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The Cretaceous-Paleogene boundary ~65.5 million years ago marks one of the three largest mass
extinctions in the past 500 million years. The extinction event coincided with a large asteroid
impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in
India. Here, we synthesize records of the global stratigraphy across this boundary to assess the
proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked
to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The
temporal match between the ejecta layer and the onset of the extinctions and the agreement of
ecological patterns in the fossil record with modeled environmental perturbations (for example,
darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

Paleontologists have long recognized the
global scale and abruptness of the major
biotic turnover at the Cretaceous-Paleogene

(K-Pg, formerly K-T) boundary ~65.5 million
years ago (Ma). This boundary represents one of
the most devastating events in the history of life
(1) and abruptly ended the age of the dinosaurs.
Thirty years ago, the discovery of an anomalously
high abundance of iridium and other platinum
group elements (PGEs) in the K-Pg boundary
clay led to the hypothesis that an asteroid ~10 km
in diameter collided with Earth and rendered many
environments uninhabitable (2, 3).

The occurrence of an impact is substantiated
by the recognition of impact ejecta including
spherules, shocked minerals, and Ni-rich spinels
in many K-Pg boundary event deposits [e.g.,
(4, 5)]. The ejecta distribution points to an impact
event in the Gulf of Mexico–Caribbean region;
this prediction is reinforced by the discovery of
the ~180- to 200-km-diameter Chicxulub crater
structure on the Yucatan peninsula, Mexico (6).
Modeling suggests that the size of the crater and
the release of climatically sensitive gases from
the carbonate- and sulfate-rich target rocks could
have caused catastrophic environmental effects

such as extended darkness, global cooling, and
acid rain (7–9). These effects provide an array
of potential mechanisms for the ecologically
diverse but selective abrupt extinctions (Fig. 1)
(10–13).

Notwithstanding the substantial evidence sup-
porting an impact mechanism, other interpre-
tations of the K-Pg boundary mass extinction
remain. Stratigraphic and micropaleontological
data from the Gulf of Mexico and the Chicxulub
crater have instead been used to argue that this
impact preceded the K-Pg boundary by several
hundred thousand years and therefore could not
have caused the mass extinction [e.g., (14)]. In
addition, the approximately one-million-year-long
emplacement of the large Deccan flood basalts
in India spans the K-Pg boundary (Fig. 1); the
release of sulfur and carbon dioxide during these
voluminous eruptions may have caused severe
environmental effects (15) that have also been
proposed as triggers for the mass extinction at
the K-Pg boundary (16).

Here, we assess the observational support for
these divergent interpretations by synthesizing
recent stratigraphic, micropaleontological, petro-
logical, and geochemical data from the globally
distributed K-Pg boundary event deposit. Impact
and volcanism as extinction mechanisms are
evaluated in terms of their predicted environ-
mental perturbations and, ultimately, the dis-
tribution of life on Earth before and after the
K-Pg boundary.

What Is the Evidence for Correlating the Impact
with the K-Pg Boundary?
The Upper Cretaceous and lower Paleogene
sediments bracketing the K-Pg boundary event
deposits are among the most intensively in-
vestigated deposits in the geological record.
More than 350 K-Pg boundary sites are cur-
rently known, and these sites show a distinct
ejecta distribution pattern related to distance
from the Chicxulub crater (Fig. 2 and table
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S1) (17, 18). Accordingly, the K-Pg boundary
sites can be divided into four groups (Fig. 2
and table S1): (i) In very proximal settings up
to 500 km from Chicxulub, impact deposits
are quite thick. Cores recovered close to the
crater rim inside the Chicxulub impact struc-
ture include a >100-m-thick impact-breccia se-
quence, and 1-m- to >80-m-thick ejecta-rich
deposits are present in the surrounding Central
American region [e.g., (19–21)]. (ii) In prox-
imal areas around the northwestern Gulf of
Mexico from 500 to 1000 km from Chicxulub,
the K-Pg boundary is characterized by a series
of cm- to m-thick ejecta spherule-rich, clastic
event beds indicative of high-energy sediment
transport, for example, by tsunamis and gravity
flows (18, 22, 23). (iii) At intermediate distances
from Chicxulub (~1000 to ~5000 km), the K-Pg
boundary deposit consists of a 2- to 10-cm-thick
spherule layer topped by a 0.2- to 0.5-cm-thick
layer anomalously rich in PGEs with abun-
dant shocked minerals, granitic clasts, and Ni-
rich spinels (Fig. 3) (12, 24–26). (iv) In distal
marine sections more than 5000 km from
Chicxulub, a reddish, 2- to 5-mm-thick clay
layer rich in impact ejecta material is usually
present at the K-Pg boundary [e.g., (17)]. The

bedding plane between the impact-ejecta-rich
red clay layer and the underlying Cretaceous
marls coincident with the abrupt mass extinc-
tion in the El Kef section, Tunisia, is also
the officially defined base of the Paleogene
(fig. S1) (27). This definition implies that the
impact-generated sediments in the K-Pg bound-
ary interval stratigraphically belong to the
Paleogene (Fig. 2).

The pattern of decreasing ejecta-layer thick-
ness with increasing distance from the impact
crater is consistent with the Chicxulub impact as
the unique source for the ejecta in the K-Pg
boundary event deposit (Figs. 2 and 3 and table
S1). Additional support for this genetic link de-
rives from the distribution, composition, and
depositional mode of the ejecta. First, the size
and abundance of spherules and ballistically
ejected shocked quartz grains, which are resistant
to alteration, decrease with increasing distance
from Chicxulub (18, 28). Second, the specific
composition [e.g., silicic spherules, shocked
limestone, and dolomite and granitic clasts
(Fig. 3 and figs. S2 to S4)] (29) and age dis-
tribution (table S2) of the ejecta match the suite
of Chicxulub target rocks. Lastly, the presence
of the high-energy clastic unit at proximal

K-Pg boundary sites, interca-
lated between two layers rich in
Chicxulub ejecta, suggests that the
Chicxulub impact caused a col-
lapse of the Yucatan carbonate
platform and triggered mass flows
and tsunamis in the Gulf of
Mexico and adjacent areas (Fig.
2 and figs. S3 to S8) (17, 18, 30).
Therefore, the K-Pg boundary
clastic unit, up to 80 m thick
in places, was deposited in the
extremely brief period between
the arrival of coarse-grained
spherules and the subsequent,
longer-term deposition of the
finer-grained PGE- and Ni-rich
ejecta phases (Fig. 2) (22).

A contrasting hypothesis is
founded on the interpretation that
the clastic unit is a long-term dep-
ositional sequence genetically
unrelated to the Chicxulub impact
event (14, 31); lenslike spherule
deposits locally present below
the clastic unit in Mexico would
then correlate to the base of the
uppermost Cretaceous planktic
foraminiferal zone (14, 31). This
interpretation also proposes a
latest Cretaceous age for the im-
pact breccia found within the
Chicxulub crater with the impli-
cation that all intermediate to
distal K-Pg boundary sites lack
the resolution and completeness
to firmly establish a correlation
to the Chicxulub impact event

(14, 32). Additionally, the assertion that the
Chicxulub impact preceded the K-Pg mass
extinction by ~300 thousand years predicts that
the PGE anomaly at the top of the clastic unit
resulted from a second large impact event (14).
In this scenario, either the second impact event
or the Deccan flood basalt eruptions caused the
K-Pg mass extinction (14).

However, sedimentological and petrological
data suggest that the lenslike ejecta deposits
in Mexico were generated by impact-related
liquefaction and slumping, consistent with the
single very-high-energy Chicxulub impact (figs.
S5 to S9) (23). A range of sedimentary struc-
tures and the lack of evidence for ocean floor
colonization within the clastic unit in northeast-
ern Mexico indicate rapid deposition (figs. S6 to
S8) (22, 23). Moreover, the presence of shallow-
water benthic foraminifera in the clastic unit (33)
contradicts a long-term depositional sequence
(14); if in situ, their presence requires un-
realistically rapid relative sea-level changes of
>500 m. Lastly, high-resolution planktic forami-
niferal analyses in the southern Mexican sections
demonstrate that the Chicxulub-linked clastic unit
is biostratigraphically equivalent to the officially
defined base of the Paleocene (i.e., the red clay
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Fig. 1. Stratigraphy and schematic record of biotic events across the K-Pg boundary correlated to the chemical and
mineralogical records of a core from the North Atlantic [Ocean Drilling Program (ODP) Leg 207] and the major eruptive
units of the Deccan flood basalt province, India. Many (>60%) Cretaceous species experienced mass extinction at the
boundary (A), whereas successive blooms of opportunistic species (B) and radiation of new species (C) occurred in the
Early Paleogene. V-PDB indicates the Vienna Pee Dee Belemnite; wt %, weight %; and ppb, parts per billion. The mass
extinction coincides with a major perturbation of the global carbon cycle as indicated by a negative d13C anomaly (D), a
major drop of carbonate sedimentation in the marine realm (E), and the enrichment of PGEs in Chicxulub ejecta deposits
(F) (25, 26). Composite stratigraphic column of the formations of the main Deccan Trap flood basalt province showing
their cumulative thickness and estimated basalt volumes (G) (15). Note that the exact stratigraphic onset and end of the
main Deccan flood basalt sequence and the precise position of the K-Pg boundary in the formations have yet to be
determined, as indicated by the question marks (16). However, the onset of the main eruption phase is ~400 to 600
thousand years before the K-Pg boundary as is also shown by Os isotope data (38).
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layer) in the El Kef section, Tunisia (Fig. 2 and
fig. S1) (20).

A pre–K-Pg boundary age for the Chicxulub
event has also been argued on the basis of the
sequence at a Brazos River site in Texas and
from within the crater. If a 3-cm-thick clay layer
interbedded in Upper Cretaceous shales at the
Brazos River site originated from the Chicxulub
impact, the impact occurred significantly before
the K-Pg boundary (31). Yet, in this clay layer
there are no spherules or shocked minerals that
would provide evidence for an
impact origin, and its high san-
idine and quartz content sup-
ports a local volcanic origin
similar to ash layers found below
the K-Pg boundary in Mexico
and Haiti (table S3 and figs.
S10 to S12).

Within the Chicxulub crater,
an ~50-cm-thick dolomitic sand-
stone unit between the impact
breccias and the lower Paleo-
cene postimpact crater infill has
been interpreted as undisturbed
sediments deposited immedi-
ately after the impact (fig. S13)
(32). Rare uppermost Cretaceous
planktic foraminifera within this
unit were proposed as evidence
that the impact preceded the
K-Pg mass extinction (32). How-
ever, this sandstone unit is in
part cross-bedded, contains ejec-
ta clasts (fig. S14), and also in-
cludes planktic foraminifera of
Early Cretaceous age (figs. S14
and S15) (34, 35). These obser-
vations, as well as grain-size data
(36), indicate that deposition of
this sequence was influenced by
erosion and reworking after the
impact and therefore provide no
evidence for a long-term post-
impact and pre–K-Pg boundary
deposition.

In addition, multiple indepen-
dent lines of evidence place the
Chicxulub event at the K-Pg
boundary. Geochronologic data
demonstrate that the Chicxulub
impact correlates to the K-Pg
boundary at ~65.5 Ma (29). De-
tailed investigation of continuous
sequences from globally distrib-
uted marine and terrestrial sites
yield no chemical or physical evi-
dence of a large impact in the
last million years of the Creta-
ceous other than the Chicxulub
event (table S1 and fig. S16)
(25, 37, 38). Lastly, orbital cycles
in deep-sea sites [(39) and ref-
erences therein] demonstrate that
there is neither a proposed global

300-thousand-year gap (14) nor a hiatus between
the Chicxulub impact and the K-Pg boundary.

What Were the Initial Consequences
of the Impact?
Asteroid impact models [e.g., (40)] predict that an
impact large enough to generate the Chicxulub
crater would induce earthquakes (magnitude > 11),
shelf collapse around the Yucatan platform, and
widespread tsunamis sweeping the coastal zones of
the surrounding oceans (7). Moreover, models

suggest the Chicxulub impact had sufficient en-
ergy to eject and distribute material around the
globe (7), possibly enhanced by decomposition
of the volatile-rich carbonate and sulfate sediments
(41). Near-surface target material was ejected bal-
listically at velocities up to a few km/s as part of
the ejecta curtain. This yielded the thick spherule
layer at proximal sites and the basal spherule
layer at intermediate distance sites (Fig. 2) (41).
Parts of the ejecta would be entrained within
the impact plume: a complex mixture of hot air;
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projectile material; and impact-vaporized, shock-
melted, and fragmented target rocks that expanded
rapidly by several km/s up to velocities greater
than Earth’s escape velocity of 11 km/s. Projectile-
rich impact plume deposits form the upper layer
in intermediate-distance K-Pg sections and con-
tribute to the single red K-Pg boundary clay layer
at distal sites, enriching both in PGEs and shocked
minerals (Fig. 2).

Detailed multiphase flow models suggest
that the atmospheric reentry of the ejecta
spherules may have caused a global pulse of
increased thermal radiation at the ground (42).
Such a thermal pulse is below the lower limits
of woody biomass ignition, in agreement with
studies yielding no evidence for widespread
large wildfires at the K-Pg boundary (43), with a
possible exception for the Gulf of Mexico region
close to the impact site [(9) and references
therein]. However, the modeled level of radiation
is expected to have resulted in thermal damage to
the biosphere even if the maximum radiation
intensity was only sustained for a few minutes.

Geophysical models indicate that the impact
release of large quantities of water, dust, and
climate-forcing gases would dramatically alter the
climate system (7, 8). The estimated amount of the
silicic sub-micrometer-sized dust input of 0.01 to
0.1 Gt (1 Gt = 1015g) is considered to be too low
by itself to cause a catastrophic impact winter (44).

However, abundant sub-micrometer-sized partic-
ulate carbonates in the ejecta (26) and soot, a
strong absorber of short-wave radiation, derived
from burning of targeted carbonaceous sediments
may have greatly amplified the effects of dust
injection (43). In addition, there are estimates of at
least 100 to 500 Gt of sulfur released nearly
instantaneously (7, 8). These figures are likely to
be conservative given new larger estimates of the
volume of water and sulfur-bearing sediments
within Chicxulub’s 100-km-diameter transient cra-
ter (45). The sulfur was probably rapidly trans-
formed to sunlight-absorbing sulfur aerosols with
the capacity to cool Earth’s surface for years to
decades by up to 10°C (8, 10). Temperatures of the
deep ocean, however, remained largely unaffected
by the impact because of the ocean’s large thermal
mass (46), contributing to a rapid recovery of the
global climate. The sulfur release also generated
acid rain, which, although not sufficient to com-
pletely acidify ocean basins, would have severely
affected marine surface waters and/or poorly buf-
fered continental catchments and watersheds (9).

Although currentmodels cannot fully assess the
combined environmental consequences of the
Chicxulub impact (7, 9), the extremely rapid injec-
tion rate of dust and climate-forcing gases would
have magnified the environmental consequences
compared with more-prolonged volcanic eruptions,
particularly when compounded by the additional

adverse effects of a large impact (e.g., heat wave,
soot, and dust release) that are absent during flood
basalt volcanism. Specifically, the injection of ~100
to 500 Gt of sulfur into the atmosphere within
minutes after the Chicxulub impact contrasts with
volcanic injection rates of 0.05 to 0.5Gt of sulfur per
year during the ~1-million-year-long main phase of
Deccan flood basalt volcanism (Fig. 1 and fig. S16)
(15, 16). Indeed, an only moderate climate change
(~2°Cwarming) during the last 400 thousand years
of the Cretaceous has been interpreted to result
from Deccan flood basalt volcanism [e.g., (47)].

What Does the Fossil Record Reveal About
the Global Consequences for Life?
The scale of biological turnover between the Cre-
taceous and Paleogene is nearly unprecedented in
Earth history (1). A number ofmajor animal groups
disappeared across the boundary (e.g., the nonavian
dinosaurs, marine and flying reptiles, ammonites,
and rudists) (48), and several other major groups
suffered considerable, but not complete, species-
level extinction (e.g., planktic foraminifera, calcar-
eous nannofossils, land plants) (12, 13, 37, 49).
Even the groups that showed negligible extinc-
tions exhibited substantial changes in assemblage
composition (e.g., benthic foraminifera) (50).

For marine phytoplankton, major drivers
of ocean productivity, darkness, and suppres-
sion of photosynthesis were likely major killing
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mechanisms (9). There is a clear separation in
extinction rate between strongly affected phyto-
plankton groups with calcareous shells and groups
that had organic or siliceous shells. Although the
possible effects of surface ocean acidification after
the impact may have been an additional stress
factor, this selectivity seems to have favored traits
contributing to survival of acute stress (11, 13).
For example, cyst-forming dinoflagellates per-
sisted through the K-Pg boundary, although as-
semblage changes suggest a brief cooling phase
after the impact [(51) and references therein].

The extinction of calcareous primary producers
must have caused major starvation higher up in the
food chain. This would explain the extinctions of
animals relying on plankton as their food source,
the survival of organisms living in detritus-based
food chains, and the dwarfing in evolutionary
lineages observed in marine biota after the K-Pg
boundary (9, 52, 53). The abrupt drop in plankton
productivity was apparently short-lived as shown
by marine biomarker data (54). The negative shift
of the stable carbon isotopic value (d13C) (Fig. 1)
and the surface to deepwater d13Cgradient collapse
is indicative of a major disruption to marine
productivity and the ocean’s biological pump (11).
However, the large magnitude of the d13C anomaly
suggests that the release of methane, input of soot,
or the dependency of the isotopic signal on the
metabolism of different species may have con-
tributed to the anomaly (50).

On land, the loss of the diverse vegetation and
the onset of the fern-spore spike following the
K-Pg boundary indicates instantaneous (days to
months) destruction of diverse forest communities
coincident with deposition of ejecta from the
Chicxulub impact (fig. S17) (12, 37, 55). A
shutdown of photosynthesis because of low light
levels is also indicated by high abundances of
fungal spores in a thin layer of sediment preceding
the recovery succession of ferns at a New
Zealand K-Pg boundary site (56). Analogous to
the marine environment, the abrupt elimination
of the forest communities may have had simi-
larly catastrophic effects on animals relying on
primary producers (e.g., the herbivorous dino-
saurs), whereas detritus-based food chains (e.g.,
in lakes) were apparently less affected (52).

Faunal and floral changes during the Late Cre-
taceous do occur [e.g., (12, 47)] but are clearly
distinguishable from the abruptmass extinction and
ecosystem disruption coincident with the K-Pg
boundary, as indicated by high-resolution records of
marine planktonicmicrofossils and terrestrial pollen
and spores (12, 13, 25, 37, 55, 57). Productivity
proxies (e.g., carbonate content) linked to orbitally
tuned stratigraphic time scales provide no evidence
for major changes preceding the boundary (39).
Claims of gradual or stepwise extinctions during
the Late Cretaceous culminating in the K-Pg mass
extinction (14) and survivorship through the K-Pg
boundary may be explained by short-term survival
with greatly reduced population sizes, sampling
artifacts, or reworking of Cretaceous fossils [e.g.,
(57)]. In addition, the global onset of opportunistic

species blooms and the evolutionary radiation of
new taxa started consistently after the K-Pg bound-
ary mass extinction (Fig. 1 and fig. S17) (49, 55).

What Do We Need to Look at Next?
The correlation between impact-derived ejecta and
paleontologically defined extinctions at multiple
locations around the globe leads us to conclude that
the Chicxulub impact triggered themass extinction
that marks the boundary between the Mesozoic
and Cenozoic eras ~65.5 million years ago. This
conclusion is reinforced by the agreement of
ecological extinction patterns with modeled
environmental perturbations. Although the relative
importance of the different impact-induced
environmental effects on the K-Pg mass extinction
is still under scrutiny, alternative multi-impact or
volcanic hypotheses fail to explain the geographic
and stratigraphic distribution of ejecta and its
composition, the timing of the mass extinction,
and the scale of environmental changes required to
cause it. Future geophysical, geological, and
drilling studies of the Chicxulub structure will
further constrain the impact process and the
amount and nature of environment-altering gases
generated by this so far unparalleled combination
of a large impact into ~3- to 4-km-thick carbonate-
and sulfate-rich target rocks. Research focused on
high-resolution studies of the ejected material,
integrated climate models, and detailed study of
related fossil successions will help reveal the
physical and biological mechanisms of the K-Pg
mass extinction and may also aid in understand-
ing other mass extinction events in Earth history.
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