
 1

6$PJ,��$XWRPDWLF�0HWDGDWD�*HQHUDWLRQ�Y����

Michael Meire, Erik Duval
Dept. Computer Science,

Katholieke Universiteit Leuven, Belgium
{michael.meire, erik.duval}@cs.kuleuven.be

Xavier Ochoa Chehab

Information Technology Center,
ESPOL-Escuela Superior Politécnica del Litoral

Guayaquil, Ecuador
xavier@cti.espol.edu.ec

$EVWUDFW� Relying fully on manual effort in generating metadata is not the way
to go: we need automation of this process, as much as possible, without losing
the “quality” of the metadata. In this paper we report on our experiences with
automatic metadata generation. We briefly outline the first version of our
framework for automatic metadata generation and then report on some lessons
we learned. These lessons resulted in a redesign of the framework. An
important aspect in this redesign is the bottom-up strategy, instead of the top-
down design we used before. This means that we start with an abstract
specification that is then made concrete in implementations. This should allow
for interoperability between installations that do (part of) the metadata
generation.
The redesigned framework is used in a case study that also extends the
metadata generation part by allowing for search and retrieval of the generated
metadata. We also report on an evaluation experiment that we set up for this
case study, which points out that the automatically generated metadata has a
similar level of quality than manually generated records present in the
ARIADNE repository.
Finally we conclude with some future work.

��� $XWRPDWLF�0HWDGDWD�*HQHUDWLRQ��WKH�JHQHUDO�DUFKLWHFWXUH�

���� :K\�ZH�QHHG�DXWRPDWLF�PHWDGDWD�JHQHUDWLRQ�
�
Relying fully on humans in generating metadata is not the way to go: humans "don’t scale" and the
metadata they create are not perfect. More importantly, it is hard to sustain manual creation of
metadata. Therefore we need automation of the metadata generation process. This can go from a
small amount of automation within a mainly human-based flow, up to full automation without
needing any human input or reviewing.

 2

����)LUVW�YHUVLRQ�RI�WKH�IUDPHZRUN�

In [1] and [2] we reported on a framework for automatic metadata generation [3]. Our main focus
was to show that automatic metadata generation is feasible. We implemented some case studies to
prove this claim, and made a basic evaluation of the obtained results.

A second step was then to see what lessons could be learned from that first version and to
develop a second version of the framework that allows easier use by people using other platforms
or systems. Because integrating existing efforts and implementations is a key aspect for us, we
need a solid base infrastructure, including an API on top of that, allowing other people to add
functionality. Once that API exists, people can start writing their own extensions that can possibly
be downloaded and used by others too.

Basically we often try to compare it with systems like Google Desktop Search: Google provides
the basic infrastructure for desktop indexing and also provides some indexers, like for Office and
PDF files. However, they also set up an API that allows people to add functionality.

���� /HVVRQV�OHDUQHG�

The lessons we learned from the development of the first framework can be summarized in 4 main
points:

• The first version of AMG internally used the Ariadne application profile of LOM. The
use of AMG within environments like the submission workflow of DSpace, showed the
limitations of this approach: we need full LOM support instead of limiting ourselves to a
certain application profile of LOM. We tackled this issue by using the LOM Java API
from now on, which is a Java implementation for dealing with LOM metadata [4].

• The difference between using AMG in standalone versus web service mode was not clear.
Therefore, in the new version of AMG we wanted to make a clear distinction between the
several modules:

o The actual “core” functionality, which deals with determining values for the
metadata fields.

o Wrappers around the core:
� Standalone classes for using AMG in standalone mode.
� Web service server-side skeletons and client-side stubs that wrap the

core metadata generating functionality into web service calls. This
module serializes and deserializes SOAP data to platform-specific data
objects, like Java objects.

o Clients that want to use the framework will then be able to use the standalone or
web service wrapper.

• For the first version of AMG we started with some Java classes that were then turned into
a web service, by using the code generating functionality of the particular web service
platform we used (Axis 1.2) [5-7]. This made our code non-interoperable with clients that
use other web service platforms. This is unacceptable for us because interoperability is
important, at two levels:

 3

o We want to provide the option to create an AMG implementation in the platform
of your choice. For now we have been using Java implementations, but we also
foresee an AMG installation that for example uses .NET for handling MS Office
files [8].

o It should be possible to write the client side code in the platform of your choice.
• The terminology we used seemed somewhat confusing. From now on we will

consistently use “automatic metadata generation” for the work we are doing.

���� 1HZ�YHUVLRQ�RI�WKH�IUDPHZRUN�

To accommodate for the lessons we learned from the first design (see 1.3), we started our re-
design by first thinking about AMG at a more abstract level, specifying what operations should be
offered by an AMG installation, i.e. a software system that offers some form of automatic
metadata generation. This is captured in what we call the “Simple AMG Interface”, SAmgI. This
abstract specification is then syntactically defined by binding it to WSDL. This newly outlined
API finally results in web services and standalone bindings for different platforms.

������ 7KH�6LPSOH�$0*�,QWHUIDFH��DQ�DEVWUDFW�VSHFLILFDWLRQ�IRU�$0*�VHUYLFHV�

The Simple AMG Interface includes four groups of operations. For sake of completeness, we
should tell that it actually includes a fifth group that deals with the authentication and session
management. However, because these operations are fully based on the same operations in the
Simple Query Interface [9], we don’t mention them here.

((1)) Because different applications need metadata in different formats (e.g. LOM, DC-XML,

DC-RDF, MPEG-7, …) we want to let clients specify what kind of metadata they want to
retrieve. Therefore we provide operations for defining the metadata
language/format/schema/standard to use.

((2)) A second group defines operations related to the conflict handling method to use. In [1], we
explain “conflict handling” in the context of automatic metadata generation. The idea is that
parts of the global AMG framework each generate values for some of the metadata fields.
Because those parts can generate different values for the same metadata fields, conflicts can
occur in the generated values. This is why we created the idea of conflict handling:
a) First of all, we need to keep track of information that can be used to solve conflicts.

This is what we call the “merging information”. In the concrete implementation that we
developed so far, we use confidence values for this purpose. Confidence values
represent how sure the generator of the metadata value was, and as such represent the
measure of confidence or certainty for the specific value for the metadata field. Of
course, even when we have the merging information, there are still several possible
options. For multi-valued metadata fields one could for example take the option to just
choose all values, no matter how good their merging information is. Another option
would be to just take 1 of the best ones. A third option would be to take all the best

 4

ones. This idea of looking at the merging information and deciding what to do with it is
captured in the notion of “ conflict handling” .

b) Because in some cases the type of conflict handling depends on the type of merging
information, we decided to glue them together into what we call the “ conflict handling
strategy/method” , which is just a combination of type of merging information plus type
of conflict handling. We for example have developed a ConfidenceValues-
TakeHighestAll strategy.
In the SAmgI specification, a conflict handling strategy is identified by a case-
insensitive String. We provide an operation that allows retrieving a list of all possible
conflict handling strategies that are supported by the service endpoint.

((3)) A third group of operations deals with the MetadatasourceIds. As explained shortly in [1], a
MetadatasourceId identifies the learning object, or the context that a learning object resides
in. Based on the MetadatasourceId, the AMG framework has enough information to do its
metadata generation job. An example is the OCWMetadatasourceId that identifies the
“ OpenCourseWare” context of an OCW document. Concretely, this identifier is just the
URL location of the OCW document, as from that URL we can fully identify the OCW
document.
We include the option to retrieve all supported MetadatasourceIds. This is important
because not all SAmgI implementations will support all MetadatasourceIds.

((4)) The last group contains the operations that are related to the actual metadata generation. It
will allow a client to feed his MetadatasourceIds and ask the SAmgI installation to generate
metadata for it.

In Table 1 we summarize all operations that are part of the SAmgI specification at this moment.

The number between double brackets in the left column corresponds to the numbers in the text
above.

$XWKHQWLFDWLRQ�DQG�6HVVLRQ�0DQDJHPHQW
createSession Creates a session
createAnonymousSession Creates an anonymous session (without requiring an account at

the system where the session will be created)
destroySession Destroys a session

6LPSOH�$0*�,QWHUIDFH

setMetadataFormat Sets the metadata format that will be used
for the generated metadata

getMetadataFormat Gets the current metadata format ((1))

getSupportedMetadataFormats Retrieves all supported metadata formats
setConflictHandlingMethod Sets the method that is used to solve

conflicts in the generated metadata
getConflictHandlingMethod Gets the current conflict handling method ((2))
getSupportedConflictHandlingMethods Retrieves all supported conflict handling

methods

 5

getSupportedMetadatasourceIds Retrieves a list with the names of the
supported MetadatasourceIds.

((3)) getSupportedMetadatasourceIdsSchema The same as
getSupportedMetadatasourceIds, but now
returning the XML schema describing the
supported MetadatasourceIds.

getMetadata Generates and returns metadata for a given
learning object

getMetadataWithMergingInformation Generates and returns metadata together
with merging information for a given
learning object (together this makes up
what we call AmgMetadata)

((4))

convertMetadata Converts an AmgMetadata instance to
another metadata format

7DEOH����RYHUYLHZ�RI�DOO�6$PJ,�RSHUDWLRQV�

A complete description of the specification, including more information about each of the
operations can be found in our specification document [10]. We have created a first version of the
specification in collaboration with other people, and are using the result in some first
implementations. We are however continuously gathering feedback on the specification, and the
readers are encouraged to contact the authors to contribute or comment on it.

������ 6$PJ,�V\QWDFWLFDOO\�VSHFLILHG�E\�;0/�VFKHPDV�DQG�:6'/�

To allow interoperability of different SAmgI installations, it is important that the data formats of
interchanged messages are specified in an interoperable way. We did this by specifying XML
schemas for the data formats. One of the most important schemas is the one we defined for the
exchange of generated metadata. For this exchanged metadata we could not just rely on the
existing XML schemas of for example LOM because:

• in the design of SAmgI we do not want to restrict ourselves to one particular metadata
format.

• besides from the metadata itself, we also need extra information about the generated
values. More specifically the previous ideas of merging information and conflict handling
should be captured in the schema in some way.

Below we will outline some ideas that drove the creation of this data format for the exchanged
metadata, and an example of how it looks like.

During the development of the schema for the exchanged metadata, we had several design goals

in mind:
• it should allow having a complete history of the metadata generation process. For each

metadata field, it should be possible to see all values that were generated throughout the
process, and which values were replaced by which other values. For example, if one

 6

metadata generator first determined the author to be personX, and another one replaces
that by personY, it should be visible in the developed format.

• we did not want to commit ourselves to a particular metadata standard. Therefore the
developed schema cannot make a reference to a particular metadata format. However
bear in mind the difference between the specification itself, which does not commit to a
particular metadata standard versus a particular SAmgI installation, which will choose a
metadata format for internal use. In our case, our particular implementation will use LOM
as the (internally) used metadata format.
This is much like in SQI [9], where the specification does not impose a query language or
results format. However, for a client to be able to call the SQI target, he must know the
query and results format.

Code sample 1 shows an example of what the exchanged metadata looks like. We can
distinguish the following important parts:
((1)) metadataString: this is just a string serialization of the metadata in the used metadata

standard. In the implementation that we made, this will be a string representing the LOM
XML metadata.

((2)) mi: this represents the merging information for the metadata instance, containing miItem
child elements. Each of them corresponds to a metadata field, like LOM.General.Language
and it contains:
a) the fieldname
b) the history of chosen values for the field (fieldMi), containing:

i) the currently valid group of values for the metadata field (fieldValuesGroup,
containing fieldValuesGroupElements)

ii) the previously valid merging information (previousMI)
As you can see, we use recursion for this. Each fieldMI contains the currently valid
group of elements and the previous fieldMI. This way it should be easy to retrieve
previous values for a metadata field.

c) the values that were never chosen, because they were never better than existing ones
(unchosenValuesGroup)

<?xml version=’1.0’ encoding=’UTF-8’?>
<amgMetadataElement ...>
 <metadataString>
 <?xml version="1.0" encoding="UTF-8"?> <lom>
<general> <title> <string language="en">Example
Title</string> </title> </general> ...
 </metadataString>

 <mi>
 <miItem>
 <fieldName>LOM.General.Title</fieldName>
 <fieldMi>
 <fieldValuesGroup>

((1))

a)
b)

 7

 <fieldValuesGroupElement>
 <fieldValue>
 <string language="en">Example
Title</string>
 </fieldValue>
 <miValue>0.8</miValue>
 <valueGenerator>WordGenerator</valueGenerator>
 </fieldValuesGroupElement>
 </fieldValuesGroup>
 <previousMI>
 <fieldValuesGroup>
 <fieldValuesGroupElement>
 <fieldValue>
 <string language="en">Example old
title</string>
 </fieldValue>
 <miValue>0</miValue>
 <valueGenerator>OfficeGenerator</valueGenerator>
 </fieldValuesGroupElement>
 </fieldValuesGroup>
 </previousMI>
 </fieldMi>
 <unchosenValuesGroup/>
 </miItem>
 </mi>
</amgMetadataElement>

&RGH�VDPSOH����;0/�LQVWDQFH�UHSUHVHQWLQJ�WKH�H[FKDQJHG�PHWDGDWD�IRUPDW�

The developed XML schemas for the exchanged data formats should be used by all SAmgI
installations, both standalone implementations and web service implementations. To allow
interoperability between web service implementations (both the services and the clients), we also
developed a WSDL schema that doesn’t include any web service platform specific data types.

������ 6$PJ,�:6'/�ERXQG�WR�FRQFUHWH�LPSOHPHQWDWLRQV�

The abstract specification, the developed XML schemas and the WSDL are finally bound to
concrete implementations. At the moment we are developing Java implementations, both
standalone ones and web services ones. For the web service one, we plan to do a version for
Axis1 [5], Axis2 [6] and the Microsoft Web services [7].

�� +RZ�WR�GR�DXWRPDWLF�PHWDGDWD�JHQHUDWLRQ�IRU�\RXU�RZQ�FROOHFWLRQ�RI�

GRFXPHQWV�

((2))

c)

 8

In order to implement SAmgI for a system or collection of documents, there are basically three
options, depending on the requirements and the characteristics of the system, like the access to it
and the platform is it written for.

Option 1 is to just act as a client of some existing SAmgI implementation. This would come
down to using it more or less like a black box, asking the system for metadata for a certain object.
Because in this case the metadata generation is not at all fine-tuned for the particular case, the
result would be a rather small set of metadata.

Option 2 is to create from scratch a complete SAmgI installation, potentially reusing existing
components. In this case an implementation is created that conforms to the abstract SAmgI
specification, the XML schemas for the data types, and the WSDL (in case it is a web service
implementation).

Option 3 allows making an easier and faster implementation of SAmgI for your system. It
comes down to writing a small layer on top of the existing system or collection of documents, that
can be called by existing SAmgI implementations like the Java version we are developing. This
layer should allow retrieving the properties of the learning objects, like the author, the title, or
anything else that is available within the system. In a next step a ContextBasedGenerator will be
created, within an existing SAmgI implementation that will use the offered layer to build the
metadata.

�� &DVH�VWXG\��LQGH[LQJ�3UR/HDUQ�PDWHULDO�

���� $0*�IRU�WKH�3UR/HDUQ�GHOLYHUDEOHV��

As the first big case study of the new AMG framework, we have been developing a system that
indexes all material that is produced in the context of ProLearn Network of Excellence on
Professional Learning [11]. To manage all ProLearn documents a shared workspace system is
used, called the Agora Groupware Web Server [12]. In a first step we focus on the deliverables
that are produced within ProLearn. In a next step, also the other material like the papers is
processed.

To generate the metadata we chose Option 3 of section 3, which came down to writing a web
services layer on top of the AGWS system. Our particular SAmgI implementation was then
extended with a module that uses those web services for generating the metadata for the ProLearn
deliverables. This is represented by the upper rectangle in Figure 1.

���� :KDW�WR�GR�QH[W�ZLWK�WKH�JHQHUDWHG�PHWDGDWD��DOORZLQJ�VHDUFK�DQG�UHWULHYDO�

Although the generation of metadata for a learning object is the key focus of our work so far, we
also want to make use of that metadata afterwards, for example for searching. To create this search

 9

functionality we wrote an extension of AMG using the combination of a Lucene index [13], and
the Simple Query Interface (SQI) [14].

Lucene is developed by the Apache group, and provides a high-performance, full-featured text
search engine library, that we use for storing the generated metadata.

SQI is a definition of web services that enable querying Learning Object Repositories in a
standardized way [9]. In our case, it defines the query interface that we will use for searching the
generated metadata.

This is all represented by the bottom rectangle in Figure 1.

)LJXUH����RYHUYLHZ�RI�KRZ�ZH�LQGH[�WKH�PDWHULDO�RI�WKH�3UR/HDUQ�1HWZRUN�RI�([FHOOHQFH��7KH�

VDPH�ILJXUH�FDQ�EH�XVHG�IRU�PDWHULDO�RI�RWKHU�V\VWHPV�WKDW�QHHGV�WR�EH�LQGH[HG��

�� (YDOXDWLRQ�RI�WKH�DXWRPDWLFDOO\�JHQHUDWHG�PHWDGDWD�IRU�3UR/HDUQ�

GHOLYHUDEOHV�

���� ([SHULPHQWDO�VHWXS�

 10

In order to evaluate the relative quality of the metadata records generated by AMG for the
ProLearn deliverables, we set up an experiment to compare them with existing human generated
records present in the ARIADNE repository [15]. During the experiment several reviewers had to
grade the quality of a set of records sampled from both sources. As the universe of manual records,
we selected metadata records about Information Technologies objects that were available in
English inside the ARIADNE repository. From this universe (425 records) we randomly selected
10. The universe of automatic records was the 114 records generated with the SAmgI framework
for the ProLearn deliverable documents. From this universe we also randomly sampled 10
records.

Following a common practice to reduce the subjectivity in the evaluation of the quality of
metadata, we used an evaluation framework. The selected framework was the one proposed by
Bruce and Hillman [16]. It was selected because it summarizes the quality of the metadata record
in 7 easy to understand and measurable parameters: completeness, accuracy, provenance,
conformance to expectation, logical consistency and coherence, timeliness and accessibility. All
participants in the experiment were requested to read the definition of each parameter before
grading the records. The definitions were also available during the evaluation process.

The experiment was carried out online using a web application [17]. The user logs in into the

system with his name. The system presents him or her with the instructions containing the
explanation of the evaluation framework. After reading the instructions, the user is presented with
a list of the 20 selected objects in no specific order. When the user selects an object, a
representation of its LOM record is displayed. The user can then download the referred object for
inspection. Once the user has reviewed the record and the objects, he is asked to give grades in a
7-point scale (From “ Extremely low quality” to “ Extremely high quality”) for each one of the 7
parameters. Only participants that grade all the objects were considered in the experiment.

The experiment was available for 2 weeks. During that time 33 different participants entered

the system, but only 22 of them completed successfully the review of all the 20 objects. From
those 22, 17 (77%) work with metadata as part of their study/research activities; 11 (50%) were
undergraduate students in their last years, 9 (41%) were postgraduate students and 2 (9%) had a
Ph.D. degree. All of them were in full capacity to understand the nature and meaning of the
examined objects and their metadata records. The reviews given by those 22 participants were the
ones considered in this study.

���� 'DWD�DQDO\VLV�

Because of the inherent subjectivity in measuring quality, the first step in the analysis of the data
was to estimate the reliability of the evaluation. In this kind of experiment, the evaluation could
be considered reliable if the variability between the grades given by different reviewers to a record
is significantly smaller than the variability between the average grades given to different objects.
To estimate this difference we use the Intra-Class Correlation (ICC) coefficient [18] which is
commonly used to measure the inter-rater reliability. We calculate the average measure of ICC
using the two-way mixed model, given that all the reviewers grade the same sample of objects. In

 11

this configuration, the ICC is equivalent to another widely used reliability measure, the
Cronbach’s alpha. The results for each quality parameter are reported in the Table 2.

3DUDPHWHU� ,&&��DYHUDJH��WZR�ZD\�PL[HG��{�D�
Completeness 0,881
Accuracy 0,847
Provenance 0,701
Conformance 0,912
Consistency & Coherence 0,794
Timeliness 0,670
Accessibility 0,819

7DEOH����,QWUD�&ODVV�&RUUHODWLRQ��,&&��FRHIILFLHQW�IRU�PHDVXULQJ�WKH�UHOLDELOLW\�RI�WKH�

HYDOXDWLRQ�

The only value that falls below the 0.7 cut-off value to be considered acceptable is the
Timeliness parameter. In other words, the reviewers did not “ agree” in the measurement of the
timeliness. For the other parameters, the ICC suggest that the reviewers provided similar values
and further statistical analysis could be performed.

The second step is to asses if there is a difference between the average grade given to
automatically generated records and the average grade given to manual generated records. These
averages values are presented in Figure 2. To statistically establish whether the difference between
average values is real or a by-product of the natural variance, we proceed to apply a one-way
ANOVA test. Our null hypothesis is that there is no difference between the grades given to
automated and manual records. Our alternative hypothesis is that there is indeed a difference. The
results are presented in Table 3. All results where obtained with an F(1,18) distribution.

 12

������� ���	��
�� ��	�

0

0,5

1

1,5

2

2,5

3

3,5

4

Com
ple

tne
s

Acc
ur

ac
y

Pro
ve

na
nc

e

Con
for

man
ce

Coh
er

en
ce

Tim
eli

ne
ss

Acc
es

ibi
lity

��� ��� � � �����	� ������� ���

� �
���
!
" �
� �
#$%
&
'(

Automated
Manual

)LJXUH����$YHUDJH�TXDOLW\�JUDGH�IRU�WKH�GLIIHUHQW�SDUDPHWHUV�

3DUDPHWHU�)�YDOXH� 6LJQLILFDQFH��WZR�WDLOHG��
Completeness 2,286 0,148
Accuracy 3,640 0,073
Provenance 5,060 0,037
Conformance 2,420 0,137
Consistency & Coherence 4,345 0,052
Timeliness 16,811 0,001
Accessibility 2,727 0,112

7DEOH����VLJQLILFDQFH�RI�WKH�GLIIHUHQFH�EHWZHHQ�WKH�JLYHQ�JUDGHV�

While the automatically generated records seem to be, in average, graded 0.4 points higher than

the manual generated records, in most of the parameters (completeness, accuracy, conformance to
expectations, consistency & coherence and accessibility) we cannot reject the null hypothesis: the
difference found is just consequence of the random variability. The significant difference found in
provenance value could be explained as that all the automated records had the same origin,
ProLearn deliverables, but cannot be generalized to other sources. While the timeliness parameter
also shows a significant difference, the low value of reliability of this measure prevents us to draw
conclusions from it.

 13

���� (YDOXDWLRQ�FRQFOXVLRQV�

There is no statistical difference between the quality grades given to a random sample of
ARIADNE records and the ones produced automatically by SAmgI. That means that for the
reviewers their quality is equivalent. We can introduce the automatically generated records into
ARIADNE without degrading the quality of the repository. These results could not be generalized
to any kind of human generated metadata or any kind of automatically generated metadata. This
evaluation only holds between ARIADNE metadata records and the ProLearn deliverables
records.

In the future we plan to analyze the quality evaluation in more detail, studying the interrelations
between different quality parameters. Also, we will try to create an automated quality evaluator to
avoid the need of evaluations for each new automatic metadata generator.

��)XWXUH�ZRUN�

For the core metadata generation functionality, we incorporate existing implementations of
relevant information retrieval. Examples of things we have integrated so far are the ngram-based
language determination [19] and the extraction of MS Office properties, using Jakarta POI [20]
and PDF properties, using PDFBox [21]. A next step will be to incorporate techniques for
keyword extraction, like KEA [22] and GATE [23].

Projects related to AMG are AMeGA [24], which does more conceptual work on what the role
of automatic metadata generation can be throughout the complete metadata generation or
submission process. In the future we will keep on looking for related work, like the Automatic
Metadata Extractor [25] and the Automatic RDF Metadata Generator [26].

Furthermore we will are working towards a version 1.0 of the SAmgI specification and its

implementations.

On a longer term, we plan to also look at newer extensions to AMG, e.g. taking into account the

complete lifecycle of the learning object as a possible source of metadata.

�� 5HIHUHQFHV�

1. Cardinaels, K., M. Meire, and E. Duval. $XWRPDWLQJ�0HWDGDWD�*HQHUDWLRQ��WKH�6LPSOH�

,QGH[LQJ�,QWHUIDFH. In ,QWHUQDWLRQDO�:RUOG�:LGH�:HE�&RQIHUHQFH��:::�, 2005, Chiba,
Japan: International World Wide Web Conference Committee (IW3C2).
http://ariadne.cs.kuleuven.ac.be/amg/publications.php.

2. Ochoa, X., et al.)UDPHZRUNV�IRU�WKH�$XWRPDWLF�,QGH[DWLRQ�RI�/HDUQLQJ�0DQDJHPHQW�
6\VWHPV�&RQWHQW�LQWR�/HDUQLQJ�2EMHFW�5HSRVLWRULHV. In ('�0(',$�:RUOG�&RQIHUHQFH�RQ�
(GXFDWLRQDO�0XOWLPHGLD��+\SHUPHGLD�	�7HOHFRPPXQLFDWLRQV, 2005, Montreal, Canada,
Education & Information Technology Library.

 14

http://ariadne.cs.kuleuven.ac.be/amg/publications.php and
http://www.editlib.org/index.cfm?fuseaction=Reader.ViewAbstract&paper_id=20276.

3. Meire, M., +RPHSDJH�RI�$0*��$XWRPDWLF�0HWDGDWD�*HQHUDWLRQ�,
http://ariadne.cs.kuleuven.ac.be/amg.

4. Hubick, C., /HDUQLQJ�2EMHFW�0HWDGDWD��/20��-DYD�$3,,
http://sourceforge.net/projects/lom-j/, http://sourceforge.net/projects/mime-dir-j/ and
http://sourceforge.net/projects/vdex-j/.

5. Apache Software Foundation (ASF), $[LV��, http://ws.apache.org/axis.
6. Apache Software Foundation (ASF), $[LV��, http://ws.apache.org/axis2.
7. Microsoft, :HE�6HUYLFHV�(QKDQFHPHQWV,

http://msdn.microsoft.com/webservices/webservices/building/wse.
8. Verbert, K., +RPHSDJH�RI�$/2&R0, http://ariadne.cs.kuleuven.ac.be/alocom.
9. Simon, B., et al. $�6LPSOH�4XHU\�,QWHUIDFH�IRU�,QWHURSHUDEOH�/HDUQLQJ�5HSRVLWRULHV. In

:RUNVKRS�RQ�,QWHURSHUDELOLW\�RI�:HE�%DVHG�(GXFDWLRQDO�6\VWHPV�LQ�FRQMXQFWLRQ�ZLWK�
��WK�,QWHUQDWLRQDO�:RUOG�:LGH�:HE�&RQIHUHQFH��:::�, 2005, Chiba, Japan:
International World Wide Web Conference Committee (IW3C2)

10. Meire, M., K. Cardinaels, and E. Duval, 6LPSOH�$0*�,QWHUIDFH��GUDIW�VSHFLILFDWLRQ�.
2006, http://ariadne.cs.kuleuven.ac.be/wordpress/amg/index.php/2005/09/21/abstract-
specification-for-services-that-offer-automatic-metadata-generation/.

11. Prolearn, 3UR/HDUQ�1HWZRUN�RI�([FHOOHQFH�RQ�SURIHVVLRQDO�OHDUQLQJ,
http://www.prolearn-eu.org/.

12. Agora Systems S.A., $JRUD�*URXSZDUH�:HE�6HUYHU��$*:6�,
https://agws.dit.upm.es/enter.php.

13. Apache Software Foundation (ASF), /XFHQH,
http://lucene.apache.org/java/docs/index.html.

14. 6LPSOH�4XHU\�,QWHUIDFH��64,�, http://prolearn-project.org/lori.
15. Ariadne foundation for the European Knowledge Pool, $ULDGQH�UHSRVLWRU\,

http://www.ariadne-eu.org/.
16. Bruce, T.R. and D.I. Hillmann. 7KH�&RQWLQXXP�RI�0HWDGDWD�4XDOLW\��'HILQLQJ��

([SUHVVLQJ��([SORLWLQJ, 2004. In D. Hillmann and L. Westbrooks, Metadata in Practice
(Chicago: American Library Association)

17. Ochoa, X., (YDOXDWLRQ�H[SHULPHQW�IRU�FRPSDULQJ�WKH�TXDOLW\�RI�DXWRPDWLFDOO\�YHUVXV�
KXPDQO\�JHQHUDWHG�PHWDGDWD� 2006,
http://ariadne.cti.espol.edu.ec/Metrics/instructions.jsp.

18. Shrout, P.E. and J.L. Fleiss, ,QWUDFODVV�&RUUHODWLRQV��8VHV�LQ�$VVHVVLQJ�5DWHU�5HOLDELOLW\�
Psychological Bulletin, 1979(2): p. 420-428

19. Canvar, W.B. and J.M. Trenkle, 1�*5$0�%DVHG�7H[W�&DWKHJRUL]DWLRQ,
http://www.nonlineardynamics.com/trenkle/papers/sdair-94-bc.ps.gz.

20. Apache Software Foundation (ASF), -DNDUWD�32,�������-DYD�$3,�7R�$FFHVV�0LFURVRIW�
)RUPDW�)LOHV��KWWS���MDNDUWD�DSDFKH�RUJ�SRL�,

21. 3')%R[, http://www.pdfbox.org/.
22. .($�DXWRPDWLF�NH\SKUDVH�H[WUDFWLRQ, http://www.nzdl.org/Kea.
23. *$7(�*HQHUDO�$UFKLWHFWXUH�IRU�7H[W�(QJLQHHULQJ, http://gate.ac.uk/.
24. Greenberg, J., $0H*$��$XWRPDWLF�0HWDGDWD�*HQHUDWLRQ�$SSOLFDWLRQV��SURMHFW,

http://ils.unc.edu/mrc/amega.html.

 15

25. $XWRPDWLF�0HWDGDWD�([WUDFWRU,
http://epsilon.uwaterloo.ca/TextMiner/MetadataExtractor.aspx.

26. $XWRPDWLF�5')�0HWDGDWD�*HQHUDWRU, http://www.scit.wlv.ac.uk/~ex1253/metadata.html.

