
Protein Networks Provide a Rigorous Formalism

of Developmental Modularity That Is Suitable

for Process Design

Intermediate modular tissue forms are the main targets of
process design in developmental engineering. If robust forms
appear in an in vitro process, then the process is biomimetic
in that it has emulated successfully the sort of modularity
observed in vivo. They can therefore easily be kept stable
in vitro without the need of elaborate explicit external control
because their structure depends on intrinsic factors, and
therefore remains stable in the face of environmental noise
unavoidable in an in vitro environment. They can be further
assembled with other tissue forms as building blocks for the
formation of more complex tissues. The major process design
question becomes “how can we ensure that robust tissue
forms appear during the in vitro process and, if they do not,
how should we modify the process design”? In other words,
under which conditions do stable, modular tissue forms
appear and persist? Though modular behavior is not neces-
sarily related to easily observable macroscopic patterns, in
some cases, macroscopic observations of process intermedi-
ates may provide evidence of modularity. One example of
this is the columnar pattern of the growth plate. However,
this is a a posteriori information, helping to confirm appro-
priate process design, but not facilitating it. More useful in-
formation would be provided by methods that express
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modularity and robustness in a formulation suitable for the
connection of design parameters to robustness of bioartificial
tissue and thus determine the values of parameters and ini-
tial conditions of the in vitro process that leads to a modular
and robust formation and maintenance of bioartificial tissue.

The segment polarity pattern of Drosophila
is formed by the operation of a modular,
robust gene/protein network

A particularly instructive example of a developmental
module where such a formulation of modularity/robustness
was achieved is the segmentation appearing during devel-
opment of the fruit fly, Drosophila, one of the best understood
developmental mechanisms. It will be apparent through the
analysis of this example that macroscopic modularity of in-
termediate developmental multicellular forms observed
empirically cannot be attributed to single genes or signaling
pathways acting as separate entities. Modularity, as a global
property of the spatially extended biological system, arises
instead from the way members of a particular set of genes
influence expression of other genes in the set, forming a
complex network of mutual interactions. The gene expres-
sion network of one cell extends its action to neighboring
cells, influencing their gene expression and activating vari-
ous signaling pathways through secreted proteins. In turn,
these cells respond to the first, activating its signaling path-
ways in a specific way, so that finally the gene expression is
stabilized. The gene interaction network therefore spans the
system extended and coordinated throughout the whole
macroscopic developmental module, and determines which
genes will be expressed and in what locations in the devel-
oping organism. Just as the developmental module is robust
macroscopically, the same robustness is exhibited by the
gene/protein interaction network in its operation autono-
mously, keeping active the interactions of its components
and stabilizing the spatially differentiated gene expression
pattern. Transferring the microscopic robustness of the gene
and signal pathway network to macroscopic robustness
observed experimentally in this way connects measurable/
calculable variables referring to the gene/protein network to
phenomena that can be observed directly. Thus, one can fi-
nally connect process design parameters with the robustness
of the tissue form using a mathematical model and predict
the necessary modifications in the in vitro process.

The various parts of the body of insects develop on par-
ticular segments, layers of cells that appear during embryo-
genesis. The genes expressed in each segment specify the
correct number of body parts and the correct polarity of each
one. In Drosophila, a complex network of gene interactions
converts a single-celled Drosophila egg to a multicellular
embryo with 14 segments, forming a spatial pattern of par-
allel stripes with each segment bounded by a stripe of cells
expressing the engrailed gene, en (Fig. 1a). Various sets of
genes are expressed in space differentially, in consecutive
stages of development, before the final pattern of 14 seg-
ments appears. At each successive developmental stage, the
pattern of differential gene expression becomes more precise,
with the expression of genes at any given stage controlled by
toses expressed in the previous stage This sequential pattern
of events, characteristic of developing systems and also of
mathematical models, that describe them (see below) is
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FIG. 1. The segment polarity pattern of Drosophila, a mac-
roscopic developmental robust pattern, composed of 14
segments forming a spatial pattern of parallel stripes with
each segment delimited by a stripe of cells expressing the
engrailed gene, en (a). The segment polarity genes (en, wg,
ptc, cid, and hh), the last in the cascade of spatially differen-
tiated gene expression during Drosophila development, are
expressed permanently and differentially in each cell of the
segment, with sharp boundaries between segments implying
that the segmental pattern is a macroscopic multicellular
developmental module with robust regulation (b). The as-
sembly of several gene interactions in adjacent cells that
communicate through secreted wingless and hedgehog
proteins form a spatially extended gene network that gives
the pattern robustness (c). CID, cubitus interruptus; CN, re-
pressor fragment of cubitus interruptus; en, engrailed; hh,
hedgehog; PH, patched-hedgehog complex; ptc, patched; wg,
wingless; small letters correspond to genes and capitals to
proteins.

known as path dependence. Most of the genes that are ex-
pressed successively are transient. The segment polarity genes,
the last ones in the cascade of spatially differential gene
expression, are expressed permanently (Fig. 1b). These genes
are activated in a spatially differentiated pattern that leads
to 14 segments by the five pair-rule genes (even-skipped,
hairy, odd-skipped, paired, and runt), which in the previ-
ous stage have been also expressed forming a prepattern of
seven stripes, each one corresponding to a pair of the final
segments.

The sharp boundaries between segments, corresponding
to cell layers expressing or not expressing particular genes,
imply that the segmental pattern is a macroscopic multicel-
lular developmental module with robust regulation. It is
known that once it is triggered, it is self-maintained, or au-
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tonomous,” which is not the case for prepatterned pair-rule
genes that do not persist.

Mathematical model

The question from the point of view of systems biology is
what particular genes are expressed in each location in the
pattern or why these genes are expressed there. Thanks to
the studies of Drosophila developmental biology, all these
genes, their spatial expression patterns, and many of their
interactions are known. What systems biology seeks to
identify is the regulatory mechanism(s) responsible for the
robustness of the segment polarity pattern. In other words,
the question refers to a system property, robustness, and
not to a component property, gene expression or gene reg-
ulation. This implies that the gene/protein network, that is,
which genes or proteins and how they interact, is known to
some extent. If we introduce a further criterion of robustness
to the information already gathered from experimentation,
we can identify still unknown interactions in the mathe-
matical model of the network, as we will see below. This
mechanism cannot be attributed to one gene, any of the dual
interactions between genes, or any single signaling pathway,
since the system is spatially distributed through cells that
express different genes (which, however, communicate),
determining each others gene expression. It is rather the as-
sembly of several gene interactions in a spatially extended
gene network that confers robustness to the pattern; in other
words this network, by itself, is robust. As such, systems
biology has to synthesize the various observations of mo-
lecular genetic analysis and see how these observations fit
together to establish the system’s properties. Von Dassow
et al. have made that step by modeling the activated signal-
ing pathways and relevant genes of the interaction between
cells that secrete Wingless (wg) and adjusted cells that secrete
Hedgehog (hh, Fig. 1c).® The authors developed a mathe-
matical model of 136 ordinary differential equations for the
core network comprised of five genes (en, wg, ptc [patched],
cid [cubitus interruptus], and hh) and their proteins. The
equations describe the time evolution of the concentration of
mRNA, protein, or protein complexes, and have terms for
synthesis, decay, transformation, and transport. The authors
incorporated the known gene interactions, assembled into
several small-scale regulatory mechanisms such as positive
and negative feedback loops, and are subsequently assem-
bled in one integral network.”

The initial model could not predict the macroscopic char-
acteristics of the segmental pattern for any value of the
parameters—such as half-lives of mRNA and proteins, bind-
ing rates, cooperativity coefficients, and diffusion constants—
or initial conditions, such as a prepattern specified by the
pair-rule genes (expressed during the developmental stage
immediately before segmentation). However, the incorpora-
tion of two additional gene interactions (wg auto-activation
and the inhibition of en by CN, the repressor fragment of
cubicus interruptus protein) gave a surprisingly robust model
able to predict the correct pattern over a large range of pa-
rameters and initial conditions. This does not mean that the
range of parameter values allowing the model to give the
correct solution pattern is infinite. For randomly chosen pa-
rameter values, the authors observed the correct pattern in 1
in every 200. This is not small, since there is a 90% chance for a
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FIG. 2. A simple example
of a Boolean network of three
genes, A, B, and C, that
interact, influencing each
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: 1 (ON) or 0 (OFF). Gene A is
| expressed when it is induced
: by gene B; gene B is expressed
when it is induced by both A
and C simultaneously; and

gene C is expressed unless A
is expressed which inhibits

expression of C (a). Different

initial conditions such as (0, 0,

0), (1,1, 1), or (1, 0, 1) may lead to the same or different final states such as (0, 0, 1) and the oscillating condition [(1, 0, 1), (0, 1,

0)], passing from different states that form a trajectory (b).

randomly chosen parameter, among the 48 involved, to be
compatible with the existence of a solution (0.9*® is approxi-
mately 1/200). In vivo, the variations of parameters can be
thought of as analogous to mutations of small effect; varia-
tions of initial conditions correspond to developmental noise.
It is interesting that there are no optimal values of parameters,
since almost every parameter in the model can range over
orders of magnitude and still give the correct solution. Thus, it
is primarily the organization of the gene network that provi-
des the stability of the model and not the details of molecular
interactions. Von Dassow and Odell characterized this net-
work as a module, “a device unto itself” because it can ac-
complish the task of maintaining the spatial gene expression
pattern “without any persistent, extrinsic spatial, or temporal
biases on any of its components.”*

Boolean networks represent clearly
the behavior of gene networks

To clarify the concepts above, we will use a simple model
as an example. The simplest modeling approach to simulate
regulatory systems employs Boolean networks, first pro-
posed for gene interactions by Kauffman.*** In Boolean
networks, the gene expression levels can be only in one of
two states: either 1 (ON) or 0 (OFF). The inhibitory or stim-
ulatory effect of each gene to the other is represented by
arrows connecting the nodes/genes. The network behavior
over time is modeled as a sequence of discrete synchronous
steps. The value, 0 or 1, of a node-gene at the next time step
depends on values of other genes that influence it. In Figure
2, we see a simple example of three nodes/genes, A, B, and
C, which interact to influence each other’s expression, thus
forming a small network. Gene A is expressed when it is
induced by gene B; gene B is expressed when it is induced by
both A and C simultaneously; and gene C is expressed unless
A is expressed, in which case expression of C is inhibited. If
we assume that at this time the state of the network is pre-
sented by the vector (0, 0, 0), which means that none of the
genes has been activated, at the next time step the vector will
take the value (0, 0, 1) (Fig. 2b). This is because since A is not

expressed there is no inhibition of C, which therefore could
be expressed (taking the value 1). However, B still cannot be
expressed and its value remains 0 because its expression
requires induction by both A and C and A is still missing
(i.e., not expressed). After reaching the state (0, 0, 1), no
further changes can be made; therefore, this state can be
considered as a solution. Since there is no A, C keeps the
value 1 and B remains with the value 0 because there is no A.
In the case of starting from another initial condition (1, 1, 1),
the network again adopts (0, 0, 1) as final state, but in this
case, it passes through more intermediate states. As we see,
this is a small “device unto itself,” because its state at each
moment, that is, which genes are expressed or not, depends
only on these genes and their interactions. Different initial
conditions provide different solutions, defining different fi-
nal states. The final states are such that the next step gives
the same state, and therefore we could say that the network
operates after this point to reproduce the same states (or
oscillate between two states, Fig. 2b, between (1, 0, 1) and (0,
1, 0)). If we assume that the state (0, 0, 1) corresponds to the
correct solution, corresponding for example to an experi-
mentally observed pattern or cell differentiation state, the
developmental process has to assure that in the previous
stages the network will not end in the states (1, 0, 1) or (0, 1,
0), which oscillate between themselves. Therefore, the role
of prepatterning is to assure that correct initial conditions
have been set up to ensure that the next stage the network
reaches is the correct state. We could also express this by
saying that the network is triggered to reach the correct state
solution by certain sets of initial conditions but not by others.
We could also say that the solution (0, 0, 1) is robust, while
the (1, 0, 1) that oscillates with the (0, 1, 0) unstable because
in the latter it is only two of the possibly eight initial con-
ditions that realize it and any disturbance will lead to the
solution (0, 0, 1).

Though the Boolean networks are simplifications of the
real situation, they clearly show the importance of network
topology, that is, which genes influence the expression
of which others and how. It is with these types of models
that Kauffman has shown that constraints arising from the
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network topology, such as the gene inhibition, make large
networks settle down to a finite number of solutions.?**° For
example, if gene A unconditionally inhibits gene B, then
there would be no possibility to have as a final state one in
which A and B are both present. In a network that includes
all the 25,000 human genes, theoretically 225000 " that s,
around 107°%, states are possible, which is an astronomical
number. If we consider each final state as representing the
gene expression of a cell state, then there would be almost a
continuum of states instead of the approximately 200 that are
observed.’! This shows the importance of the topology of the
network in restricting the possible solutions to the number
consistent with observation.

Network topology, an important factor of modularity

Albert and Othmer have used a Boolean model for the
Drosophila segment polarity gene/protein network based on
a binary ON/OFF representation of mRNA and proteins,
that is, the concentrations were not continuous variables.*?
The authors showed that the dynamics of the gene interac-
tions are determined mostly by the network topology that
is, which gene interacts with which other(s) and their type
of regulation (e.g., inhibiting or activating), without details of
the rate laws. Since this model does not include any kind of
functional details and has only two states for the variables,
but is nevertheless still able to reproduce the segment po-
larity network, it is clear that the topology of the network
and the presence or absence of its components confer ro-
bustness, and not the functional details or the absolute val-
ues of component concentrations. As the authors mentioned,
the fact that the segment polarity gene network could be
successfully modeled by a simple Boolean model does not
mean that other networks could be also modeled in such
degree of simplification. They might require more detailed
models, as for example incorporating asynchronous updat-
ing or multilevel instead of binary variables, or in some cases
as in metabolic networks the Boolean approach might not be
appropriate. In addition, they mentioned that the choice of
Boolean model for the segment polarity network was moti-
vated by the ON/OFF character of the experimentally ob-
served gene expression patterns.

The conclusions drawn from the above presented examples
relevant for the biomimetic process design are as follows:

1. The above studies show clearly that the underlying
cause of the macroscopic developmental modularity
can be attributed to the corresponding modularity of a
network of interacting genes/proteins.

2. The robustness of the modular gene network is because
of its topology, that is, which gene influences which
other and the type of influence, activation, or repres-
sion, which is a characteristic at a higher level than that
of single gene or signaling pathway.

3. The modularity /robustness of a macroscopical devel-
opmental tissue form can be calculated using the model
of the corresponding gene network, from the robustness
of the model in terms of variations of initial conditions
and parameter values that can be determined compu-
tationally. In other words instead of comparing the
robustness of tissues, we could compare the robustness
of their corresponding models at the gene/protein in-
teraction level.
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4. The model robustness, that is, its ability to give the
correct solution pattern for a wide range of parameters
and initial conditions values, can be used as a criterion
to determine if the set of gene/protein interactions in-
cluded in the model are those to which the macroscopic
modular tissue form pattern can be attributed. The
model with the highest robustness is likely to include all
the necessary gene/protein interactions responsible for
the pattern.

5. Together with the cell signaling pathways organized in
a network of interactions, cell interactions are equally
important in stabilizing gene expression in each cell and
have been included in the model with secreted proteins
from one cell to diffuse to the adjusted cell.

4. Systems Biology Design of a Biomimetic
In Vitro Process for Growth Plate Development

Systems biology can accurately answer difficult
process design questions

With the attribution of the macroscopic modularity of in-
termediate tissue forms to the operation of a gene/protein
network that is self-sustained, and thus which network is a
relatively isolated subset of the whole network operating in
the cells, that is, a module, several obscure issues of biomi-
metic process design can be illuminated. The degree of match
between the in vitro and the corresponding in vivo process,
questioned in literature,” that can assure that the process is
really biomimetic comes out directly. If the in vitro process
succeeds to activate the gene/protein module, then it has
achieved the degree required since the goal of the process is
the formation of intermediate modular tissue forms, like the
segmental pattern of Drosophila, resulting from the operation
of the gene/protein module. Von Dassow and Odell have
examined several simpler versions of the model presented in
the previous section, not including all the gene/protein in-
teractions, and they found that although some of these
models may give the correct solution pattern, the solution
becomes less frequent in the parameter range, that is, less
parameter values were able to provide the solution.”” This
means that the subset of activated interactions, as well as the
resulting pattern, is less robust from those of the fully acti-
vated network. If experimental conditions in the in vitro
system activate only a subset of the network, this will result
in an intermediate tissue form that is less robust. Conse-
quently, the match between in vivo and in vitro in this case
reflects the missing interactions and it is therefore very well
determined. If, however, the in vitro conditions fail to acti-
vate any of the subsets of gene/protein interactions of the
module that can exhibit some robustness, then the degree of
match is low and certainly less than the one required to call
this process biomimetic, irrespectively of any macroscopic
similarity of the in vitro and in vivo conditions that, impor-
tantly so, do not provide any absolute criterion for compar-
ison. In any case, the lower limit of the degree of match from
the one required to produce a modular/robust tissue inter-
mediate can be determined from the relative robustness of
the mathematical model that represents the partly activated
operating subset of the network in comparison with the
model of fully activated network. Von Dassow and Odell*”
have also observed that if the small-scale regulatory mech-
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anisms, such as positive and negative feedback loops, that
had been assembled to construct the modular network with
the robust behavior are not strongly connected to each other
with interaction among their member genes/proteins, the
loosely connected network exhibited less robustness than the
one in which part of the interactions is missing. This is ex-
pected according to the concept of modularity we have pri-
marily used for the tissue forms whose structural stability
depends on the internal interactions and not on interactions
with surrounding codeveloping tissues that are not stronger
than the internal ones. In the case of the network too, the
strengthening of the internal interactions is what makes this
network a module with robust behavior, that is, in other
words all these interactions should be active for the network
to produce at each moment the same mRNA or protein
concentration.

As for the possibility to take advantage of a relevant
subset of developmental mechanisms instead of attempting
the much more difficult task of complete recapitulation of
tissue development,® it becomes obvious that this depends
on the modularity /robustness of the gene/protein network
that implements this mechanism. If this network is not ro-
bust, as for example in the case that is only a subset of an-
other mechanism that corresponds to a robust larger
network, any attempt to activate this subset is less probable
to succeed. Inventing in vitro conditions to do so instead of
activating the full network will probably result in the loss of
the robustness of the process.

It seems from the above that a systems biology approach
to in vitro developmental process is the most suitable to quan-
tify the process design and make it biologically meaningful
at the tissue level and computational based on measurable/
calculable variables (gene expression, protein concentration,
their spatial distribution, etc.). Systems biology not only treats
information about developmental phenomena computation-
ally but also primarily determines which information is rele-
vant in each case. So the problem of the process designer
becomes more specified, instead of looking to any informa-
tion, such as gene expression or in vivo conditions, for a par-
ticular developmental stage that he/she has to implement
in vitro, he/she has only to consider this information that is
related with the activation of a gene/protein module, either
known in developmental biology or suspected according to
the existing evidence.

Robustness can be used as a design criterion
for construction of the correct model

To make practical use of systems biology in process design,
the first critical question is the relative ease of constructing
useful mathematical models from available information. This
information may be available for some model systems well
studied by developmental biologists, but analogous data for
tissues are less complete. Nevertheless, the information nee-
ded to develop adequate gene network models will not be
impractically large, because model robustness can be used as a
simplifying criterion for the model construction. Von Dassow
et al. did exactly this, modifying the initial model, which was
not robust, by adding two interactions to achieve a model that
was thus corresponding to biological reality.”® This method
has also been followed by Eldar et al.* to identify the inter-
actions that give rise to another developmental module of
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Drosophila, the robust bone morphogenetic protein (BMP)
morphogen gradient. The criterion of robustness limits the
possible design solutions for networks that could define the
pattern. Thus, different patterning mechanisms could be
distinguished according to their robustness. To understand
the patterning mechanism, the authors developed a general
model based on available molecular knowledge. They next
used computational methods to screen for robust networks
giving the correct pattern, varying the parameters as needed
to fit these criteria. Although most of the networks evaluated
gave the correct pattern, only a small fraction, less than 1%,
was robust to twofold changes in gene dosage (parameter
variation). It is noteworthy that the robust networks dis-
played several unique properties. For example, for all the
robust cases, the ligand was diffusible after binding to an
inhibitor, and only a bound protein, but not a free ligand, was
cleaved by a protease, in accordance with one of the previ-
ously proposed mechanisms.

In addition to helping define qualitative characteristics,
the robustness criterion imposes limits on the possible range
of parameters, many of which have not been determined
experimentally. In the segment polarity model, nearly 50 free
parameters were not known.*® Appropriate parameters for
the model were found by random sampling over a plausible
range of parameter values and imposing the robustness
condition. A similar approach has been used to explain the
ability of Xenopus embryos to maintain appropriate pro-
portions regardless of size.* Thus, this approach is likely to
have general utility. The knowledge of the complete path-
way was not needed. Pathways can be represented in a
simplified form based on an input-output relation. Neither
the Drosophila segment polarity model*® nor the Xenopus
scaling model®* used the complete pathway between input/
signal and target, but instead used a dose-response rela-
tionship. Thus, the complete pathway between wg and en can
be represented simply in the segment polarity model as a
term in the equations that describe the induction of the gene
en by the protein of wg,> and scale-free patterning of the
Xenopus gastrula can be described in terms of the concen-
trations of just four proteins.**

The difference of in vivo and in vitro modeling

There is, however, an important difference between the
in vivo and in vitro situations. Contrary to the situation in vivo,
where the pattern forms by default, establishing the desired
pattern in vitro requires a process design that includes ex-
plicitly described stages of the process and their im-
plementation in bioreactor/biomaterial systems. In the
example below, we will show how a biomimetic model
based on information already available regarding the de-
velopmental biology of the growth plate can be enhanced
with the help of computational systems biology to define
practical in vitro conditions for the activation of the appro-
priate gene/protein interaction module.

A hypothetical, but testable biomimetic process
for growth plate

In Part I, using information from developmental biology,
we gave as an example a biomimetic process that has rea-
sonable chances to lead to a structure close to that of the
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growth plate. This process is assembled from four sub-
processes that could achieve a gradual progression of cell
differentiation and construct size through the subprocesses
that, as we explained in Part I, is important for the mainte-
nance of cell-to-cell communication. This communication
could be disrupted easily if the construct size becomes dis-
proportionate to the cell signaling capabilities, since these are
determined by the cell differentiation stage. Such a gradual
progression of cell differentiation and construct size also
leads to a correspondingly orderly organization of the cells
into the growth plate pattern. Chondrocytes are distributed
almost randomly in early long bone primordia.** They are
arranged later, as the tissue develops into groups or clones in
the presumptive growth plates, eventually becoming stacked
in columns.®® This gradual organization or patterning, with
chondrocytes at different positions within a column expres-
sing different genes corresponding to different differentiation
stages, is reminiscent of Drosophila segmentation, described
earlier, which becomes more precise at each successive de-
velopmental stage, ultimately giving rise to the 14 segments
(Fig. 2).

The four subprocesses are as follows (Fig. 3):

Subprocess 1. Mesenchymal stem cells attached on mi-
crocarriers grow inside a rotation bioreactor covering the
microcarrier surface. The first subprocess achieves cell
growth on the microcarrier surface and corresponds to cell
expansion, which increases the number of cells without in-
ducing their differentiation.

Subprocess 2. Mesenchymal stem cells attached to micro-
carriers from the output of subprocess 1 are the input for
subprocess 2. Small size clusters of microcarriers bearing
cells start to be formed as the cells proliferate and cover the
microcarrier surface in multiple layers. At the same time,
chondrogenic differentiation is induced in areas of high cell
density. Subsequently, cell aggregation in areas between
microcarriers takes place because after the coverage of the
surface of microcarriers by cells, the formation of larger
multimicrocarrier clusters will occur. This happens through
microcarrier-to-microcarrier connection from cells protrud-
ing from the microcarrier surface, which form bridges be-
tween the microcarriers that hold them together, a
phenomenon observed previously.*®

Subprocess 3. The output from subprocess 2 is the input
for subprocess 3. This subprocess cultures the cells for longer
time periods than subprocess 2, giving larger size cell-
microcarrier clusters as output. In such clusters, the cells
have differentiated farther, but still not to the final stage of
mineralization.

From the subprocesses 2 and 3, we have two constructs of
different size and in different differentiation states, neither of
which corresponds to the final state of the bioartificial
growth plate. At this point, no cell organization has started,
except that the differentiating cells are located in the center of
the clusters.

Subprocess 4. In this subprocess we use two hydrogel
layers, filling each one with the constructs of the sub-
processes 2 and 3, and place them on top of each other, with
the hydrogel layer having the differentiating cells in an ear-
lier state on the top. This construct has a primitive zonal (not
columnar) structure statistically similar to the one of the
growth plate. The first layer contains less chondrocytes in
advanced differentiation state, for example, more proliferat-
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ing than prehypertrophic or hypertrophic, whereas the other
contains more cells in more advanced differentiation state,
for example, more hypertrophic cells. We could say, there-
fore, that the bilayered input of this subprocess is a construct
of large size (gradual increase of the tissue size as the sub-
processes continue), with a statistically “organized” structure
based on the gradient of cell differentiation state from the
first to the second hydrogel layer. Multilayered hydrogel
systems allow cell signaling along interfaces between cells in
different layers (Elisseeff in Mikos et al.¥), and therefore cell-
to-cell signaling through the negative feedback loop of
Ihh/PTHrP, which is suspected to be responsible for the
robust structure of growth plate, can take place.

The bioartificial construct, which is the input of the sub-
process 4, has not yet established intrinsic control over the
rate of chondrocyte differentiation. At a minimum, the neg-
ative feedback loop of Thh/PTHrP, which retards this rate
and leads to a columnar structure, will be required not only
to facilitate cell self-organization (see Part I) but also to start
applying systems biology methods. The construct with the
two hydrogel layers provides a primitive/statistical zonal
structure, or prepatterning, which allows the directed ex-
change of signals mediated by the Ihh/PTHrP proteins. Thh
will be released mostly by the second layer, which contains
more mature chondrocytes; PTHrP will come from the less
mature chondrocytes in first layer. Although of course Thh
and PTHrP will also diffuse within the layers where they
originate, their target cells reside predominantly in the other
layer. Under this statistically monodirectional signal ex-
change, the new chondrocytes leaving the proliferating state
to enter their differentiation program will be under the in-
fluence of this loop and will be aligned along the signal
gradient from the first to the second hydrogel layer, thus
producing a columnar organization for the newly differen-
tiating cells. This also is reminiscent of the prepatterning of
Drosophila segmental pattern by the pair-rule genes (see
above, section 3).

The transformation from statistical prepatterning to the
columnar pattern is in agreement with developmental biol-
ogy. Schipani et al. have generated transgenic mice in which
constitutive expression of PTH/PTHrP receptors was tar-
geted to the growth plate through a collagen II promoter.*
As expected, these mice showed a delay of chondrocyte
differentiation because PTHrP, secreted by the proliferating
chondrocytes, acts on prehypertrophic cells to retard their
progression to the hypertrophic stage. Moreover, the growth
plate was disorganized. The tibial hypertrophic chon-
drocytes appeared at the periphery of the diaphysis and not
in the center as normally seen. However, when these mice
were mated with mice that did not express PTHrP, “rescue”
was seen; chondrocyte differentiation was accelerated, and
the animals with both cell types had correctly patterned
growth plates. The important point for our discussion is that
a mixture of cells with “opposite” abnormalities, one ex-
pressing the receptor constitutively and the other not ex-
pressing the ligand, randomly distributed in the developing
growth plate, cooperated globally in the whole tissue space
to balance their effects and restore normal patterning. This is
an example that shows that the partial organization of
growth plate that we have at the beginning of subprocess 4
can be made complete by the effect of newly formed cells,
which will behave differently in respect to their orientation
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FIG.3. A biomimetic process for in vitro formation of a bioartificial growth plate assembled by four subprocesses that could
achieve a gradual progression of cell differentiation and construct size along these subprocesses. This is important for
maintenance of cell-to-cell communication leading to correct cell organization. Subprocess 1: cell expansion on a microcarrier
surface without induction of cell differentiation. Subprocess 2: small size clusters of microcarriers bearing cells undergo
chondrogenic differentiation induced by the high cell density. Subprocess 3: this subprocess cultures the cells for longer
periods than the subprocess 2, giving as output larger clusters on the microcarriers, in which the cells have differentiated
further, but not to the final stage of mineralization. Subprocess 4: two hydrogel layers, each one filled with the constructs of
the subprocesses 2 and 3, forming a primitive zonal (not columnar) structure statistically similar to that of the growth plate
(prepatterning) which, under appropriate conditions, could lead to a robust pattern for growth plate.

by virtue of the fact that they end up in a different envi-
ronment that facilitates their organization.

In conclusion, in subprocess 4, a prepatterning has been
achieved, leaving open the possibility of further develop-
ment to the final columnar pattern of the growth plate.
However, for this to take place, the gene/protein module
that gives this pattern has to be activated and therefore the
conditions, that is, the parameters and initial conditions of
the subprocess (e.g., hydrogel porosity or thickness, the
number of layers, and expression levels of Ihh/PTHrP) have
to be found for its activation. Some of these can be estimated

easily. For example, tangential flow is the likely appropriate
mode for the bioreactor fluidics, because a flow through the
construct in subprocess 4 will washout any secreted protein,
in agreement with the in vivo situation, where vascular re-
gression is required.>

There are obvious similarities between the segment po-
larity pattern and the pattern of growth plate. As the seg-
mental pattern results from the interaction between two
adjacent cells exchanging wg and hh proteins to activate the
signaling pathways in each cell that form an integrated
gene/protein expression network, the proteins Ihh and
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Ia Segmental pattern

FIG. 4. As the segmental
pattern of Drosophila results
from the interaction between
two adjacent cells that ex-
change the protein signals
coded by the genes wg and
hh, activating the signaling
pathways in each cell that
together integrate to form a
gene/protein expression net-
work (a) similarly in the
growth plate (c), the proteins
Indian Hedgehog (Ihh) and
parathyroid hormone-related
protein (PTHrP) are exchanged
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between chondrocytes at dif-

ferent differentiation states and consequently located at different zones (b) or column heights (c), forming a negative feedback loop
that is responsible for the balance of proliferation and differentiation that leads to the robust columnar pattern.

PTHrP are exchanged between chondrocytes at different
differentiation stages to different zones or column heights (c),
forming a negative feedback loop (Fig. 4).

In vivo studies similar to those that identified the key
genes/proteins involved in determining segment polarity
have also been performed for the growth plate. Research on
gene expression patterns identified genes/proteins involved
in the organization of differentiating chondrocytes in the
form of parallel columns (e.g., Ref.40). It was found that the
proteins controlling the balance between chondrocyte pro-
liferation and differentiation set limits on the column elon-
gation rate. These limits are needed for the size increase of
the growth plate (cell proliferation, differentiation, and hy-
pertrophy) to be properly synchronized with column elon-
gation and other processes taking place in parallel, such as
secretion and organization of the extracellular matrix, both of
which are needed for columnar structural integrity. For ex-
ample, a complete disappearance of the columnar architec-
ture was observed in transgenic mice having a mutation in
the type II collagen gene.*'

These molecular signals are exchanged between chon-
drocytes at different differentiation states and consequently
located at different zones or column heights. To a first ap-
proximation, a negative feedback loop consisting of Thh
and PTHrP is responsible for the balance of proliferation/
differentiation and columnar organization. The signals are
exchanged between proliferating and prehypertrophic
chondrocytes located in distinct zones.'®*? Asa consequence,
cell distances depend on the number of chondrocytes in the
column in one zone, but in the other, it is these distances that
determine the chondrocyte differentiation rate, since this rate
depends on the transport of protein signals along the column
(Fig. 5). In response to Ihh signaling, PTHrP is secreted by
the proliferating chondrocytes, diffuses to the prehyper-
trophic zone, and retards differentiation of the cells in this
zone to the hypertrophic state, thereby delaying column
elongation. This in turn leads to a time-dependent decrease
of Thh secretion because of the decrease in the number of
cells that produce it. Consequently, a decrease of PTHrP
results from the decrease of Ihh. This negative feedback loop

thus sets the limits in rate of chondrocyte differentiation and
consequently column elongation.

Applying the robustness criterion,® using computational
methods as described earlier to determine the minimal set

( )

<=-f----Proliferating

/| PTHrP s

---- Prehypertrophid

---- Hypertrophic

FIG. 5. Interactions between proliferating and pre-
hypertrophic chondrocytes in the growth plate. In response
to Ihh signaling, PTHrP is secreted by the proliferating
chondrocytes, reaches the prehypertrophic chondrocytes,
and retards their progression to the hypertrophic state,
thereby delaying column elongation and synchronizing it
with cell differentiation and other processes taking place in
parallel, such as secretion and organization of the extracel-
lular matrix, which is needed for columnar structural integ-
rity. In addition, Ihh regulates the expression of BMP genes,
which also upregulate chondrocyte proliferation. BMP, bone
morphogenetic protein; P, proliferation; D, differentiation.
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of interactions required for the gradient, we could in-
clude additional signals known to influence the balance of
proliferation/differentiation. For example, Thh increases the
proliferation rate of chondrocytes*® (Fig. 5). In addition, Thh
regulates the expression of BMP genes, which in turn can
also upregulate chondrocyte proliferation** (Fig. 5). In both
of these cases the proliferating chondrocytes start differen-
tiating, moving along the column until they escape from the
range of PTHrP signaling. Leaving the proliferation zone,
these chondrocytes can produce Ihh. van der Eerden et al.
present a more detailed scheme for the major signaling path-
ways operating among chondrocytes® that could provide
additional input for the model. The optimal set to be included
in the model can be identified by optimizing robustness using
computational methods as described earlier.”*?

Additional data related to known physical and kinetic
properties of the growth plate in vivo and additional aspects
of chondrocyte biology can simplify the process by restrict-
ing the computational analysis to a reasonable physiological
range for the parameter values of the model. Examples of
such data include diffusion coefficients,*® solute transport
rates,”” volume increase of hypertrophic chondrocytes (it
could be 10-15%*%%), cell proliferation rates,* cell growth
by cellular division, matrix synthesis throughout the growth
plate, and chondrocytic enlargement during hypertro-
phy,”*! and other relevant information from the literature.

In addition, expression of many genes along the zones of
the growth plate has already been determined accurately.’*>
Thus, we have sufficient data from in vivo developmental bi-
ology and an experimentally validated approach to provide
further constraints using the robustness criterion to allow
construction of a provisional computational model. We can
even use the software developed by Meir et al., based on the
program used by von Dassow, which is publicly available.”*

To construct and refine the model, we should be checking
model parameters and initial values for robustness of the
model solution: a stable columnar pattern (or in the simpli-
fied version just one column). Therefore, different versions of
the model will needed to be screened, adding or subtracting
input genes/proteins, or their interactions and scanning
plausible values of initial conditions and parameters until the
simplicity and robustness of the model are optimized. In this
case, we can start with a gene/protein interaction module
that is known to be responsible for the columnar pattern.
Since our interest is not the module itself but how we could
use its model to design the in vitro subprocess 4 of Figure 3 to
make it correspondingly robust, we proceed to the step of
modifying the model parameters (e.g., physical parameters
of hydrogels—instead of using diffusion coefficients of the
in vivo growth plate we use those of hydrogel, proliferation
rates) and initial values that will account for the hydrogel
layer structure as provided by subprocesses 2 and 3 (initial
number of cells, different cell differentiation states in the
same zone, etc.). Again, we apply the criterion of robustness
for parameters and initial conditions. When these are found,
we return to subprocesses 2 and 3 and make the necessary
modifications to implement them in the two hydrogel layers.
In this way, we arrive at an organized, robust mathematical
model for a biomimetic growth plate under conditions that
assure corresponding robustness of its physical structure.

Although the above approach may seem overly complex,
we should consider that the modular intermediate tissue
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forms are of particular importance in tissue engineering be-
cause they are the building blocks of complex tissues. In the
case of the growth plate, after establishment of the columnar
pattern we could combine subprocess 4 with other sub-
processes to generate osteoblasts, and depending on the details
of our manipulations, get either bioartificial osteochondral
tissue or bioartificial bone, recapitulating endochondral ossi-
fication (see Part I for initial attempts at in vitro endochondral
ossification) or we could just use the bioartificial cartilage
alone. By including osteoclasts generated by another subpro-
cess, we could restore the function of remodeling, to test for
bone resorption before the bone is implanted. In this case, we
would have to deal with interactions between osteoblasts that
control the degree of osteoclastic activity and osteoclasts,
which control osteoblasts differentially depending on their
stage of differentiation. Sufficient information exists for the
molecular details of these interactions that they have already
been integrated in a mathematical model,>® though not from
the point of view of systems biology. The determination of
such a module and appropriate in vitro conditions may be of
importance for bone engineering. This will need to be verified
in vivo as this balance may be different in vivo. However,
having a mathematical model of the module allows its ro-
bustness tested in terms of in vivo conditions.

In conclusion, there are several tissues for which sufficient
information is available to allow design of biomimetic pro-
cess using computational methods and identify optimal
conditions using the criterion of model robustness. That will
become apparent as long as tissue engineers familiarize
themselves with the concepts of developmental biology,
mentioned in Part I, and principles of systems biology rele-
vant to process design.

The most important concepts are those of modularity and
robustness. In the next sections we will encounter the same
concepts again in cases where several modules can be acti-
vated from different initial conditions, as in the case of stem-
cell differentiation. Although the methodology of systems
biology cannot yet be applied in this case because of the lack
of data, we will show how a different formalism, that is, the
concept of attractors, makes it possible to design experiments
and interpret the results in a way that allows the evaluation
of modularity and robustness (stability).

5. State Maps in the Design
of Differentiation Processes

As we have seen in sections 3 and 4, the notion of ro-
bustness is of particular importance either to determine the
gene/protein modular network, which operates to establish
spatially differentiated gene expression within macroscopic
developmental modules, or to determine in vitro conditions
for the network leading to robust activation of the correct
spatial pattern. In large mathematical models such as that
described for Drosophila segment polarity (section 3) with its
136 equations, the notion of robustness can be perceived only
indirectly from the frequency of correct solutions the model
gives as the values of parameters and initial conditions
change. In simple models, such as the Boolean example of
Figure 2, it can be perceived easily in terms of network
activation and operation mechanisms. When the network
starts from an initial condition (prepatterning), it is activated
or triggered to modify these conditions according to its
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FIG. 6. Design (determination of parameter and initial condition values) of subprocess 4 of Figure 3 for the formation of a
bioartificial growth plate with a robust pattern using a model that describes the in vivo pattern. Information from devel-
opmental biology for the intercellular gene/protein or intracellular interactions is used for the construction of a mathematical
model that describes the in vivo spatially differentiated gene expression of differentiating chondrocytes. Using the robustness of
the model solution as a criterion describing columnar pattern, different versions of the model are screened with respect to model
parameters and initial values, adding or modifying the genes, proteins, or some of their interactions, until a robust model is found.
The model parameters (e.g., physical parameters of hydrogels, proliferation rates) and initial values are then modified to those of
the in vitro subprocess 4, and the criterion of robustness is used again to determine parameter and initial conditions that retain
robustness. These parameters are then implemented in the process.

topology, which determines the interactions between the
signal pathway components comprising the network. The
initial concentrations of proteins (or in Fig. 2 the initial state
of the gene, either stimulated, 1, or repressed, 0) will start
influencing gene expression, which in turn when modified
will lead to new values in the concentrations of these pro-
teins (1 or O, for the gene state). This adjustment of values
takes place until for some values the operation of the net-
work gives converges to a set of values (e.g., of protein
concentrations, gene activation, and protein phosphoryla-
tion) that remains invariant with time. From that point on,
the network operation assures the stability of the values (or
the stability /robustness of spatially different protein values
as in developmental patterns). This movement from the ini-
tial conditions until the final state of stability is called a
“trajectory.” The larger the set of initial conditions that con-
verges to a particular final state, the more stable the state is,
and the more robust the topology of the network. This can be
represented graphically. A trajectory is depicted as a se-
quence of points from a given initial state along a path di-
rected toward the final state; this state is called an “attractor”
in the sense of “attracting” initial conditions. In Figure 2, for
example, we have one such attractor, the state (0, 0, 1) and
another oscillating state between (1, 0, 1) and (0, 1, 0). All the
initial states end in the attractor (0, 0, 1) and none in the
states that are oscillating and therefore unstable. If the at-
tractor state is a correct solution, that is, corresponds to the
observed pattern, the robustness of the model is likely to be
high as is the stability of the attractor. If we now want to
determine the robustness of the model in providing the
correct solution, we have to calculate the range of initial
conditions (e.g., range of different prepatterns) that lead to
the same final state attractor (e.g., the same pattern). All the

initial conditions converging upon a particular attractor form
a “basin of attraction””’” (Fig. 6).

Calculating the basin of attraction is important in compar-
ing the robustness of models computationally to select the one
corresponding to the most robust developmental pattern. It
is equally important when several different stable states—
attractors—coexist that represent possible solutions. Which of
these attractors will be realized depends on the initial condi-
tions, because they determine which basin of attraction the
system begins in. This is what appears to happen in stem-cell
differentiation in vitro. Growth/differentiation factors trigger
some initial changes in gene expression, thereby placing the
initial conditions of the system inside the basin of attraction of
one of the several coexisting basins and thus specifying which
final state the system will converge on. Another recipe of
growth/differentiation factors may place the initial conditions
in the basin of attraction of another attractor. The initial
change in the expression of some genes, as a result of a
growth/differentiation factor treatment, causes changes in
some protein concentrations, which in turn modify the gene
expression further, according to the topology of gene inter-
action network. This trajectory of successive states ends when
a state appears for which the network of gene interaction
gives protein concentrations that do not change further with
time (or the gene activation/inhibition state is reproduced as
in the state (0, 0, 1) of Fig. 2). This stable steady state is the
attractor or final differentiation state. This attractor state, since
it is stable/robust, corresponds to a specific topology of the
gene network that is stabilized through internal gene inter-
actions and is therefore modular. The notion of stability of cell
differentiation states defined by robust attractors is completely
compatible with the concept of robustness of gene/protein
modular networks in development presented in section 3. It is
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also in accordance with Waddington’s observation that cells
“switch between distinct, well recognizable types” during
development and that intermediates are rare and unstable.”®>

The dimensionality of the space in which the trajectory
moves is equal to the number of genes in the model; the
dimensionality of the attractor is smaller. For example, it is
known that progenitor cells express many genes at low levels
that are found highly expressed in different final, mutually
exclusive cell fates. Determining the modularity/robustness
of the differentiating states (e.g., cell types at the level of
individual gene interactions) is a formidable task, as dis-
cussed earlier. In contrast, the approach described in section
3 can be applied in situations where developmental biology
experimentation has already identified a tractable set of
genes and/or other signal pathway components, it is prac-
tical to apply similar simplifying assumptions. In this case, a
modular subnetwork of the genome-scale network is ex-
pected, as are certain constraints on its structure. No such
experimental information is available yet for the overall
modular organization of the genome-scale network and
therefore the whole network has to be considered in mod-
eling. Indeed the first data for Escherichia coli and yeast
suggest that the gene interactions are spread almost
throughout the entire genome, forming a huge number of
connected components. The protein-to-protein interaction
network for yeast (Saccharomyces cerevisize), worm (Cae-
norhabditis elegans), and fruit fly (Drosophila melanogaster)
covers almost 90% of the proteome, again forming a giant
network.! Therefore, only a few studies have been done in
mammalian cells to determine the modular gene/protein
interaction networks responsible for maintenance of various
specific differentiation states.®*®! In these cases, character-
ization of the network as a module was based on the con-
cepts and measures of network science, which will be
discussed in section 6, rather than those of systems biology,
without analyzing the dynamic behavior of the resulting
network as in the model of the segment polarity pattern
presented in section 3. As we will see below, the concept of
attractor states has been used to design and explain experi-
ments in mammalian cells to generate specific information
needed for dynamic models. We describe below some ex-
amples that show that even if the network is not known in
detail, it is possible to generate information regarding cell
states, their stability, and cell state transitions during differ-
entiation by applying the concept of attractors to facilitate
rational and well-informed decisions for designing in vitro
processes, analogous to the approach presented in section 4.

Experimental evidence of trajectories converging
to attractor states

While the adoption of stable network topologies that
provide stable gene expression as gene interactions take
place was shown in computer simulations several years
recent experimental work has confirmed that the
concept of attractors represents essential aspects of cell dif-
ferentiation.

Huang et al. followed two different trajectories during the
differentiation of human promyelocytic HL60 cells to neu-
trophils, triggered by two different factors, dimethylsulf-
oxide (DMSO) and all-trans-retinoic acid (atRA). The authors
observed that the initially divergent trajectories finally star-
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ted to converge, as estimated by gene expression patterns.®?
This could be represented in Figure 7 (representing graphi-
cally the changes of only two of the protein or mRNA con-
centrations along the trajectory), as a disturbance of the
initial conditions, protein/mRNA concentrations, under the
influence of the factors I (DMSO) or II (atRA), that in-
duce gene expression changes. Either of these perturbations
changes the initial state (state “a,” Fig. 7) to a state falling
within the basin of attraction (“b” or “c,” Fig. 7) of the at-
tractor corresponding to the mature neutrophils. The authors
followed the expression of around 12,600 genes. After ex-
cluding the genes whose expression was too low or did not
exhibit any significant change during the experiment, they
selected 3841. Initially (12-18h after treatment), the mRNA
expression profile indicated that the two trajectories di-
verged. This is not surprising, because the different factors
used targeted different genes. After the initial divergence,
however, the trajectories converged to similar patterns by
day 6, with 72% of the initial set of 3841 genes having
identical expression levels. The authors considered that the
final gene expression was sufficiently similar to consider that
the initially diverging trajectories converged to a common
state. They attributed the differences in expression of the rest
of the genes to the possibility that some of the genes induced
by DMSO and atRA may not be relevant to the macroscopic
definition of neutrophils. There are probably other reasons
why a “state” cannot be defined accurately in biological
systems simply by a list of expressed genes. One property
of biological systems is degeneracy. Contrary to redun-
dancy, which requires an identical function to be performed
by different elements, in degenerate systems structurally

Factor |
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Basin of
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Initial
condition

FIG.7. An attractor state represents a stable topology of the
network of gene/protein interactions (here a geometric sim-
plification in two dimensions, e.g., two interacting genes).
Surrounding the attractor state is its basin of attraction. If
changes in the expression of genes such as those induced by
factors I or II bring the initial protein/mRNA concentrations
inside the basin of attraction, an autonomous sequence of
further changes in the concentrations occurs, leading to the
final concentrations represented by the attractor point. The
sequence of the changes is represented by a trajectory that
approaches (is “attracted” by) the attractor state in which the
gene interactions have been stabilized, so that no further
changes in gene expression and protein concentration take
place. The larger the basin of attraction, the more robust the
model and its solution (i.e., a spatial pattern).
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different elements give the same or different functions de-
pending on the context of their expression.®® Such degenerate
systems are the transcription factors, where different factors
can generate similar patterns of gene expression. For exam-
ple, Fambrough et al. studied the relationship between re-
ceptor tyrosine kinase-activated signaling pathways and the
transcriptional induction of immediate early genes. Even
mutant receptors lacking binding sites for activation of the
PLCgamma, PI3K, SHP2, and RasGAP pathways still retain
partial ability to induce 64 of the 66 fibroblast immediate
early genes examined.®* It may happen therefore that either
the macroscopic definition of neutrophils is not accurate and
different states can be present, as in the example of Chang
et al.,?® or there is only one state but it can be realized with a
different set of genes, as in the examples of Wieghaus et al.%®
and Zhong et al.,*” who found signaling pathways activated
without change in the expression of major genes known to be
related to these pathways, in accordance with the degen-
eracy concept (mentioned below in section 6).

In either case, however, the example mentioned above®?
clearly shows that the cell states are stable, since they attract
different initial conditions, even though these states cannot
be defined yet, as can be also seen from the lack of a formal
definition of the “cell type.” Consequently, characterization
of cell therapeutic products, which is required for regulatory
purposes, cannot be achieved so easily. The examples de-
scribed above indicate clearly that a list of expressed genes or
activated pathways is not sufficient to characterize the cell
type. Instead, it will be necessary to refer to more global
information describing the structure of the gene network to
determine whether basic cell differentiation functions have
been restored, irrespective of the differences in the expres-
sion of particular genes. One level higher than the individual
pathways, we encounter the gene/protein modular interac-
tion networks, whose stability may provide better criteria for
characterization of the cell state. Wieghaus et al.°® and Zhong
et al.”” referred to the modular organization of the gene in-
teractions to characterize the cell states, though the module
definition used was not functional, but structural, based on
the concept of modularity used in network science: internal
connections denser than connections with genes outside the
module, which implies robustness indirectly. However, even
without the knowledge of the network structure, cell state
characterization can be approached by determining the at-
tractor states experimentally and estimating their stability to
perturbations computationally, as illustrated at the end of
this section.

Experimental evidence that trajectories
move through sequential attractors

“Fate determination” is a term from developmental biology
and refers to a differentiation process along a particular
pathway. However, the transition of the cell state toward the
final differentiation state is not continuous along the pathway,
since of cell states are not continuous, but discrete. This was
recognized over 50 years ago by Waddingtor1,58'59 who indi-
cated that cell states “switch between distinct, well recogniz-
able types” with intermediates rare and unstable. Each time
the network of gene/protein interactions leads the cell state to
that of an attractor, the cell adopts a state, with gene expres-
sions or protein concentrations that bring it close to the basin
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of attraction of next attractor and makes it receptive to the
influence of subsequent attractors. The successive states in vivo
are reached with additional external interactions from
neighboring cells or systemic factors that place the initial point
of the trajectory inside the basin of attraction of the next at-
tractor state. In vitro, externally added growth/differentiation
factors or other manipulations could be used to bring the
initial conditions inside the basin of attraction of each suc-
cessive attractor. In Figure 8 the initial condition is “pushed”
from attractor “a” (arrow a) into the basin of attraction of
attractor “b” and converges to the corresponding attractor
state. Next, it is pushed (arrow b) out of the basin of attractor
“b” and into that of attractor “c.” These transitions are
equivalent to the motion of a sphere through hills and valleys,
with the bottom of the valleys representing the attractor states
and the hills the borders of the basin of attraction (Fig. 8b, we
have not included the “hills” unstable states in Fig. 8a). For the
sphere to escape from a valley, an external force is needed; it
then falls autonomously into the next valley. It is striking that
the vocabulary of attractor basins, and the physical analogy of
“hills and valleys,” was anticipated as early as 1957 by
Waddington’s concept of the “epigenetic landscape,”®® in
which he presented the metaphor of a ball traveling down a
landscape of branching valleys.

Such a path-dependent transition between attractors has
been shown experimentally by Chang et al., who concluded
that cell differentiation is a “discontinuous switching be-
tween cellular states.”® The authors used human promye-
locytic HL60 cells differentiated to neutrophils with DMSO,

a

a b c

FIG. 8. The path dependence of development can be per-
ceived as the sequential convergence to successive attractors.
The successive states are reached through changes (through
manipulations during manufacture or natural developmen-
tal programs) in the initial conditions (e.g., protein or mRNA
concentrations) that place them inside the basin of attraction
of the next attractor state. Starting from attractor “a,” the
initial conditions (e.g., protein concentrations) are “pushed”
by factor A into the basin of attractor “b” and converge to-
ward attractor state b. Subsequently, factor B initiates chan-
ges that place the system state within attractor “c” (a). These
transitions are equivalent to the motion of a sphere through
hills and valleys, with the bottom of the valleys representing
the attractor states and the hills the boundaries of the basins
of attraction (b).
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monitoring the expression of CDI11b, a well-established
marker for mature neutrophils. During cell differentiation,
CD11b expression appeared to increase gradually when an-
alyzed at the population level. In contrast, CD11b expression
at the individual cell level was either “all on” or “all off.”
Cell-by-cell analysis revealed two distinct populations, one
expressing low and the other expressing high level of CD11b.
An additional round of DMSO stimulation converted low
CD11b-expressing cells to CD11b high-expressing cells,
showing that in the first round they had only partially pro-
ceeded to the final differentiation state. The authors attrib-
uted this behavior to the existence of two different cell states
in the initial population that correspond to two different
attractors, such as the attractors “a” and “b” in Figure 8b.
The CD11b low-expressing subpopulation, under the influ-
ence of DMSO (arrow “a” in Fig. 8b), moves inside the basin
of attraction of the next attractor (attractor “b” in Fig. 8b),
the state corresponding to the CD11b high-expressing sub-
population. Further treatment with DMSO (arrow “b”) leads
to the next attractor (attractor “c” in Fig. 8b), which is the
final differentiation state. The CD11b high-expressing sub-
population has already progressed to attractor “b”; therefore
a single treatment with DMSO can move it to attractor “c.”

One interpretation of these observations is that cell dif-
ferentiation is indeed a multistep process realized through a
sequence of discrete intermediate attractor states. These
studies open the door to practical use of the attractor concept
in tissue engineering. Transitions similar to those described
above for myeloid cell differentiation take place in various
developing tissues.”"”!

While these studies refer to state spaces describing the be-
havior of individual cells, they could be elaborated further by
including attractors composed of heterogeneous cells distrib-
uted in space. In such a model, global, spatially distributed
gene networks are composed of several different interacting
cellular gene subnetworks. One example is the developmental
module of the growth plate described earlier, whose cellular
interactions are determined primarily by the Ihh/PTHrP
feedback loop, which consequently determines the network of
genes expressed in each stage of chondrocyte differentiation.
Recently, in addition to the Drosophila embryo,* the be-
havior of the amphibian gastrula has been described accu-
rately with a quantitative model based on a remarkably small
number of parameters, and predictions made by the model
were confirmed experimentally.** Experimental evidence that
such “parsimonious” models can predict the behavior of a
complex vertebrate system accurately indicates that using
similar approaches to characterize the behavior of engineered
tissues in vivo will be feasible. Other efforts to connect the gene
with the tissue level are in progress.”>”

A manufacturing process can thus be seen as a sequential
process in which the system is moved through a mathe-
matically defined “state space” from one attractor to the
next using defined stimuli, based on models that accu-
rately predict the movement of the cell states through such a
space.

The attractor map as a template for process design

Based on the concepts we have presented, we propose that
differentiated cells would be manufactured via a series of
subprocesses, each corresponding to a sequential attractor

411

state. Since many sets of initial conditions will fall within a
given attractor basin, multiple design solutions are possible
(as in the case of the robustness of the segmental pattern to
initial concentrations of proteins or mRNAs, i.e., to different
prepatterning), and process controls can be conceived with
the primary objective of placing the system state within the
basin of attraction in a statistically robust manner. Moreover,
parsimonious models may suffice to describe most attractors.
From a bioengineering perspective, this would result in a
substantial understanding and simplification of the overall
design problem. Attempting to achieve a similar result with
piecemeal, trial-and-error addition of individual growth
factors implicated in differentiation of a tissue, organ, or
specific pathway is likely to be difficult at best. In contrast, if
several modules are operating sequentially and/or in parallel
during differentiation, the primary focus would be to iden-
tify conditions sufficient to activate each module reliably.
Modularity will result in autonomous coordination of the
various signaling pathways along a differentiation trajectory,
without external intervention. Moreover, process validation
could rely to a substantial degree on confirmation that each
in vitro stage, or subprocess, places the cell state inside the
boundaries of the corresponding attractor to a degree de-
termined by well-established quality systems methods and
in complete accord with the concept of unit operations de-
scribed previously.

The concept of attractors was used recently to explain
erythroid or myeloid differentiation of a clonal population of
mouse hematopoietic progenitor cells, showing the useful-
ness of an attractor differentiation map for process design.®®
The authors showed that the clonal population fluctuates
between metastable attractors, one with a low level of the
stem-cell surface marker Sca-1, one with a medium level, and
one with high level. Metastable attractors are those with
weak attractive power; therefore, cells can escape their at-
traction easily. In other words, their basin of attraction is
small, indicating that the cell state needs only a slight dis-
turbance in gene expression or protein concentration to es-
cape it and transit to another more stable state. Cells with
low Sca-1 expressed higher levels of GATA1, which favors
erythroid differentiation; those with high Sca-1 expressed
high levels of PU.1, which favors the myeloid pathway. The
fact that in a clonal population there are cells with different
gene expression profiles is in accordance with the existence
of different attractor states. Persistence and specificity could
easily be explained by stochastic noise on the order of the
potential difference between adjacent attractor basins corre-
sponding to bistable states—this is exactly how rod/cone fate
is decided in insect compound eyes, a very well understood
system.”* When low or high Sca-1-expressing cells were
isolated and cultured, they reconstituted the parental het-
erogeneity of the three different states. This means that the
cells can transit between metastable states, since these states
reappeared from any of the isolated populations. This ex-
periment shows that useful information for the character-
ization of cell state can be provided by experiments designed
under the conceptual framework of attractors.

The practical significance of having metastable states of
the system in a differentiation map is to guide strategies for
design of processes to move cells to a desired differentiation
state that is highly stable (i.e., corresponding to a wide basin of
attraction). In the above example, if erythroid differentiation
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is desired, cells expressing low Sca-1 should be selected.
Otherwise, all three populations will be present in the prod-
uct, added growth factors will not have the same effect, and
undesired heterogeneity will be created.

Another interesting observation is that when the cells are
committed to either phenotype, it is not only the upregula-
tion of lineage-specific genes that takes place but also the
extinction of lineage markers characteristic of the starting cell
population. In other words, when a new module is formed,
another one is disassembled.”>”® As we will see in section 6,
network theory predicts that the disintegration of a topology
characteristic of biological networks should take place in a
specific way dictated by that topology. It would be inter-
esting for this to be confirmed experimentally in the above
and other cases. Such a finding would lead to strategies that
use network science to define external interferences attacking
the components of specific modules, leading to their disin-
tegration. Thus, not only will modules be switched on during
differentiation toward specific lineages but also those of
other lineages will be switched off in a methodical way di-
rected to very specific genes of the module. In the example of
the study of Xia et al., two modules, proliferation and dif-
ferentiation, were identified and characterized well enough
to assure switching one off and the other on as desired. This
may also be of relevance to diseases, as in these conditions
there may be activation of a module, which under physio-
logical conditions is inactive, and thus provide innovative
treatment targets. In the case of p53 protein, a well-known
tumor suppressor protein, the three scientists who discov-
ered its action published an article, after thousands of pa-
pers, devoted to this molecule, in which they claim that
instead of focusing specifically on the molecule, we should
instead focus on the network of interconnections with other
molecules, comparing this network with the Internet.”

In this section, we examined the problem of having several
stable states, instead of a single one, into which the gene/
protein network can settle during cell differentiation. Current
limitations in data concerning the role of genes/proteins in
cell differentiation impose corresponding limits on the de-
velopment of models for small, modular subsets of the entire
network operating during differentiation that might lead to
modular and robust cell states defining any desired cell type.
However, estimation of the cell state robustness can be done
using the concept of attractors, as we pointed out earlier. We
have seen that a representation of the transitions of the cell
state during differentiation under the framework of attrac-
tors can provide information about the robustness of the
differentiation process and cell differentiation state that
could even allow experimental comparison between the ro-
bustness of different states. In sections 3 and 4, we used this
as a basic criterion for process design.

In the next section, we will see how network science can
provide additional information about the topology of
gene/protein networks operating in cells. These studies may
also help provide a clear definition of cell state. As has been
mentioned, certain cell states can be described by degenerate
sets of activated genes and/or proteins. It is therefore rea-
sonable to examine global features of the network that may
provide structural information sufficient to define a specific
cell state uniquely. This in turn might facilitate the detection
of modules, so that further, more elaborate studies with
systems biology can be undertaken, and provide more gen-

LENAS ET AL.

eral (in several distinct networks) and more global (genome/
proteome/transcriptome scale) information about the net-
work topology. This more comprehensive approach might
then open the door to the discovery of general principles
that could become a solid theoretical basis for tissue engi-
neering.

6. The Future of Biomimetic Process Design:
Principles of Network Organization

Process design through modularity/ robustness

In the previous sections, we encountered two types of
situations. The first scenario corresponds to processes for
which sufficient data exist from in vivo developmental bi-
ology, such as the case of segment polarity pattern of Dro-
sophila, for the construction of a mathematical model that
includes a limited set of gene/protein interactions found
experimentally to play a major role. In the other cases,
however, as for many cell differentiation pathways, sufficient
information is not available. Even in the latter case, viable
approaches exist. We have already seen (section 5) that the
robustness criterion can be used to fill in many of the gaps
for process design, with limited experimentation as we will
now explore how we can use descriptions of the gene in-
teraction network topology based on the concepts/methods
of network science to overcome limitations in the available
experimental data.

In the case of growth plate, we designed the process in
a series of subprocesses, trying to recapitulate the different
developmental stages. Here experimental data provide evi-
dence that the growth plate is a robust developmental
structure or macroscopic modular tissue form; accordingly,
the design of a biomimetic process should aim to form ap-
propriate developmental modules precisely because of their
robustness. Therefore, we addressed the design problem
using methods of systems biology already shown by exper-
imental work to explain the behavior of well-understood
macroscopic developmental modules occurring during de-
velopment in vivo (section 3). In this case, the concepts and
methods of systems biology were employed to connect the
macroscopic robustness or modularity of a developmental
pattern (spatially differential gene expressions) to the
gene/protein interactions inside the cells, as well as between
cells, forming a network extended in the pattern. The pre-
patterning—the initial spatial distribution of concentrations
of proteins—activates this network. As the prepatterned
initial proteins switch various genes on or off, protein con-
centrations or the gene expression levels change with time.
This in turn causes further changes until the network con-
verges to its attractor, and the module therefore stabilizes.
The change of the prepattern (initial conditions) toward the
final state can be represented as a trajectory, a sequence that
approaches (or is attracted by) the final, robust attractor.
With the use of a mathematical model we can try to find the
gene/protein interaction network making use of the concept
of robustness. As the macroscopic pattern is robust to envi-
ronmental noise, its underlying network should also be ro-
bust to perturbations in parameters, as reflected in the
mathematical model. In other words, the model should give
the same solution pattern for a wide range of parameter
values and initial conditions, corresponding to robustness
observed experimentally in vivo. In section 4, we applied the



FROM GENES TO NETWORKS

413

TABLE 1. CONCEPTS FOR DEVELOPMENTAL ENGINEERING

Rule 1: Design processes to be biomimetic, and thus robust by default.
Rule 2: Check feasibility in terms of cells and developmental stages needed to decide up to what point the process has

to be designed.

Rule 3: Think of the sequential and parallel processes that may need to be combined.

Rule 4: If robustness is not observed in the process implementation, verify the natural developmental processes first instead
of trying to improve robustness with externally applied control methods.

Rule 5: Design the sequential subprocesses according to the information for the stages of the corresponding

in vivo developmental process.

Rule 6: Select the most suitable bioreactor/biomaterial systems for each subprocess.
Rule 7: When information about some stages does not exist, combine developmental insights with an empirical design
to gain the missing information in a stage-by-stage way comparing the outcome, cells or tissue, from each

subprocess with those of the in vivo process.

Rule 8: Design then the subprocess so that the missing information generated by ongoing developmental

biology experimentation could be incorporated easily.

Rule 9: Biomaterials that restrict cell communication or cell positioning should be used with caution.

Rule 10: Leave the cell organization to take place preferentially in the last subprocess of the final tissue size.

Rule 11: If cell organization is the result of cell-cell signaling, the subprocess design should be based on this. This information
can be used in a mathematical model that connects biological and physical phenomena and can become a rational

guide for the subprocess optimization.

Rule 12: Information from developmental biology on how cell aggregates/intermediate tissue forms interact to form integral
entities is critical for the design of the last subprocess that will lead to the tissue organization.
Rule 13: Special attention goes to the design of the first subprocesses that establish optimal conditions for the

subsequent processes.

Rule 14: Check the modularity of intermediate tissue forms, either from the literature information or introducing

disturbances in the subprocess.

same concepts/methods of systems biology for the growth
plate pattern. To do so, we had to design the process ac-
cording to the rules of developmental engineering provided
in Table 1 in a series of subprocesses that recapitulate the
stages of in vivo development, leading to a process in which a
prepattern is imposed artificially (subprocess 4 in section 4).
A mathematical model can then be developed in the same
way as for the in vivo pattern to describe the macroscopic
developmental pattern in terms of gene/protein interaction
networks. This in turn allows identification of in vitro con-
ditions under which the artificial prepattern will converge to
the final robust pattern of the growth plate. The criterion of
robustness was used to find the in vitro conditions (range of
parameters and initial condition values), as well as the
structure of the model itself (i.e., which interactions should
be included). Implementing these conditions in the process,
we can achieve organization of chondrocytes into the robust
pattern of the growth plate. Because of the information
available from developmental biology, according to which a
macroscopic developmental module can be attributed to a
small number of gene and protein interactions, the molecular
network responsible for the pattern can be modeled either
with ordinary differential equations®® or with abstract Bool-
ean networks™ (section 3 for the models of segment polarity
pattern of Drosophila).

In the other cases, with little information about the
gene/proteins interacting and limited evidence of modular-
ity at the level of macroscopic cell state, as is the case for
stem-cell differentiation, we could not apply the same rig-
orous mathematical analysis. Mathematical models cannot
be constructed to address only a small subnetwork of the
whole network operating in the cell responsible for the ro-
bustness of the cell states during differentiation, because this
subnetwork is not known. Instead the whole network or a
large subnetwork should be considered. This makes it im-

practical to use computational approaches for determining
the module from the dynamics of the system (continuous
update of the gene/protein concentration through interac-
tions until a robust solution is reached).

However, the same concept of robustness, expressed dif-
ferently in terms of stable states (attractors) and initial con-
ditions leading to them (basin of attraction), can be used to
design a process for cell differentiation in vitro even in the
absence of a mathematical model. As discussed in section 5,
we can generate information from experiments designed to
evaluate the existence of attractors (different initial condi-
tions lead to the same attractor cell state; Fig. 7, DMSO or
atRA treatment of human promyelocytic HL60 cells®?), their
position in terms of the disturbance the cell state needs to
adopt a new state (switching between attractor cell states;
Fig. 8, differentiation of human promyelocytic HL60 to
neutrophils in sequential steps),® or their relative stability/
robustness (metastable states of low stability between the
erythroid and myeloid high stability states®).

The other alternative is to make use of the interconnec-
tions of genes in a large set around the genes of interest,
looking at structural features only, not the dynamics that
describe how the network behaves in response to pertur-
bations in parameter or initial condition values. This ap-
proach to the extraction of useful information ranges from
descriptive to computational. Starting from a set of genes of
interest suspected to be involved in the process under con-
sideration, identification of important interactions with oth-
ers in the network can be facilitated by information
accumulated in the literature for the interaction among
genes, which is directly accessible in databases. Recent work
in biology as well as biological phenomena relevant to tis-
sue engineering make use of such methods to examine the
concerted regulation of genes in an extended network of
gene interactions that can be provided from databases. For
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FIG. 9. In scale-free networks (a), as the biological ones,

most of the nodes have few links and there are few nodes
with a high number of links (“hubs,” black nodes). In ran-
dom networks there is a peak in distribution, meaning that
the majority of the nodes have the same number of links and
there are no hubs (b). It is the hubs that can hold together the
nodes with few links in scale-free networks and assure that
the network is fully connected. Random networks can be
broken easily into unconnected subnetworks by removal of
only a few links [(c) connected and (d) broken].

example, network analysis tools were used recently to study
genetic pathway regulation by phthalimide neovascular
factor 1 (PNF1), a small molecule that induces angiogene-
sis, with the objective of applying this factor to promote
neovascularization in bioartificial tissues.®® The authors used
the Ingenuity Pathway Analysis software coupled to the
Ingenuity Pathway Knowledge Base (IPKB; Ingenuity Sys-
tems, Redwood City, CA), which covers more than 23,900
mammalian genes and includes millions of pathway inter-
actions from the literature. The dataset generated from PNF1
stimulation of human microvascular endothelial cells was
used to select genes eligible to generate networks. These
networks were extended to the full genome, making use of
the information about the gene connections included in IPKB
software. The authors argued that although examination of
single-gene regulation was useful, the network approach
gave more valuable information for two reasons: first, the
differential expression of some genes is very small, and
second, coordinated perturbation of several signaling path-
ways could be elucidated. Indeed, they observed several
interconnected networks centered around the transforming
growth factor-betal (TGF-B1) signaling pathway, which has
many known effects on angiogenesis, and identified angio-
genesis-related cellular processes that were activated. Strik-
ingly, while PNF1 activated the network around TGF-B1,
TGEF-B1 differential expression was negligible.
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To identify genes that play a critical role in pluripotency,
Zhong et al. applied network analysis to gene expression
data to compare the profile of pluripotent human embryonic
stem cells (hESCs) and hESC-derived astrocytes.67 The au-
thors found that the expression of multiple members of the
p53 pathway was lower in hESC-derived astrocytes than in
hESCs. However, p53 itself was not expressed differentially
in their experiments. This finding illustrates a compelling
advantage of looking at a more global scale for the effects of
any intervention in the cell state instead of restricting the
analysis to single genes or pathways.

From systems biology to networks:
Looking for robustness

In making full use of the fact that the genes and proteins in
a cell are interconnected in a huge network whose topology
may reveal information suitable for process design, we
should refer to the network science. Network science is an
emerging scientific discipline that examines the topological
characteristics of diverse types of networks, such as physical,
informational, biological, or social networks, seeking to dis-
cover common principles of their architecture or topology.
Network science provided evidence that some topological
features are shared universally by networks of very different
origin, suggesting that universal network design rules ex-
ist.”® The most important discovery of network science is that
diverse networks, such as biological (gene/protein interac-
tions, metabolism), technological (e.g., linked web pages in
the internet), and social (e.g., scientists linked by coauthor-
ship, or actors linked by playing in the same film), have an
architecture that can be described with a few simple common
design principles. The most remarkable characteristic is that
these networks and the nodes (points of connection between
network constituents) do not follow a random distribution in
terms of links they have. In random networks there is a peak
in distribution, meaning that the majority of the nodes have
the same number of links, with very few nodes having much
lower or higher links. Such networks have many nodes with
the average number of links, that is, they have a scale. In
contrast, most of the real networks examined to date do
not follow a random distribution. In real networks, most
nodes have very few links; there are a few nodes with a very
high number of links; these are called “hubs””® (Fig. 9). This
means that there is no representative of the network node
with an average number of links. Therefore, the network has
no scale (“scale-free” networks; note that the network de-
scribing how Xenopus embryos maintain correct anatomical
proportion regardless of size** provides a direct physical
correlate of this concept). In Figure 10a, we see a network
with two hubs (black nodes), but no hubs exist in the net-
work of Figure 10b. The nodes with few links, though many,
cannot by themselves ensure that the network is fully con-
nected, that is, that someone can “pass” through the network
from node to node following the links as from node A to
node B (Fig. 10); at some nodes there will be no link to pro-
ceed to the other part of the network. It is the hubs that can
hold together the numerous nodes with few links and assure
that the network is fully connected. Random networks can
be easily broken into unconnected subnetworks by removal
of just a few nodes (Fig. 9, transition from c to d). How-
ever, scale-free networks, such as those describing biological
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FIG. 10. Hubs make scale-free networks robust. These
networks do not disintegrate to unconnected small networks
when random nodes are removed since most of the nodes are
connected with very few others (transition from a to b).
However, they are extremely vulnerable to the removal of
hubs (transition from a to ¢) A and B are nodes.

systems, are robust thanks to the hubs, and therefore do not
disintegrate into unconnected small networks upon random
removal of nodes, since most of the nodes are connected to
very few others (e.g., transmission from a to b in Fig. 10).
This explains why many mutations have little or no effect
on phenotype.*® However, networks are extremely vulnera-
ble to the removal of hubs®#? (transmission from a to ¢ in
Fig. 10). This is raised to a quantitative criterion for process
design to retain the robustness of a developing intermediate
tissue form. The elucidation of the topological features of the
modular networks and the determination of their “error
and attack tolerance”® (or simply robustness) can determine
in vitro conditions that protect important nodes such as
the hubs, which are critical to the integrity of the module.
Alternatively, we may have to disintegrate an undesired
module to restore or activate the desired alternative.

Thus, we have again encountered the concept of robust-
ness. In this case, it is not dynamic, as it was for the segment
polarity pattern and its corresponding gene/protein network
(section 3), but static, referring only to the topology of the
network. Although the topological definition of these two
concepts has limitations, it has been shown that processes
like metabolic fluxes taking place in scale-free networks such
as the metabolic reactions also exhibit scale-free topology. In
the case of metabolism, the flux distribution is scale free with
reactions having fluxes that span orders of magnitude, that
is, most reactions have very small fluxes and coexist with a
small number of reactions with very high fluxes.**

Modularity is another topological feature of diverse net-
works. The existence of highly interconnected groups of
nodes that form modules has been observed not only in
biological networks (e.g., gene, protein, or metabolic net-
works) but also in social (circles of friends) or technological
(websites or discussion groups related to similar topics)
networks.®! The following example shows the utility of the
modularity concept as defined in network science for in vitro
process design. Xia et al. analyzed protein—protein interaction
networks by transcription profiling and found two major
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modules, corresponding to proliferation or differentiation,
that were negatively correlated.” They have also detected
proteins at the interface of the two modules, such as histone
deacetylase and serum response factor, that according to
literature data control the switch between the modules, that
is, which will be activated and inhibited. Wang et al. have
examined the network around Nanog protein, which acts in
concert with other proteins such as Oct 4 and Sox2 to
maintain the pluripotency of ESCs.®" A protein interaction
network was constructed composed of many proteins whose
genes are putative direct transcriptional targets of the other
proteins in the network. Because of the tight connection be-
tween the proteins of the network, the authors considered
this to be a module responsible for cell pluripotency. Further,
they raised the question of the vulnerability of the module to
downregulation or inactivation of any one of its many
components because of their high connectivity. Removal of a
critical hub in this network could lead to disintegration of the
modular topology and rapid loss of pluripotency. In a recent
study, the same group analyzed the transcriptional network
of pluripotency and detected the hubs—genes whose pro-
moters are targets for a higher number of transcription fac-
tors and therefore have connections to many other genes.**
They have also found that there is a striking correlation be-
tween the number of bound factors and the possibility that a
target gene is expressed in undifferentiated ESCs and then
repressed during differentiation.

Another topological feature of networks is that modules are
combined to form modules of higher order and these in turn
are combined again for even higher order modules, leading
finally to a nested organization of the network.*>*® Returning
to the question of the possibility of exploiting a relevant subset
of developmental mechanisms instead of attempting the much
more difficult task of complete recapitulation of tissue devel-
opment,® we are in a position through network science to give
a more accurate answer. The lack of detailed knowledge about
the nested hierarchical structure of the cell gene network
modular organization”*” and limited knowledge of the cor-
respondence between modules and cell functions make highly
specific activation of selected modules a difficult task at
present. Compounding this, a theoretical danger exists that
any deviation from the in vivo process could result in failure to
activate a required developmental module, causing loss of the
robustness that has been incorporated by evolution into the
existing modular organization. Therefore, the approach of
selective module activation should certainly be pursued, ac-
companied by further network studies for elucidation of
modular organization, so that in the near future the external
interventions in the process can be designed rationally from
these concepts. Such efforts are already underway. In the fu-
ture, artificial regulatory circuits and even modules with
preselected inputs and outputs could be synthesized, con-
structing artificial developmental pathways that retain only
the minimal essential characteristics for a particular process
according to the spectrum of properties of bioartificial tissues
needed in defined applications.®® Early efforts have demon-
strated the ability to rewire signaling pathways that normally
activate a module known to induce cell growth into a module
that causes cell death.* However, the long series of devel-
opmental events leading to the formation of a fully mature
tissue and the corresponding activation/deactivation of mod-
ules during the process necessitates a detailed understanding


http://www.liebertonline.com/action/showImage?doi=10.1089/ten.teb.2009.0461&iName=master.img-009.jpg&w=239&h=169

416

of all the modules involved and their order of activation, in-
formation that at present is incomplete.

We have shown that the concepts of modularity and ro-
bustness can be applied to various types of processes with
different demands and restrictions in terms of design. As in
the case of the segment polarity network, where the ro-
bustness can be determined in a dynamic mathematical
model, in stem-cell differentiation one could determine ro-
bustness from the topological analysis of the gene network
without developing a systems biology mathematical model
but instead by statistical analysis of the hubs and their dis-
tribution and specific location in the overall gene network.
The importance of the concepts/methods and measures of
network science for in vitro process design relies primarily on
the universal character of the topological features of diverse
networks, biological or not. These general features of net-
works might provide powerful principles for biological or-
ganization in general and therefore a sound scientific basis
for tissue engineering.

Below we will refer to an example of biomimetic process
design using the concepts/methods of network science to see
how they could be integrated into process design computa-
tionally.

7. An Example of Process Design Guided
by Network Topology

Under the methodological framework of developmental
engineering, we presented the concept that a biomimetic
in vitro process should be assembled from a series of sub-
subprocesses, each one designed in such a way as to im-
plement conditions for the particular developmental stage to
be recapitulated. In an attempt to design a biomimetic pro-
cess for bioartificial pancreas, we should therefore look first
at the information provided by developmental biology and
then use it appropriately, guided by the rules in Table 1, to
design the process.

The pancreas originates during in vivo development from
the endodermal gut epi’cheliurn,90 suggesting that endoder-
mal cells should be used in a biomimetic in vitro process for
the generation of beta cells. Kumar et al. provided evidence
that the instructive signals from the mesoderm initiate de-
velopment of the pancreas in the endoderm and are able to
induce the expression of the pancreatic genes Pdx1, p48,
Nkx6.1, glucagon, and insulin in “naive” endoderm or even
in endodermal positions that normally give rise to other or-
gans.”!

The endogenous mesodermal signal is reproduced, at least
in part, by BMP/activin signals and retinoic acid. In addition,
BMP2, -4, and -7 have also been mentioned as putative in-
structive signals from mesoderm to endoderm.”® However,
as we mentioned in Part I, the first stage of development or of
a biomimetic process that recapitulates it is the most critical
because it is crucial in establishing optimal conditions for the
second stage, which consequently defines the optimal condi-
tion for the next one and so on, as the prepatterning of the
segment polarity pattern of Drosophila sets the initial condi-
tions in that system (switching between successive attractors;
Fig. 8, if we assume that each developmental stage leads to a
robust/modular intermediate). Therefore to assure the opti-
mal conditions for the activation of a developmental module,
it is preferable to use cocultures of mesodermal-endodermal
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cells, in which robust modules are already established, instead
of an externally added cocktail of growth/differentiation
factors that has no mechanism for achieving robustness and is
thus likely nonoptimal.

The endocrine cells of the endoderm, after pancreatic in-
duction from the mesoderm, could be considered to have
activated an autonomous developmental module because
endocrine cells once generated do not require any further
interaction with mesoderm.”’

To design the first subprocess, coculture of mesodermal
and endodermal cells for the induction of pancreatic devel-
opment, we have to achieve activation of a robust/modular
gene/protein interaction network whose structure we do not
know, as we did in the case of the segment polarity pattern
or the growth plate. A similar problem would be encoun-
tered in the induction of liver development (fibroblast
growth factor signaling from cardiac mesoderm is necessary
for liver differentiation’?) or other tissues.

Since the mesoderm induces pancreatic development in
the endoderm even ectopically, the mesodermal cell state is
more critical for the process than the state of the endodermal
cells. Therefore, the critical factor for this subprocess is to
determine at what stage the mesodermal cells are able to
secrete the unknown instructive signals that are needed.

Obviously, subprocesses that generate endodermal and
mesodermal cells with appropriate characteristics will have
to be designed first. Literature information shows that this is
feasible. Kubo et al. have established conditions for in vitro
enrichment of endodermal cells from the differentiation of
mouse ESCs in serum-free medium containing activin A.>
As mentioned in Part I, D’Amour et al., with a similar pro-
tocol, generated endodermal cells from hESCs.** In addition
to enrichment of endodermal cells, enrichment of mesoder-
mal cells is also possible in low concentrations of activin A.”
An alternative method for generation of mesodermal cells
involves differentiation of ESCs to ectoderm-like cells in
HepG2-conditioned medium and subsequent further differ-
entiation in embryoid bodies.””® Aggregation of cells using
the method of Lake et al.”® led to fully differentiated meso-
dermal cells, while monolayer culture, without the aggre-
gation, kept the mesodermal cells at the initial stage.”” It
therefore seems likely that an in vitro subprocess that controls
the aggregate size could be used to generate mesodermal
cells in various differentiation stages, starting from the stage
close to the pluripotent cells. For a method that can give
mesodermal cells in various continuously progressing dif-
ferentiation stages, we might choose cells attached to mi-
crocarriers in a microgravity bioreactor (which provides
optimal conditions for cell aggregation), as in the process of
Figure 3. The initial phase of this culture is similar to
monolayer culture until the cells cover the microcarrier sur-
face (as in subprocess 1 of Fig. 3). This phase will give
mesodermal cells in an early differentiation stage.”” The
subsequent phases take place continuously in the same sys-
tem and involve the clustering of microcarriers, with aggre-
gation of the cells that could give mesodermal cells in late
differentiation stages.”

Instead of trying several cocultures experimentally until
we find the mesodermal state that is optimal for induction of
the pancreatic program in the endodermal cells, we will
determine this state computationally. We perform gene ex-
pression analysis at different times following initiation of the
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FIG.11. Computational design of endodermal and mesodermal cell coculture for induction of pancreatic development (a—j).
The optimal differentiation stage of the mesodermal cells that could induce the pancreatic development to endodermal cells
(j) is determined comparing the gene expression of endodermal cells in vivo with that obtained by a gene network model (c
and d) under the influence of factors secreted by mesodermal cells as determined by gene expression (a). The identification of
the activated gene network module in the endodermal cells assures complete activation of the pancreatic developmental
program. A similar design approach can be followed for optimization of the second stage of the process, coculture of

endodermal cells with endothelial cells (k-1).

subprocess for generation of mesodermal cells, monitoring
the cells as they differentiate from monolayer to aggregates.
We will use the data for each time point as input for the
endodermal cell gene network (arrow “a” in Fig. 11), which
can be constructed with a method similar to that of Wie-
ghaus et al. (discussed further in section 6) using Ingenuity
Pathway Analysis software coupled to the IPKB.®® The gene
network should be constructed around the genes that are
differentially expressed in two endodermal states, before and
after the pancreatic induction by the mesoderm, to allow us
to follow the transition from one state to another at the level
of the gene network. These genes were identified by large
scale gene expression analysis of four biologically significant
stages of endocrine pancreas development: endoderm before
pancreas specification, early pancreatic progenitor cells ex-
pressing Pdx1, endocrine progenitor cells expressing Ngn3,
and adult islets of Langerhans.”® Looking at the gene ex-
pression of mesodermal cells, we search for secreted factors.
These factors modify the gene networks of endodermal cells.

For example, the BMP receptor, which is known to be ex-
pressed in endoderm,”'® will be activated when its BMP
ligand is expressed by the mesodermal cells,”* and the gene
network around this receptor will be activated, thereby al-
tering the gene network describing the previous stage of
endodermal cells and moving it toward the next attractor.
The optimal state of mesodermal cells for induction of pan-
creatic development in endodermal cells is the one providing
inputs into the endodermal network that leads to expression
of the genes of pancreatic progenitor cells as defined in the
study of Gu et al.,”® mentioned above. This state can be found
by examining gene expression of the endodermal cells cor-
responding to outputs from the mesoderm network at vari-
ous time points (arrow “b” in Fig. 11; these are also inputs for
the endoderm network) and compared with the gene ex-
pression of endoderm (arrows “c” and “d” in Fig. 11). We
could then determine which is the optimal mesodermal dif-
ferentiation stage (arrow “h” in Fig. 11) to initiate coculture
of endodermal and mesodermal cells (arrow “i”).
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Bioinformatics tools have already appeared'*'** that
could be used for identification of the developmental module
in the resulting gene network of endodermal cells, its relation
to other modules, and for describing how the module is
activated along the consecutive stages of mesodermal-
endodermal interaction.

The most reliable way to determine the optimal meso-
dermal cell state for use in coculture is to compare the to-
pology of the gene network of endodermal cells derived
from computer modeling with that of endodermal cells
in vivo (arrow “f” in Fig. 11) and evaluate the degree of
similarity (arrow “g” in Fig. 11). In this way, the comparison
between the modules activated in vivo and in vitro will be
direct.

Besides optimization of the mesodermal differentiation
stage, other specific questions related to process design could
be answered by studying the experimentally confirmed gene
network topology (arrow “k”) of the activated pancreatic de-
velopmental module in endodermal cells (arrow “j”). For ex-
ample, after pancreatic induction we could allow the gene
network of the endodermal cells to evolve further in the
computer under the influence of the time-dependent gene ex-
pression of mesodermal cells. We could thus determine up to
what point this coculture system would be able to guide
pancreatic development and at what time point the mesoder-
mal layer must be removed to avoid endodermal differentia-
tion toward liver, because after induction is complete, the
mesoderm secretes BMPs, which lead to liver differentia-
tion.”! Hubs in the induced endodermal gene network can be
identified computationally. For example, existing experi-
mental data suggest that for pancreatic development, Pdx1
and Ngn3 are probably hubs.'” Knowing the signaling
pathways related to the hubs, we could apply external con-
trol with the appropriate growth factors to protect the hubs
from inactivation and thereby preserve the network topology.

A rational and accurate design to replace the mesodermal
cells with defined growth/differentiation factors could also
be pursued via computational modeling, evaluating the ef-
fects of subsets of the factors secreted by the mesodermal
cells on endodermal network topology. This would simplify
the design process without sacrificing module activation.

In the developing embryo, the endoderm expresses many
genes involved in cell fate specification before pancreatic
induction.”® As the number of these genes gradually de-
creases as the cells start to differentiate, there is an oppor-
tunity to study how the cell disassembles one module and
constructs another as the endodermal network progresses
through time. Further, we could reduce the endodermal
network and check gene expression computationally. If the
same expression pattern results from a smaller, simpler
subnetwork, it might be possible to perform more accurate
studies of the module by modeling it as a Boolean network
(Fig. 2 in section 3) or even as a set of ordinary differential
equations (segment polarity pattern of Drosophila, section 3).
In this case we could determine in detail the mathematical
properties of the attractor that represent the pancreatic de-
velopmental module and its basin of attraction. This might
be done computationally by perturbing the network at var-
ious nodes—genes (change their state, 1—expressed or 0—not
expressed, which corresponds to the change of the initial
conditions) and observing whether the Boolean network
gives the same final state (which genes are expressed or not).
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A small basin of attraction means that the system is not
particularly robust to disturbances and might need more
comprehensive external control; the in vitro conditions
(number of cells, their distances, scaffolding properties, etc.)
might need more careful optimization than would be the case
for a system described by a large basin and therefore more
robust. In addition, a more accurate selection of the meso-
dermal differentiation stage or the purity of mesodermal cells
may be required.

In the same way, we might design the next stages of the
process as movements along a trajectory through successive
attractors representing stable network topologies. The sec-
ond step is the coculture of endodermal-endothelial cells
(arrow “i”). Blood vessels also provide signals for the de-
veloping pancreas.'® It has been shown that the transcrip-
tion factors induced by endothelial cells are different from
those induced by mesodermal cells. For example, endothelial
cells induce the transcription factor Ptf1'%%; mesodermal cells
do not. This could be the first subprocess. Further stages
could be designed sequentially, such as the path to the
Nkx2.2 and Nkx6.1 expressing cells, where there is the bi-
furcation to exocrine or endocrine cells, or the path to HNF6-
or Ngn3-expressing cells, which initiate the pathway toward
endocrine fate. Finally, spatially extended gene networks
could be included in the mathematical models of cell-to-
cell signaling phenomena, as was done in the cases of seg-
ment polarity or growth plate pattern, to determine spatially
extended multicellular modules such as the pancreatic is-
lets themselves, in which intercellular communication is
important to normal physiological control of insulin secre-
tion, 106,107

In addition to the practical questions related to process
design, elucidating the time course of topological character-
istics of the gene network and the structures of the activated
modules for several tissue systems could provide valuable
information to inform further theoretical studies, from which
additional principles of tissue development might arise.

8. Summary, Conclusions, and Future Directions

We propose the term “developmental engineering” to
describe a methodology for rational and accurate design of
robust, well-controlled manufacturing processes. This
methodology integrates concepts from rapid advances in
developmental biology, systems biology, and network sci-
ence, as shown in Table 2. It is based on the design of in vitro
processes consisting of sequential subprocesses correspond-
ing to in vivo developmental stages under the control of
signal pathway networks that can be modeled mathemati-
cally. They follow a gradual and coordinated progression of
tissue growth and cell differentiation that leads to organi-
zation of cells into intermediate tissue forms with modular
behavior. Modules are robust developmental forms that can
be assembled into complex tissues in processes with semi-
autonomy. The macroscopic developmental modularity of
tissue forms can be attributed to a corresponding modularity
of the network topology that describes gene interactions
during the developmental process. We propose that identi-
fication of the gene network modules that control develop-
mental modules in vivo is the central theoretical and practical
problem of both tissue engineering and developmental bi-
ology. Testing a hypothesis of developmental modularity in
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TABLE 2. THE INTERRELATION OF THE CONCEPTS OF DEVELOPMENTAL B10LOGY, ENGINEERING,
AND SYSTEMS BI10LOGY/NETWORK SCIENCE

¢ Developmental biology Engineering

Impact in process Systems biology /network science

1  Robustness Stability; reproducibility

Manufacture; regulatory

Robust gene network; convergence

procedures to attractors; scale-free network
2 Sequential stages Observability; controllability =~ Direct assessment of Sequential activation of gene
intermedjiates; networks; trajectory through

3  Path dependence Semi-autonomy

4 Gradual/concerted
progression of
tissue variables

5 Modularity

Interdependence of
tissue variables

Uncoupled interfaces

directed interventions
Self-designed optimal
conditions

Self-designed cell
organization

Flexibility and cost
effectiveness in
product development

sequential attractors

Gene network activation by
initial conditions set from
previous stage; switching
between attractors

From cellular to multicellular
spatially extended gene networks

Modular gene network

biology usually involves the dissociation of the putative
developmental module and observation of the process in
isolation from the rest of the embryo.'® A close interaction
between the efforts of biologists to isolate the modules and of
engineers to synthesize them can speed up the process of
module identification and its use in tissue engineering pro-
cesses.

One of the primary tenets of biologics regulation is the
concept of the well-controlled manufacturing process. Pre-
viously, control of the manufacturing process has been ex-
erted externally. For the products discussed here, the
concept of modularity opens the door to a new paradigm
based on the robust, self-regulating nature of modular de-
velopmental systems, which we have demonstrated can be
expressed mathematically and treated computationally. We
propose that if the parameters that define the robustness of a
given product can be defined adequately during process
development and validation studies, the manufacturing
process, to a significant degree, can control itself. Thus, de-
sign efforts might focus in part on identifying sets of pa-
rameters adequate to define attractor basins sufficient to
ensure convergence toward the desired cell and tissue fate.
At a minimum, these parameters can be used to evaluate the
process design space and develop classical process controls.
This approach is fully consistent with existing regulatory
paradigms. In doing so, predictability of product develop-
ment cycles, including registration with regulatory authori-
ties, might be enhanced substantially. As the concept of
correspondence between modularity and robustness of sig-
nal pathway network topology and stability, reproducibility,
and robustness of macroscopic tissue states becomes more
widely appreciated, the approaches outlined here may ulti-
mately be used not only to design manufacturing processes
but also to aid in their validation (e.g., by scanning wide
parameter values computationally to provide assurance of
process robustness).

The objective of tissue engineering is to produce highly
biomimetic therapeutic products with superior clinical per-
formance by proposing the important phenomena that
should be examined thoroughly and how experiments should
be designed for these phenomena to be observed (e.g., self-
organization to tissue structures). Other fundamental aspects

of tissue development, further to the ones mentioned, should
be elucidated and incorporated gradually in the biomimetic
process design as new information becomes available.

From the examples presented, it is clear that investigators in
the field of tissue engineering have started to recognize the
paradigm shift from molecular to modular biology.'” The
field should therefore take the next step by preparing itself for
the corresponding technological paradigm shift,''’ directing
its focus to bioartificial tissue formation guided by gene net-
work studies. We believe that a paradigm designed to place
the field of tissue engineering on a solid theoretical and
technological foundation by synthesizing contemporary in-
sights into developmental biology, network science, systems
biology, and process design engineering will both create
realistic expectations in the practitioner and patient commu-
nities and promote steady progress toward dramatically im-
proved products to address currently unmet medical needs.
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