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Abstract

Separability in ordinary regression is achieved by partitioning the set

of independent variables into mutually orthogonal subsets. The coefficient

vector of each subset is separate: its estimate depends only on the response

and on the independent variable scores of the subset. This article discusses

the feasibility of formulating multilevel models with subsets of separate

parameters in the Þxed part. Generic sufficient conditions for separability

and a series of rules and examples are provided. The search for instances of

separability rests on an analysis of the covariance matrix of the multilevel

model. Its structure, in terms of its eigenvalue/eigenvector decomposition,

explains the role of within-group centered and orthogonalized variables in

the discussion of separability and in related topics such as the issue of

unbiasedness of Þxed part parameters in cases of underspeciÞcation.

Key words: multilevel models, orthogonality, centering, separability, un-

biasedness.
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Introduction

Orthogonality, Centering, Separability, Unbiasedness: an Example

In his discussion of �the crucial importance of centering� in multilevel analysis,

Raudenbush (1989a) provides an example of a two-level (pupils within schools) ran-

dom intercept model, predicting math achievement by means of the socio-economic

status (SES, a pupil level variable) and the school mean of the SES (a school level

variable). When the pupil level variable is group mean centered (in other words: the

SES score of each pupil is adjusted by subtracting the mean SES of his/her school),

the point estimate of the coefficient of the SES does not change when the school mean

of the SES is removed from the model. This interesting property disappears when

the group mean centered SES is replaced by the uncentered variable. Raudenbush

(1989a) concludes that using group mean centering �allows consistent estimation of

within-group slopes even when the between-group model is misspeciÞed! By using

centering, the within-group predictors are orthogonal to all between-group predic-

tors and so cannot be biased by a failure to include the appropriate between-group

model.�

Indeed, whenever the n elements of a sample (of, say, pupils) are partitioned into

m groups (schools, for example), any n×1 data column P representing school mean
centered scores (on some pupil level variable) is orthogonal to any n×1 data column
G containing each basic unit�s (pupil�s) score on a group (school) level variable:

PTG = 0 (the superscript T means �transpose�), in words: the inner product of

P with G equals zero. Thus Raudenbush�s (1989a) example exhibits both a case

of orthogonality (between the school mean centered SES and the SES school mean

associated with each pupil) and of what we will call �separability�: the estimated

coefficient of one variable (the school mean centered SES) does not depend on the
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scores of some other variable (in this case: the school means variable).

Orthogonality and Separability in Ordinary Regression

The link between orthogonality and separability is familiar and readily veriÞed

in the setting of ordinary regression.

Sufficient conditions.When a response and two sets of, respectively, p1 and p2

independent variables have been measured for n units, the ordinary regression model

postulates the existence of a p1 × 1 coefficient vector β1, a p2 × 1 coefficient vector
β2 and a variance parameter σ

2 which are such that the response data column Y is

a realization of a stochastic variable with distribution

N
³
X1β1 +X2β2, σ

2In×n
´
. (1)

The n× (p1 + p2) matrix [X1X2] which arises by joining the data blocks X1 and X2

(which store the measurements on the independent variables) is assumed to be of

full rank. The symbol I indicates the unit matrix.

The maximum likelihood estimates of the coefficients can be expressed analyti-

cally as  �β1

�β2

 = ³
[X1X2]

T[X1X2]
´−1

[X1X2]
TY. (2)

With the help of the formula for the inverse of a symmetric two by two block matrix

(see, for example, Bryk and Raudenbush, 1992, p. 238) the estimate for β1 can be

written as

�β1 =
µ³
XT

1X1 − XT
1X2(X

T
2X2)

−1XT
2X1

´−1
XT

1

−
³
XT

1X1 − XT
1X2(X

T
2X2)

−1XT
2X1

´−1
XT

1X2(X
T
2X2)

−1XT
2

¶
Y. (3)
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Equation (3) demonstrates that when the data satisfy

X2(X
T
2X2)

−1XT
2X1 = 0n×p1 (4)

the formula for �β1 is greatly simpliÞed:

�β1 = (X
T
1X1)

−1XT
1Y. (5)

As X2 and, consequently, (X
T
2X2)

−1 have rank p2, the conditions (4) are equivalent

to

XT
2X1 = 0p2×p1. (6)

When for a given dataset X1 the dataset X2 satisÞes the p2p1 conditions ex-

pressed by (6) � a set of conditions which, according to (4), means that in any

regression of a column of X1 on the columns of X2 all coefficients are zero � the

estimate �β1 does not depend on any further details of X2: according to (5), it can

be calculated on the basis of X1 and Y alone. We describe this situation by saying

that the coefficients β1 of X1 are separate in model (1). The orthogonality conditions

XT
2X1 = 0 are sufficient for the separability of the parameter vector β1 in model (1).

Note that, in this case of ordinary regression, the conditions XT
2X1 = 0 imply

both that β1 is separate and that β2 is separate in model (1). Also, as a straight-

forward extension, note that when the set of explanatory variables in an ordinary

regression analysis can be partitioned into m mutually orthogonal subsets (m ≥ 2),
each subset of coefficients is separate.

Advantage of separate coefficients. The orthogonality conditions XT
2X1 = 0 en-

sure that the coefficients β1 are separate within model (1). Moreover, they imply

that the coefficients remain separate and that their estimation formula (5) remains

unchanged when independent variables are removed from the second subset (the

columns of X2). In addition, they ensure the separability of the β2 coefficients and
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hand down the separability property to all models nested within model (1). Thus,

in a situation where there are good reasons to assume that model (1) is an over-

speciÞcation, the search for a better model (among all the models nested within

model (1)) is simpliÞed when the orthogonality conditions XT
2X1 = 0 are satisÞed.

The speciÞcation search among p1 + p2 variables is then effectively replaced by two

searches among p1 and p2 variables respectively.

In practice, the columns of [X1X2] are often derived from a larger set of �raw�

variables. Obviously, the main consideration in such a data reduction step is to

achieve an acceptable operationalization of the relevant concepts. If this leaves

enough freedom to introduce sufficient orthogonality relationships (partitioning the

set of variables in as many mutually orthogonal subgroups as possible), the com-

plexity of a subsequent speciÞcation search will be substantially reduced.

When the number of complete records in a subset X1 is considerably larger than

in the full set of variables [X1X2], and provided that operationalization requirements

do not shut the door on the introduction of orthogonality relationships, it may be

convenient to keep the coefficients of that subset separate.

A �raw� dataset typically contains a very large number of variables (which will

be denoted as �items�, because they often are the items from one or several question-

naires). The Þrst task at hand then usually consists of a linear transformation of the

data, aimed at replacing the items with a set of variables which operationalize the

concepts of interest. The transformation is often chosen by means of factor analyses

or similar data reduction techniques. As soon as the coefficients of the transforma-

tion have been determined, scores for the (new) variables can be calculated. When

some elements in the raw data matrix are missing, the analyst must decide for each

score which is based on an incomplete record whether to mark it as missing or to

calculate some approximation based on the available data. The decision to reject
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or to repair may yield a different outcome for scores on different variables within

the same record. In some cases this may result in a subset X1 of p1 variables with,

say, n1 of n records usable in a regression, whereas the number nu of usable records

in the complete data matrix [X1X2] is considerably smaller. In such a situation a

researcher may decide to return to the data reduction step and � when this is con-

sistent with the goals of the operationalization � build in the mutual (approximate)

orthogonality of the two subsets of variables with respect to the nu usable records. If

the researcher is then prepared to assume that the unknown elements of X2 are such

that they respect (or even bring to perfection) the orthogonality between the two

subsets of variables with respect to the previously mentioned n1 records of [X1X2],

the coefficients β1 are separate in model (1) applied to those n1 records. Estimates

can be calculated according to (5), using the n1 records. Thus, although the re-

gression analysis cannot be applied directly to the dataset of n1 records, due to the

missing values in the X2 block, estimates of β1 can be calculated as though n1 usable

records were available for the full model.

Separability in the likelihood problem. The estimates �β1 and �β2 of expression

(2) are the solutions of a likelihood problem. This problem consists of Þnding in

Rp1×1 ×Rp2×1 ×R>0 the value (β1,β2, σ
2) that minimizes

n lnσ2 +
1

σ2
(Y − X1β1 − X2β2)

T(Y − X1β1 − X2β2). (7)

It can be reformulated as a two-step problem. The Þrst step consists of Þnding in

Rp1×1 ×Rp2×1 the value (β1, β2) that minimizes

(Y − X1β1 − X2β2)
T(Y −X1β1 − X2β2). (8)
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Having obtained the solution ( �β1, �β2) of the Þrst step, the second step aims at Þnding

σ2 in R>0, minimizing

n lnσ2 +
1

σ2
(Y − X1

�β1 − X2
�β2)

T(Y − X1
�β1 − X2

�β2). (9)

This means that the likelihood problem (7) is special, in the sense that the parame-

ters (β1, β2) can be estimated separately; the estimate for the parameter σ
2 is found

in a second stage. In general, however, the calculation of an estimate for β1 (and β2)

involves the complete matrix [X1X2] of independent variables. This changes when

the orthogonality conditions (6) are satisÞed. Then, the Þrst stage (8) of the likeli-

hood problem is equivalent to the minimization of (Y −X1β1)
T(Y−X1β1) in order

to Þnd β1 in Rp1×1 and of (Y−X2β2)
T(Y−X2β2) in order to Þnd β2 in Rp2×1. Thus,

when XT
2X1 = 0, in the general problem of Þnding an estimate for the parameter

set (β1,β2, σ
2), the problem of Þnding an estimate for β1 can be formulated as a

separate optimization problem, involving only X1 and Y.

In this article, we will use this as the basis of a �technical� deÞnition of separabil-

ity. Whenever the parameters of a model are estimated by means of an optimization

problem and a subset of the parameters can be equivalently estimated by means of

an optimization problem involving only a subset of the data, we call this subset of

parameters separate with respect to the model and the data involved. This �tech-

nical� deÞnition implies the previously described �practical� notion of separability,

namely that the estimate of the parameters in question can be calculated on the

basis of a subset of the data.

Unbiasedness in cases of UnderspeciÞcation in Ordinary Regression

Orthogonality relationships are also of interest in ordinary regression when it is

important to obtain unbiased estimates of particular coefficients in an underspeciÞed

model.
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Bias and unbiasedness in cases of underspeciÞcation.When the response data

column Y is a realization of a stochastic variable which is distributed as

N
³
X1β1t +X2β2t +X3β3t,σ

2
t In×n

´
(10)

(with subscript �t� meaning �true�), but which is assumed to be distributed as

N
³
X1β1 +X2β2, σ

2In×n
´

(11)

for some unknown (β1, β2, σ
2) in Rp1×1 × Rp2×1 × R>0, the bias of the maximum

likelihood estimator of (β1, β2) is:³
[X1X2]

T[X1X2]
´−1

[X1X2]
TX3β3t. (12)

The bias of the estimator of β1 can be isolated from (12), resulting in:µ³
XT

1X1 − XT
1X2(X

T
2X2)

−1XT
2X1

´−1
XT

1

−
³
XT

1X1 − XT
1X2(X

T
2X2)

−1XT
2X1

´−1
XT

1X2(X
T
2X2)

−1XT
2

¶
X3β3t. (13)

This expression resembles (3). Here, however, the aim is not to eliminate the inßu-

ence of X2 from (13), but rather to formulate conditions that cause (13) to yield a 0,

which means that the estimator of β1 according to model (11) is unbiased, despite

the underspeciÞcation of model (11). Expression (13) can be rewritten as:

³
XT

1X1 −XT
1X2(X

T
2X2)

−1XT
2X1

´−1
XT

1³
In×n −X2(X

T
2X2)

−1XT
2

´
X3β3t. (14)

With [X1X2] of full rank, the matrix³
XT

1X1 − XT
1X2(X

T
2X2)

−1XT
2X1

´−1
(15)

has rank p1 (see Searle, Casella and McCulloch, 1991, result (26) on p. 451). Then,

unbiasedness of the estimator of β1 is equivalent to

XT
1

³
In×n −X2(X

T
2X2)

−1XT
2

´
X3β3t = 0p1×1 (16)
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(necessary and sufficient conditions). When the operator In×n − X2(X
T
2X2)

−1XT
2 in

the center of the expression is multiplied at its right hand side with a data column,

it yields the residual of the regression of this data column onto the columns of X2.

As a consequence, the conditions (16) mean that the residual of the regression of

the data column X3β3t onto X2 is orthogonal to the columns of X1. Equivalently, it

means that when any column of X1 is regressed onto X2, the residual is orthogonal

to X3β3t. Note that X3β3t is the part of the �true� system (10) involving the columns

of X3, which have been omitted in model (11) (underspeciÞcation).

Obviously, the conditions XT
1

³
In×n − X2(X

T
2X2)

−1XT
2

´
X3 = 0p1×p3 are sufficient

for (16) to be true. Those sufficient conditions for unbiasedness have, perhaps, more

practical value than (16), as they do not involve β3t, which is unknown in practice.

Unbiasedness and separability. In order to achieve (16), it is sufficient (but not

necessary) that XT
1X3 = 0 and XT

1X2 = 0. Note that, under those circumstances,

the coefficients of X1 are separate in the (correctly speciÞed) regression of Y on

[X1X2X3]. Also, the coefficients of X1 are separate in the (underspeciÞed) model

(11). Alternatively, in order to achieve (16), it is also sufficient (but not necessary)

that XT
3X1 = 0 and XT

3X2 = 0. When those conditions are satisÞed, the coeffi-

cients of X3 are separate in the correctly speciÞed regression model, and also in the

(underspeciÞed) regression of Y on [X2X3].

Focus on Separability in Multilevel Models

Datasets are often partitioned according to one or several known classiÞcations,

for example: when for each pupil in a sample the present and previous class, the

present and previous school, . . . have been recorded. Multilevel models have been

developed to incorporate such structure into the statistical analyses � see, amongst

others, Bryk and Raudenbush (1992), Longford (1993), Kreft and de Leeuw (1998),
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Snijders and Bosker (1999) � and often replace the ordinary regression models

which have been employed traditionally.

Researchers naturally prefer to retain as much as possible the familiar rules and

practices of ordinary regression when performing multilevel analyses. However, some

of the properties of ordinary regression that are routinely relied upon may well break

down in the more complex multilevel analyses and should not be taken for granted. A

case in point are the difficulties that arise when one attempts to extend the concept

of explained variance (the R2 measure in ordinary regression) to multilevel analysis,

as was demonstrated by Snijders and Bosker (1994).

Bearing this in mind, we have attempted to clarify the conditions for separa-

bility in multilevel models. In ordinary regression, orthogonality turns out to be

closely linked to (or, in more precise terms: a sufficient condition for) separability.

Raudenbush�s (1989a) example is also based on mutually orthogonal variables, but

it is a special case of orthogonality, namely between a variable centered within the

groups of the higher level and a variable which is constant within each group. If,

however, centering, rather than orthogonality in general, is the key to separability

in multilevel models, then the question of how to center in a model with more than

two levels arises: is a pupil variable centered within classes or rather within schools,

and so on. Also, Raudenbush�s (1989a) numerical example does not represent a case

with random slopes.

Raudenbush (1989a) focussed on the role of centering in multilevel analysis

rather than on separability. Subsequently, some further attention has been devoted

to the issue of centering by Plewis (1989), Longford (1989), Raudenbush (1989b),

Kreft, de Leeuw and Aiken (1995), Schumacker and Bembry (1996), Opdenakker and

Van Damme (1997), and Hofmann and Gavin (1998). Neither of those, however,

except Hofmann and Gavin (1998), discuss separability as a potential beneÞt of
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centering. Hofmann and Gavin (1998) provide a simulated example of separability

in a two-level model, which will be discussed further on.

The issue of centering is referred to by Goldstein (1995) and by Snijders and

Bosker (1999), but they do not discuss centering in the light of separability or

unbiasedness. Centering is discussed in some detail by Kreft and de Leeuw (1998,

section 5.2). They focus on the (non-)equivalence of multilevel models arising from

different centering transformations applied to a given dataset, rather than on the

other purposes (called �technical purposes� by Kreft and de Leeuw) of centering.

Bryk and Raudenbush (1992, pp. 25-28) consider centering and (pp. 117�123 and

pp. 204�207) the issue of unbiasedness in cases of underspeciÞcation in hierarchical

two-level models.

In the previous subsection about unbiasedness in the case of underspeciÞcation

in ordinary regression it was demonstrated that the issues of separability and of

unbiasedness are connected, in that both the conditions for separability and those

for unbiasedness can be interpreted in terms of orthogonality between vectors, and

because some (orthogonality) conditions yield instances of separability as well as

cases of unbiasedness. Nevertheless, the concepts of separability and of unbiased-

ness in the case of underspeciÞcation are not identical. When ordinary regression

analysis is extended to multilevel analysis, the issue of unbiasedness in a situation

of underspeciÞcation (in the Þxed part of the model) becomes more complicated,

as several possibilities can be considered for the covariance part of the model: the

covariance part can be speciÞed correctly or can be misspeciÞed in some way re-

lated to the misspeciÞcation in the Þxed part. Although the problem of separability

equally will prove more subtle in the multilevel case, it is easier to delineate. After

all, it involves only a particular subset of variables in a particular model, whereas

the formulation of a problem of unbiasedness requires indicating a particular �true�
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underlying system and a particular postulated model.

In order to keep this contribution within the scope of one article and to give it a

clear focus, we will concentrate on the issue of separability (as it was formulated in

terms of the likelihood problem) in multilevel models. A rigorous deÞnition of what

is denoted as a �multilevel model� in this text, can be found in the appendix.

Generalizing Separability to Multilevel Models

Generalizing the discussion of separability in the ordinary regression model (1)

to a model based on

N
³
X1β1 +X2β2,σ

2V
´

(17)

where V is a known n × n positive deÞnite matrix, is straightforward. The least
squares problem of minimizing (8) is replaced by the generalized least squares (GLS)

problem which aims at minimimizing

(Y − X1β1 −X2β2)
TV−1(Y − X1β1 −X2β2). (18)

The orthogonality conditions XT
2X1 = 0 are replaced by

XT
2V

−1X1 = 0p2×p1 , (19)

which is sufficient to transform the optimization of (18) into two separate optimiza-

tion problems, with solutions

�β1 = (X
T
1V

−1X1)
−1XT

1V
−1Y (20)

�β2 = (X
T
2V

−1X2)
−1XT

2V
−1Y (21)

meaning that both β1 and β2 are separate in the model based on (17).

A further generalization along the same line to a model based on

N (X1β1 +X2β2,Σ(θ)) , (22)



14

where Σ is a mapping of a set T of parameter values into the set of the real n × n
positive deÞnite matrices, runs into difficulties. Although for the full information

maximum likelihood (FIML) estimate ( �β1, �β2, �θ) it remains true that

XT
2Σ(

�θ)−1X1 = 0p2×p1 , (23)

is sufficient for

�β1 = (X
T
1Σ(

�θ)−1X1)
−1XT

1Σ(
�θ)−1Y (24)

�β2 = (X
T
2Σ(

�θ)−1X2)
−1XT

2Σ(
�θ)−1Y, (25)

the conditions (23) lose most of their practical value because they contain �θ, which

is not known a priori (and which implicitly depends on X1, X2). The worst of it,

however, is that (24) and (25) do not mean anymore that β1 and β2 are separate,

because in general �β1 and �β2 depend on both X1 and X2 via �θ.

On the other hand, Raudenbush�s (1989a) example (see introduction) seems to

indicate that it is not altogether impossible to Þnd non-trivial instances of separa-

bility in models more general than (17). Indeed, the following property of models

based on (22) will prove to be a key to Þnding more such cases:

Lemma L. If W is a positive deÞnite n× n matrix and
(a) XT

2W
−1X1 = 0p2×p1 , and

(b) for all θ ∈ T:

each column of X1 is an eigenvector of Σ(θ)W
−1

and all those columns are associated with the same eigenvalue,

then

β1 is separate in the model based on (22)

and �β1 = (X
T
1W

−1X1)
−1XT

1W
−1Y.

This Lemma can be veriÞed by transforming the FIML problem for (22) using the
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conditions (a) and (b). The likelihood problem then amounts to Þnding (β1,β2, θ)

in Rp1×1 ×Rp2×1 ×T minimizing

ln detΣ(θ)− λ(θ)−1YTW−1Y+ (Y − X2β2)
TΣ(θ)−1(Y − X2β2)

+λ(θ)−1(Y −X1β1)
TW−1(Y − X1β1), (26)

where λ(θ) is the (positive) eigenvalue of Σ(θ)W−1 associated with X1. Clearly, for

β1 this comes down to the separate minimization of (Y −X1β1)
TW−1(Y − X1β1).

When applied to ordinary regression (model (1), where Σ(θ) = σ2I and W = I)

and GLS regression (model (17), with Σ(θ) = σ2V and W = V), condition (a) of

Lemma L yields the orthogonality conditions (6) and (19) respectively; condition (b)

is obsolete in those cases, as all n×1 vectors are eigenvectors of σ2I, with eigenvalue

σ2. Note that, while condition (a) is symmetric, condition (b) is not: separability of

β1 is, in contrast with the previous examples, generally not mirrored by separability

of β2.

The next section presents a number of non-trivial instances of separability in

multilevel models which originate from Lemma L. They are constructed by searching

for eigenspaces of the covariance matrix � see (52) in the appendix �, or subsets

thereof, which do not depend on its parameters. Although multilevel models are

special cases of model (22), this restriction is not sufficient to make the eigenspaces

of the covariance matrix invariant as a matter of course. The parameterized matrix

n3M
i=1


σ2

1 + σ
2
2 + σ

2
3 σ2

3 σ2
3

σ2
3 σ2

1 + σ
2
2 + σ

2
3 σ2

2 + σ
2
3

σ2
3 σ2

2 + σ
2
3 σ2

1 + σ
2
2 + σ

2
3

 , (27)

for example, is the covariance matrix of a three-level random intercept model (see

(53) in the appendix) with in each level-3 group two level-2 groups, one with a

single and one with two basic units. It has an eigenspace consisting of the vectors
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K⊗
h
f
³
σ2

2

σ2
3

´
11
iT
, for any K ∈ Rn3×1, and with f(x) = −x+1

2
+ 1

2
(x2 + 2x+ 9)

1
2 . Thus,

it makes sense to start a search for eigenspaces that are invariant.

Examples of Separability in Multilevel Models

Completely Balanced Completely Hierarchical Random Intercept Model

As a Þrst example, consider a special case of the random intercept model (see

(53) in the appendix). The case is deÞned by two requirements. Firstly, the model is

assumed to be completely hierarchical. This means that the second classiÞcation is

nested within the third, the third is nested within the fourth, and so on � the basic

level is always nested within the second classiÞcation. (It is in such a completely

hierarchical model that all the classiÞcations can be appropriately designated as

�levels�. Nevertheless, we apply the customary but somewhat inappropriate term

�multilevel� model to the most general model deÞned in the appendix.) Secondly,

the model is required to be completely balanced, meaning that each classiÞcation is

balanced, that is: all groups within the classiÞcation have equal size.

The covariance matrix of this rigidly structured instance of model (53) can (after

a permutation of the basic units) be expressed as:

ngM
ig=1

σ2
gJqg×qg +

sg−1M
ig−1=1

σ2
g−1Jqg−1×qg−1 + . . .+

s2M
i2=1

³
σ2

2Jq2×q2 + σ
2
1Iq2×q2

´ (28)

with J indicating a matrix of 1�s, sj denoting the number of level-j groups within

a level-(j+1) group and qj indicating the size of a level-j group. Its eigenvalues

and eigenvectors can be derived analytically. They are listed in Table 1. There are

g different eigenvalues. The eigenspace of the l-th eigenvalue consists of all level-

l vectors (that is: vectors that are constant within each of the nl level-l groups,

but which are not constant within all level-l + 1 groups) that are centered at level

l+1. The latter means that the sum of their elements within each level-l+ 1 group
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Table 1.

Completely Balanced Completely Hierarchical Random Intercept Model

Eigenvalue Multiplicity Eigenspace: the n× 1 vectors . . .
σ2

1 n− n2 . . . centered at level 2

σ2
1 + q2σ

2
2 n2 − n3 . . . of level 2 centered at level 3

...
...

...Pl
h=1 qhσ

2
h nl − nl+1 . . . of level l centered at level l + 1

...
...

...Pg−1
h=1 qhσ

2
h ng−1 − ng . . . of level g − 1 centered at level gPg

h=1 qhσ
2
h ng . . . of level g

equals zero. The multiplicity number in the second column of Table 1 can be easily

derived: the set of all vectors constant within level-l groups has nl degrees of freedom;

the centering requirement imposes nl+1 restrictions, excluding, amongst others, the

non-zero vectors which are constant within all level-l + 1 groups. Note that the

multiplicity numbers add up to n, which indicates that Table 1 lists the complete

eigenvalue/eigenvector decomposition of the n× n covariance matrix.
The most interesting feature of Table 1 is that, although the eigenvalues are

dependent on the parameters, the eigenspaces are not. This provides opportunities

to apply Lemma L and to derive a set of rules concerning separability in a completely

balanced completely hierarchical random intercept model.

First, consider the case of a subset of the explanatory variables of the model, all

centered at level 2. Then every variable (data column) in the subset is an eigenvector

of the covariance matrix (28), associated with the eigenvalue σ2
1 (Table 1). Also, the

subset is orthogonal � in the sense of: inner product zero � to every explanatory

variable of level l, l ≥ 2, due to the centering at level 2. Thus, if the subset is



18

orthogonal to the remaining level-1 explanatory variables in the model (if present),

the conditions of Lemma L are satisÞed. Consequently, the following rule for basic

level variables applies (and is denoted with the �B� of �basic level�):

Rule B. In a completely balanced completely hierarchical random intercept

model, the coefficients of a subset of (basic level) explanatory variables cen-

tered at level 2 and orthogonal to the remaining level-1 explanatory vari-

ables, are separate.

Secondly, Table 1 points at a similar application of Lemma L to variables of inter-

mediate levels:

Rule I. For an intermediate level l in a completely balanced completely hier-

archical random intercept model, the coefficients of a subset of explanatory

level-l variables centered at level l+1 and orthogonal to the remaining vari-

ables of level l and of lower levels, are separate.

Note that, for a lower level variable to be orthogonal to a set of level-l variables, it

is sufficient (but not necessary) that the lower level variable is centered at level l or

at a lower level. A basic level variable, for example, is orthogonal to all variables of

level 3 (and of higher levels) when it is centered at level 2 or at level 3. Finally, a

similar rule can be derived for top level variables:

Rule T. In a completely balanced completely hierarchical random intercept

model, the coefficients of a subset of top level explanatory variables orthog-

onal to the remaining explanatory variables, are separate.

The intercept term Jn×1 can be regarded as a top level variable. A data column

is orthogonal to Jn×1 when the sum of its elements equals zero, that is: when it

is �grand mean centered�. Thus, when all the (measured) explanatory variables in
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a completely balanced completely hierarchical random intercept model are grand

mean centered, the intercept is separate.

It is instructive to consider the special case of a completely balanced completely

hierarchical random intercept model where all the explanatory variables of the basic

and intermediate levels are centered at the next (higher) level. In such a case, the

FIML estimates of the Þxed effects at any given level can be obtained simply as

the least squares approximation of the response by means of the variables at that

level. Within the set of explanatory variables of each level, further separation can

be achieved by introducing orthogonality, as in ordinary regression.

In order to illustrate a part of their discussion of centering decisions in organi-

zational research, Hofmann and Gavin (1998) created a balanced two-level dataset

of 150 basic units classiÞed in 15 groups, containing a response Y, four level-1 in-

dependent variables A,B,C,D centered at level 2, and one level-2 variable G. The

dataset was analysed by means of models based on

N

Ã
J150×1α+Xβ +Gγ,σ

2
1I150×150 + σ

2
2

15M
i=1

J10×10

!
(29)

with, successively, X = A, X = [AB], X = [ABC], X = [ABCD]. Hofmann and

Gavin (1998) found that the estimate for γ remained constant within this sequence

of analyses. From the point of view developed in the present text, this is explained

by Rule T, which implies that the coefficients of the subset {J,G} of independent
variables are separate in the models based on (29). The FIML estimates for those

coefficients are, in all those models: �α
�γ

 = ³
[JG]T[JG]

´−1
[JG]TY. (30)

When (29) with X = [ABCD] is deÞned as the correctly speciÞed model, the other

three models can be regarded as underspeciÞed in the Þxed part (while being cor-
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rectly speciÞed in the random part). Thus, the illustration of Hofmann and Gavin

(1998) also represents an example of unbiasedness in a case of underspeciÞcation:

the estimator (see (30)) for α and γ in those underspeciÞed models is not only un-

biased, it is even identical to the estimator based on the correctly speciÞed model,

due to the separability of the coefficients α and γ.

Partially Balanced Completely Hierarchical Random Intercept Model

The prerequisite of balancedness which was introduced in the previous subsec-

tion may well be at odds with the requirement of optimal utilization of a given

dataset. When this prerequisite is dropped in the case of (29), that is: when the

analysis is based on:

N

Ã
Jα+Xβ +Gγ, σ2

1In×n + σ
2
2

n2M
i=1

Jq2i×q2i

!
, (31)

with q2i denoting the size of the i-th level-2 group (and with X and G as before),

the FIML estimates of the intercept, γ, σ2
1 and σ

2
2 are connected by �α

�γ

 = ³
[JG]TD[JG]

´−1
[JG]TDY (32)

with D =
Ln2
i=1

³
�σ2
1 + q2i

�σ2
2

´−1
Iq2i×q2i. When q2i is not dependent on i (balancedness),

(32) is reduced to (30), implying separability for {α, γ}. In general, however, �α and
�γ are dependent on the columns of X via �σ2

1 and
�σ2
2. Thus, removing the requirement

of balancedness causes at least a partial breakdown of the set of rules established in

the previous section.

In the (general) random intercept model, based on the covariance matrixPg
l=1 σ

2
lW

(l)(W(l))T (see appendix), the matrix W(l)(W(l))T, which deÞnes the l-

th classiÞcation, can be expressed as P(l) (
Lnl
i=1 Jqli×qli

) P(l) by means of a suitable

n×n permutation matrix P(l). It is sufficiently tractable for an analytical derivation
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of its eigenvalue/eigenvector decomposition, which is presented in Table 2, assum-

ing that the l-th classiÞcation contains k(l) different group sizes r1, r2, . . . , rk(l), with

multiplicity m1,m2, . . . ,mk(l) , respectively. Whereas one can conceive that in a par-

Table 2.

Eigenvalue/Eigenvector Decomposition of W(l)(W(l))T

Eigenvalue Multiplicity Eigenspace: the n× 1 vectors . . .
0 n− nl . . . centered within the groups El

0

r1 m1 . . . constant within each group of size r1 El
r1

and zero in the other nl −m1 groups

...
...

...

ri mi . . . constant within each group of size ri El
ri

and zero in the other nl −mi groups

...
...

...

rk(l) mk(l) . . . constant within each group of size rk(l) El
r

k(l)

and zero in the other nl −mk(l) groups

The groups referred to are the groups of the l-th classiÞcation,

which contains k(l) different group sizes.

ticular research context the within-group centering of a data column according to

the l-th classiÞcation (making the transformed column a member of El
0 in Table

2) may be compatible with the substantive requirements of an operationalization,

the usefulness of an eigenspace El
ri
, with possibly only a few groups of size ri,

seems doubtful. When the l-th classiÞcation is balanced, however, the eigenspaces

El
r1
, . . . ,El

r
k(l)
merge into a single eigenspace El

ql
of all n× 1 vectors which are con-

stant within each group. Any measurement that consists of obtaining one value for

each of the nl groups of the l-th classiÞcation yields a n× 1 data column belonging
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to El
ql
.

Table 3 represents the interesting eigenspaces in the case of a completely hi-

erarchical g-level random intercept model with each of the f lower levels (f < g)

balanced (hence the term �partially balanced�). The nestedness of the classiÞca-

Table 3.

Partially Balanced Completely Hierarchical Random Intercept Model: Eigenspaces

1 2 3 . . . f − 1 f f + 1 . . . g

E2
0 ⊂ E3

0 ⊂ . . . ⊂ Ef−1
0 ⊂ Ef

0 ⊂ Ef+1
0 ⊂ . . . ⊂ Eg

0

E1
1 ⊃ E2

q2
⊃ E3

q3
⊃ . . . ⊃ Ef−1

qf−1
⊃ Ef

qf

The levels 1,2,. . . ,f are each balanced. Only the �interesting�

eigenspaces have been indicated. Note that E1
1 = Rn×1.

tions is a prerequisite for the inclusion relationships indicated in Table 3. These

relationships can be exploited by observing that the covariance matrix of the ran-

dom intercept model consists of a linear combination of the matrices W(1)(W(1))T,

W(2)(W(2))T, . . . , W(g)(W(g))T. When g eigenspaces E1,E2, . . . ,Eg associated with

matrices A1,A2, . . . ,Ag and eigenvalues λ1,λ2, . . . ,λg, respectively, have a cross-

section E1∩E2∩ . . .∩Eg containing a non-zero vector, then any linear combinationPg
i=1 aiAi has

Pg
i=1 aiλi as an eigenvalue, with its eigenspace encompassing this

cross-section. Consider then, for any j ∈ {1, 2, . . . , f}, the set Ej
qj
∩ Ej+1

0 , which

consists of all n × 1 columns representing level-j data centered at level j + 1. Ac-
cording to Table 3, this set is included in an eigenspace of W(l)(W(l))T, for every

l ∈ {1, 2, . . . , g}. Consequently, Ej
qj
∩ Ej+1

0 is included in an eigenspace of the co-

variance matrix of the partially balanced completely hierarchical random intercept

model. The set Ej
qj
∩ Ej+1

0 is not dependent on the parameters of the covariance

matrix. Thus, Lemma L can be applied, which implies that
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Rule B is extended to the partially balanced completely hierarchical random

intercept model. Rule I holds for the balanced intermediate levels (l ≤ f).

Referring again to the model based on (31) as an example, it is clear that Rule

B guarantees that β is separate. (Remember that the columns of X are centered at

level 2.) It is also instructive to consider the problem of underspeciÞcation when a

response generated by the �true� system

N

Ã
Jαt + [ABCD]βt +Gγt,σ

2
1tIn×n + σ

2
2t

n2M
i=1

Jq2i×q2i

!
(33)

is modeled as (31) with X consisting of one, two or three columns of [ABCD]. The

bias of the estimator of α and γ is

³
[JG]T�Σ−1[JG]

´−1
[JG]T�Σ−1[ABCD]βt (34)

with �Σ = �σ2
1In×n + �σ2

2

Ln2
i=1 Jq2i×q2i, where

�σ2
1 and

�σ2
2 are estimates according to the

underspeciÞed model. As [ABCD]βt is an eigenvector of �Σ (whatever the values of

�σ2
1 and

�σ2
2 are!) and is orthogonal to [JG], this bias is equal to zero. This example

seems to indicate that the line of reasoning of the present text, which is founded on

the eigenvalue/eigenvector decomposition of the covariance matrix, can be fruitfully

applied to a discussion of unbiasedness in cases of underspeciÞcation. Note also that

although α and γ are separate in neither the correctly speciÞed nor the underspeciÞed

model, their estimator derived from the underspeciÞed model is unbiased.

Basic Level Variables in a Random Intercept Model

As the random intercept model is, by deÞnition (see appendix), balanced at the

basic level, Rule B extends to any completely hierarchical random intercept model.

Rule B can be extended further. Consider the case of a random intercept model,

with the single restriction that, apart from the basic level, an additional classiÞcation

(call it the second) is nested within all the remaining classiÞcations (3rd, 4th, . . . ,
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g-th). A dataset of pupils nested within classes, each of which is, per subject, taught

by one subject teacher, serves as an example. The class level is nested within each

subject teacher classiÞcation, but the teacher classiÞcations are not nested amongst

themselves. In such a case E2
0 (see Table 2) is included in E3

0,E
4
0, . . . ,E

g
0. Using

the properties of eigenvalues and eigenvectors and Lemma L as in the previous

subsection, it follows that Rule B applies to such a model: basic level variables

centered at level 2 and orthogonal to the remaining basic level variables, are separate.

Similarly, Rule B can be extended to any random intercept model, provided that

it makes sense to center variables within the groups of all the classiÞcations (except-

ing the basic level). In a dataset of pupils nested within schools and neighbourhoods,

separability of pupil level variables may be achieved by centering them within each

school/neighbourhood combination.

Multilevel Model with Random Intercept Structure at the Basic Level

Variables involved in the random part. According to the deÞnition of a multilevel

model which is adopted in this text (see appendix), any of the available independent

variables may be involved in the random part of the model. Restrictions on the set of

potential parameter values constitute an essential part of the deÞnition of subtypes of

the multilevel model. Such restrictions determine which of the independent variables

are effectively involved in the random part. In the extreme case of a random intercept

model, for each classiÞcation only a single parameter of the random part is allowed

to assume non-zero values, causing only the constant vector J, which implements

the intercept, to be involved in the random part and excluding the other (proper)

independent variables.

Orthogonalization within groups. Random intercept models have been discussed

from the point of view of separability in the previous subsections. It was demon-
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strated that, under certain conditions, the coefficients of centered variables are sep-

arate. A n× 1 data column B is centered within the groups of the l-th classiÞcation
when the sum of its components within each group equals zero. This also means

that (W(l))TB = 0nl×1, that is: the vector B is orthogonal to the vector Jn×1 within

each group of the l-th classiÞcation. In more general multilevel models the n × nl
matrix W(l) of indicator variables is replaced by (or rather: incorporated in) the

matrices (l)Z(hi), i = 1, 2, . . . , rl (assuming that the columns of the matrix X of inde-

pendent variables indicated by h1, h2, . . . , hrl
are effectively involved in the l-th term

of (52)). The matrix (l)Z(h) incorporates both the group membership data for the l-th

classiÞcation and the data of the h-th independent variable, via (l)Z
(h)
ij = W

(l)
ij Xih.

When

h
(l)Z(h1)(l)Z(h2) . . . (l)Z(hrl

)
iT
B = 0nlrl×1, (35)

the vector B is orthogonal to each of the independent variables involved in the l-th

term of (52), within each group of the l-th classiÞcation. This is described by stating

that B is orthogonalized within the groups of the l-th classiÞcation with regard to the

matrix [X.h1X.h2 . . .X.hrl
]. The orthogonalization of the data column B amounts to

replacing it with

µ
In×n −

h
(l)Z(h1)(l)Z(h2) . . . (l)Z(hrl )

i h
(l)Z(h1)(l)Z(h2) . . . (l)Z(hrl)

i+
¶
B, (36)

where �+� indicates the Moore-Penrose inverse (Searle, Casella and McCulloch,

1991, pp. 447�448), just like centering B means: replacing it with

³
In×n −W(l)(W(l))+

´
B. (37)

The i-th component of the n× 1 vector

W(l)(W(l))+B = W(l)
³
(W(l))TW(l)

´−1
(W(l))TB (38)



26

is the mean of B in the group of the l-th classiÞcation which contains the i-th basic

unit.

Note that when a variable is within-group centered or, a fortiori, when a variable

is within-group orthogonalized, a part of its information content is removed. This

may cause a shift in its interpretation (in the sense that after the transformation

another concept is associated with it). Whether this shift is admissible or desirable

depends on the research context. The transformation may also yield a �variable� (in

the extreme case: a column of zeros) which is uninterpretable.

Sufficient conditions for separability. This concept of within-group orthogonal-

ization enables the formulation of sufficient conditions for separability in multilevel

models with non-trivial independent variables (that is: other than the constant vec-

tor J) involved in the random part (�O� refers to �orthogonalization�):

Rule O. Consider a subset of the explanatory variables in a multilevel model

with a random intercept structure at the basic level. If the variables of the

subset are orthogonal to the remaining explanatory variables in the Þxed

part and, for each classiÞcation in the model (except the basic level), the

variables of the subset are orthogonalized within the groups of the clas-

siÞcation at hand, with regard to the variables effectively involved in the

corresponding term of the covariance matrix, then the coefficients of this

subset are separate.

In the covariance matrix of a multilevel model with a random intercept structure at

the basic level:

σ2
1In×n +

gX
l=2

 pX
h=1

pX
h0=1

Ω
(l)

hh
0
(l)Z(h)((l)Z(h

0
))T

 (39)
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each matrix (l)Z(h
0
) which corresponds to a potentially non-zero Ω

(l)

hh0 is orthogonal

to the subset of variables mentioned in the Rule (those are the within-group orthog-

onalization conditions). Thus, the variables of the subset are eigenvectors of (39)

with eigenvalue σ2
1. Lemma L then proves the rule.

An example. Consider an example based on the two-level model discussed by

Bryk and Raudenbush (1992) (see also the appendix). The n basic units are clas-

siÞed in n2 groups, as described by the n × n2 matrix W of indicator variables.

The n × p matrix of independent variables X is structured: it is constructed on

the basis of measurements for p1 basic level variables � stored in a n × (p1 + 1)

data matrix P(d), including Jn×1 � and for p2 group level variables � stored in

a n2 × (p2 + 1) data matrix G
(d), including Jn2×1. For the purposes of this il-

lustration, it is assumed that the matrix P(d) is partitioned into two blocks (two

subsets of variables), P(d) = [P(d)
a P

(d)
b ], containing pa and pb variables, respectively

(pa + pb = p1 + 1). In the notation used by Bryk and Raudenbush (1992, pp. 225-

226), X can be expressed as: X = [PaGa PbGb] where Pa = [Z
(1)Z(2) . . .Z(pa)], Pb =

[Z(pa+1)Z(pa+2) . . .Z(pa+pb)] with Z
(h)
ij = WijP

(d)
ih , and Ga = [

Lpa
i=1G

(d)
.1 . . .

Lpa
i=1G

(d)
.p2+1],

Gb = [
Lpb
i=1G

(d)
.1 . . .

Lpb
i=1G

(d)
.p2+1]. The n× (p1+1)(p2+2) matrix X contains the con-

stant column Jn×1, the p1+ p2 �main� variables and the p1p2 cross-level interaction

variables. The �full� covariance matrix adopted by Bryk and Raudenbush (1992)

can be expressed as:

σ2In×n +
pa+pbX
h=1

pa+pbX
h0=1

Ωhh0Z
(h)(Z(h

0
))T (40)

with σ2 ∈ R>0 and Ω ∈ R
(pa+pb)×(pa+pb)
pos. semidef. . It involves (only) the intercept vector and

the main basic level variables in the second term. Consider now the restricted model
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based on

N

PaGaβa + PbGbβb,σ2In×n +
paX
h=1

paX
h
0
=1

Ωhh0Z
(h)(Z(h

0
))T

 (41)

where only the columns of P(d)
a are involved in the group level term of the covariance

matrix. According to Rule O, the conditions

[Z(1)Z(2) . . .Z(pa)]TPbGb = 0n2pa×(p2+1)pb
, (42)

which mean that PbGb is orthogonalized within the groups of the second level with

regard to P(d)
a , and

(PbGb)
TPaGa = 0(p2+1)pb×(p2+1)pa , (43)

which express that PbGb is orthogonal to the remaining independent variables in the

Þxed part, are sufficient for βb to be separate in (41).

One can verify that the joint conditions (42) and (43) are equivalent to

PT
b Pa = 0pb×pa . (44)

According to Bryk and Raudenbush (1992, p. 226), (44) is also sufficient for the

unbiasedness of the estimator of βb according to the model

N

PbGbβb, σ2In×n +
pa+pbX
h=pa+1

pa+pbX
h0=pa+1

Ωhh0Z
(h)(Z(h

0
))T

 , (45)

which is underspeciÞed in both the Þxed and the random part when the correct

speciÞcation is

N

PaGaβa + PbGbβb,σ2In×n +
pa+pbX
h=1

pa+pbX
h0=1

Ωhh0Z
(h)(Z(h

0
))T

 . (46)

Concluding Remarks and Summary

Scope of the results presented above

Residual maximum likelihood estimation. The multilevel model deÞned in the

appendix implies that the distribution of the response, when it has been projected
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onto and represented within the n− p dimensional orthogonal complement of the p
columns of the independent variables matrix X, depends on the parameters of the

random part of (52) only. Thus, those parameters can be estimated by applying

the maximum likelihood principle to this �residual� response and its distribution,

resulting in the �residual maximum likelihood� (REML) estimates of the parame-

ters of the random part (see Searle, Casella and McCulloch, 1991, chapter 6). The

parameters of the Þxed part may � as suggested by Kreft and de Leeuw (1998,

p. 132), and by Searle, Casella and McCulloch (1991, p. 254) � be estimated in a

second step, by means of a GLS procedure based on (52), after the substitution of

the random part parameters with their REML estimates.

When, in the case of a model based on N(X1β1 + X2β2,Σ(θ)) (22), the condi-

tions of Lemma L are satisÞed and (β1,β2) is estimated by means of GLS based

on N(X1β1 + X2β2,Σ(�θ)), the estimate for β1 is equal to (X
T
1W

−1X1)
−1XT

1W
−1Y,

which implies that β1 is separate. The property is not dependent on the deÞnition

of the estimate �θ. Thus, when separability has been proven on the basis of Lemma

L, this result is not inßuenced by the choice between FIML or REML (+ GLS).

Moreover, when a subset of coefficients is separate, their estimates according to the

two competing principles coincide.

Sufficient conditions. This text does not provide a complete set of rules (in the

sense of: sufficient and necessary conditions) for separability in multilevel models.

Instead, generic sufficient conditions were formulated and a list of examples was

provided.

As a Þnal example, consider the analysis of a quasi-experiment involving two

treatments administered to subjects at several sites, as described by Raffe (1991).

In the data matrix X = [J P G T], T is a basic level variable indicating the treatment

received. Its coefficient, which quantiÞes the differential effect of the two treatments
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on the response, is the focus of the analysis. A set of basic level variables (columns

of P) and site level variables (columns of G) qualify the meaning of the treatment

effect and alleviate � together with the multilevel structure of the model � the

inßuence of population differences between the sites.

In a two-level random intercept model, it is sufficient (Rule B) to center the

columns of [P T] within the sites in order to make their coefficients separate, shielding

their estimates from unknown or badly measured site characteristics. The within-

site centering of the indicator variable T (see also Bryk and Raudenbush, 1992, p.

28) replaces the 1�s (0�s) of its usual implementation with (minus) the fraction of

subjects receiving treatment 0 (1) in the site.

Raffe (1991), however, takes into account the possibility of differences in the

treatment effect between sites, and introduces a site level random term in the slope

of T, thus involving T in the random part. With the previous examples in mind,

it is no surprise that the coefficient of T is not separate in this model (despite a

grand mean centering of P and within-site centering of T), as is shown by Table

4 in Raffe�s (1991) text. Also, Rule O cannot be applied to make the coefficient of

T separate: within-site orthogonalization of T with regard to T leaves only a zero

vector. Nevertheless, it can be shown that a within site centered treatment variable

T is an eigenvector of the covariance matrix of this model when all the sites have

the same size and the same number of subjects receiving treatment 1 (0), and the

site level random parts of the intercept and the slope of T are not correlated (Ω(2)

diagonal, see appendix). It is then sufficient that PTT = 0 (by centering P within

each site/treatment combination, for example) to make the coefficient of T separate.

Note that this instance of separability is founded on Lemma L, but is not included

in Rule O.
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Centered Variables

A n× 1 data column centered within the groups of a classiÞcation characterised
by the n × nl matrix W(l) (consisting of the indicator variables deÞning the nl

groups) is orthogonal to W(l). Consequently, it is an eigenvector of W(l)(W(l))T,

which is a building block of the covariance matrix of a random intercept model

involving this classiÞcation. This is the foundation of the special role of centered

variables in the present discussion about separability and in related accounts of

unbiasedness (see the present text and Bryk and Raudenbush, 1992, pp. 204�207).

This structural relationship between centered variables and the random intercept

model probably also explains the relatively large share of attention that has been

devoted in the multilevel analysis literature to issues of centering, as compared to the

other aspects of the transformation of raw data into operationalizations of concepts.

Those preliminary steps are usually outside the scope of books and texts concerned

with multilevel analysis.

Centering may be applied in order to �shield� variables measured at a balanced

level from (badly measured or incomplete) data for variables measured at other

levels in a random intercept model (see Rules B and I). With that potential use of

centering in mind, it is interesting to note that the centering transformation itself

requires only group membership data. It does not require any information about

the variables which the analyst wants to avoid, except for the level associated with

them.

If the efforts of, amongst others, Bryk and Raudenbush (1992), Kreft and de

Leeuw (1995) and Hofmann and Gavin (1998) have been successful, analysts will

think carefully about whether or not, and how, to center their variables when prepar-

ing a multilevel analysis. The range of centering (or, for that matter, orthogonaliza-

tion) options broadens quickly when more classiÞcations become involved. Consider,
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for example, the case of a dataset of n pupils within n2 classes within n3 schools, with

p1 pupil variables (n× p1 data matrix P) and p2 class characteristics (n2 × p2 data

matrix C). For each pupil variable, the analyst faces at least two options, namely to

center within classes or rather within schools. Also, if the analyst wants to center the

class variables at the school level, it is possible to apply the centering transformation

to the n2×p2 data matrix C or rather to the �expanded� n×p2 class characteristics

matrix W(2)C (where W(2) deÞnes the class level). In the former case, all classes

within a school have equal weight, in the latter classes are weighted according to

their number of pupils. If the prevalent argument for centering the pupil variables

happens to be the advantage of separability, Rule B dictates that they should be

centered within classes rather than (merely) within schools. Unfortunately, Rule I

is not able to distinguish between centering C or centering W(2)C, because it is

only applicable when all class sizes in the dataset are equal, in which case the two

centering options are equivalent.

Centering decisions in multilevel analysis may have repercussions on the (suc-

cess of) the operationalization of the concepts of interest, may constitute a choice

between different model speciÞcations, may help to obtain the advantages of separa-

bility and unbiasedness, and may, allegedly, even have a signiÞcant inßuence on the

numerical properties of the iterative algorithms employed to estimate the models. It

is important to note that separability (and unbiasedness), despite its �natural� link

with centering (via the eigenvalue/eigenvector structure of the covariance matrix of

the random intercept model) is only one item in this list, which was stated in what

is, in our opinion, the order of decreasing priority.
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Summary

We formulated sufficient conditions for separability of components of the para-

meter vector β in a model based on Y ∼ N(Xβ,Σ(θ)) and the maximum likelihood

principle. The application of those generic sufficient conditions to the multilevel

model required a search for invariant eigenspaces of the multilevel model covariance

matrix. It resulted in a list of examples, each stating rules (sufficient conditions)

for separability in particular subtypes of the multilevel model. The list ranges from

the rigidly structured completely balanced completely hierarchical random intercept

model to the fairly general multilevel model with a random intercept structure at

the basic level.

Two conclusions stand out. First, the special role (with regard to separability,

but also, for example, in the issue of unbiasedness in cases of underspeciÞcation)

of within-group orthogonalized and centered variables in multilevel models, can be

traced back to the eigenvalue/eigenvector decomposition of the covariance matrix.

Second, in unbalanced multilevel models, the possibility to build in separability

seems to be limited to coefficients of basic level variables, under stringent orthogo-

nality requirements.

In a broader perspective, those results illustrate the typical breakdown of sym-

metries and balances when ordinary regression is replaced with multilevel modeling,

implying the need to reformulate the rules directing data analyses. This article is

an attempt to contribute to this effort.

Appendix

The range of models indicated by the term �multilevel model� is not unequivocal

in the literature. Instead, the deÞnition of the scope of the term and the notation

are usually geared to the purpose of interest. Therefore, this appendix provides a
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rigorous deÞnition of the multilevel model referred to in this article.

Ingredients of the multilevel model. It is assumed that measurements for p �in-

dependent� variables and for a �response variable� have been obtained for n (basic)

units of observation. The data on the independent variables are stored in the n× p
matrix X, which is assumed to have the maximal rank, p. The symbol Y indicates

the n× 1 response data column.
It is also assumed that the set of n basic units is partitioned in g different ways.

The Þrst partition is the �basic level�, which trivially allocates each basic unit to its

exclusive group (a classiÞcation consisting of n1 = n groups). The g − 1 remaining
classiÞcations (�levels�) partition the basic units into n2, n3, . . . , ng groups respec-

tively. At this stage no nesting relationships between those g − 1 non-trivial classi-
Þcations are postulated. The group membership status of each basic unit according

to the g − 1 non-trivial classiÞcations must be explicitly available if a multilevel
analysis is to be applied. Such membership data can be represented in several ways.

Here, it is assumed that group membership is stored by means of scores on indicator

variables (0/1), one variable for each group of each classiÞcation. For the l-th clas-

siÞcation (l = 1, 2, . . . , g) the j-th column of the n × nl matrix W(l) represents the

indicator variable for the j-th group: every basic unit belonging to the group scores

a 1, the other units score a 0.

Multilevel models are parametric. In the deÞnition of multilevel models which is

used here, the parameters are: a p×1 column β of �Þxed effects� and g p×p matrices
Ω(1), Ω(2), . . . , Ω(g) (one for each classiÞcation) for the �random part� of the model.

In order to deÞne a particular multilevel model the set of potential values of the

parameter set (β,Ω(1),Ω(2), . . . ,Ω(g)) must be speciÞed. This set of potential values

is indicated by the symbol D. The discussion of multilevel models in this article is
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limited to cases where D is a subset of

Rp×1 ×H×Rp×p
pos. semidef. × . . .×Rp×p

pos. semidef.| {z }
g−1 factors

(47)

where Rp×1 is the set of all real p× 1 vectors, Rp×p
pos. semidef. is the set of the positive

semideÞnite real p× p matrices, and H denotes the subset of Rp×p
pos. semidef. consisting

of the matrices Ω1 that satisfy the condition

Xi.Ω1(Xi.)
T > 0 (48)

for every row (record) Xi. in the data matrix X.

Formulation with latent variables.When the ingredients p, n, X, Y, g, n1, n2,

. . . , ng, W
(1), W(2), . . . , W(g) and D have been speciÞed, the multilevel model

can be formulated. The model postulates the existence of a parameter value

(β,Ω(1),Ω(2), . . . ,Ω(g)) from D and the existence, for each value l ∈ {1, 2, . . . , g}, of
a series of p stochastic vectors, each of dimension nl × 1: (l)U (1),(l)U (2), . . . ,(l)U (p).

Each of the stochastic vectors is normally distributed with mean zero. The vari-

ance/covariance relationships between the gp stochastic vectors are determined

by:

cov((l
0
)U (h

0
),(l

00
)U (h

00
)) =


0n

l
0×n

l
00 when l

0 6= l00

Ω
(l
0
)

h
0
h
00 In

l
0×n

l
0 when l

0
= l

00
(49)

The model then states that the response vector Y is a realization of the n × 1
stochastic variable

Xβ +
gX
l=1

pX
h=1

(l)Z(h)(l)U (h). (50)

In this expression, the matrices (l)Z(h) implement the group structure and the in-

volvement of the independent variables in the random part of the model:

(l)Z
(h)
ij = W

(l)
ij Xih (51)
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which means that the j-th column of the n×nl matrix (l)Z(h) is obtained by copying

the h-th column of X and replacing the values of units that do not belong to the

j-th group of the l-th classiÞcation by zero.

Formulation without latent variables. This article focusses on the estimation of

the parameters β, Ω(1), Ω(2), . . . , Ω(g) only, and not on the calculation of scores for

the latent variables (l)U (h). For such a purpose, the multilevel model can be formu-

lated without any explicit involvement of the latent variables. It then postulates the

existence of a parameter value (β,Ω(1),Ω(2), . . . ,Ω(g)) from D which is such that the

response vector Y is a realization of a n× 1 stochastic variable which is distributed
as

N

Xβ, gX
l=1

pX
h=1

pX
h0=1

Ω(l)

hh0
(l)Z(h)((l)Z(h

0
))T

 . (52)

The latter formulation of the multilevel model, without the latent variables, is im-

plied by the previous latent variables formulation.

Note that the requirement that D is a subset of (47) guarantees that the covari-

ance matrix in (52) is positive deÞnite for any admissible value of the parameters.

Subtypes derived from the full model. The deÞnition of multilevel models which

is adopted here is fairly general, as no a priori limit is imposed on the number

of different classiÞcations, nor is there any a priori assumption about nesting re-

lationships (except for the nestedness of the basic level within all other �levels�).

Moreover, there is no a priori difference between the treatment of variables that can

vary between any pair of basic units (�basic level� variables or �level-1� variables)

and, say, variables that are constant within each group of the l-th classiÞcation

(�level-l� variables) or indeed the constant vector Jn×1 (all elements equal to 1) that

implements the intercept. This is in line with the general formulation of multilevel
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models proposed by Goldstein (1995, p. 20), who notes that �any of the explanatory

variables may be measured at any of the levels�.

In a meaningful discussion of separability, however, it proves necessary to deÞne

and consider special types of multilevel models. Such subtypes are deÞned by means

of assumptions about the classiÞcations (nesting relationships between classiÞca-

tions, balancedness within classiÞcations) and by specifying the set D of potential

parameter values. A choice of the set D that is particularly helpful in the discussion

of separability is the one that reduces the general multilevel model to a so-called

random intercept model. Assuming that the r-th column of X is the constant n× 1
vector of 1�s (which implements the intercept in the model), the reduction to a ran-

dom intercept model is achieved by requiring that all elements of each parameter

matrix Ω(l) are zero, excepting the (r,r)-th element, which will be denoted as σ2
l .

The resulting model then postulates the existence of parameter values β ∈ Rp×1,

σ2
1 ∈ R>0 and σ

2
2,σ

2
3, . . . ,σ

2
g ∈ R≥0 such that Y is a realization of a stochastic

variable distributed as

N

Ã
Xβ,

gX
l=1

σ2
lW

(l)(W(l))T
!
. (53)

Between the two extremes of a �full� model which is deÞned by choosing D

equal to the set (47) and a random intercept model with only g scalar parameters in

the random part, lies a broad range of models that are speciÞed by choosing com-

binations of parameter components which are to be kept Þxed at given values. The

hierarchical two- and three-level models (a basic level nested within a second level,

which is nested within a third, for example: pupils within classes within schools)

discussed by Bryk and Raudenbush (1992) make an important example of such

intermediate models.

In the most general three-level model deÞned by Bryk and Raudenbush (1992),

some (say: p1) independent variables have been measured at the basic level (meaning
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that they are not constant within the groups of the second level), some (p2) at level

2 (they are constant within level-2 groups, but not within all groups of the third

level), and some (p3) at level 3 (they are constant within level-3 groups, but not

constant overall). In its fullest form, the datamatrix X contains not only the constant

column Jn×1 and the p1 + p2 + p3 �main� variables, but also the p1p2 + p2p3 + p3p1

second order cross-level interaction variables and the p1p2p3 third order cross-level

interaction variables. The p×p (with p = 1+p1+p2+p3+p1p2+p2p3+p3p1+p1p2p3)

parameter matrix Ω(1), however, is restricted as in the random intercept model, with

only one non-zero element (at the row and column associated with the constant

vector Jn×1). Secondly, the elements of the p × p matrix Ω(2) are allowed to be

non-zero in the block corresponding to the intercept vector Jn×1 and the p1 main

level-1 variables only. Thirdly, the elements of the p× p parameter matrix Ω(3) can

be different from zero in the block associated with the intercept, the p1 main level-1

variables, the p2 main level-2 variables and the p1p2 interaction variables between

the basic and the second level, but not elsewhere. None of the main level-3 variables

nor any interaction variable involving a level-3 variable is represented in the random

part.
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