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Abstract

There are many reasons why software can be hard to implement.
For important classes of applications, the main source of complex-
ity is the domain knowledge that is involved. One such class is that
of configuration software, which serves to assist a user in making
choices in accordance with certain constraints. For instance, con-
sider an application that helps students compose a study program
that complies with all relevant university regulations. The reason
why this may be difficult to implement is that these regulations
can get quite complicated, making them hard to handle, at least for
imperative programming methods. A better approach might be to
follow the paradigm of a knowledge base system: explicitly rep-
resent the domain knowledge in a declarative way, and implement
the behavior of the application by performing various logical in-
ference methods on it. Doing this well, however, requires that a
number of different components be got right. Most importantly, we
need an expressive and purely declarative knowledge representa-
tion language, together with a set of useful inference methods. In
this paper, we present a framework for implementing this kind of
software, based on a rich extension of first-order logic.

Categories and Subject Descriptors F.3.1 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Specifying and Verifying and Reasoning
about Programs; F4.1 [MATHEMATICAL LOGIC AND FOR-
MAL LANGUAGES]: Mathematical Logic— Logic and constraint
programming; D.2.13 [SOFTWARE]: Reusable Software—Domain
engineering

General Terms Design, Theory

Keywords Knowledge representation, software engineering, prod-
uct configuration

1. Introduction

Much research in Al tries to find clever techniques for solving
problems that were previously unsolvable. For instance, recent ad-
vances in constraint programming allow to solve (large instances
of) scheduling problems that were impossible ten years ago. How-
ever, if we look at the daily practice of software engineering, we see
that such computationally hard problems are vastly outnumbered
by more mundane problems. A typical example is that of configu-
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ration software, where the goal is to help a user fill out a form in
accordance with certain constraints. Despite their apparent lack of
computational hardness, such applications are not always easy to
develop and maintain. An example famous in Belgium country is
the tax-on-web system, commissioned by the Belgian government
to allow citizens to fill in their tax return forms on-line and com-
pute the amount of taxes due. Even though the system is now oper-
ational, its development took significantly more time and resources
than originally planned. This problem is mainly hard because of the
complexity of the domain knowledge involved: the first part of the
forms alone already comes with an explanatory leaflet of no less
than 96 pages; most of this knowledge must somehow find its way
into the on-line application. Moreover, since tax laws change ev-
ery year, this had better be done in such a way that it can easily be
adapted later on.

In this paper, we seek to apply Al techniques to simplify the de-
velopment of such knowledge intensive applications. Our aim here
is not to solve previously unsolvable problems, but rather to solve
easy problems better, that is, to enable applications to be written
faster, in less lines of code, and in such a way that they are easier to
adapt to changes in the domain knowledge (e.g., a revision of some
tax law). We will attempt to do this by means of the knowledge
base paradigm: instead of counting on the programmer to “‘com-
pile” his knowledge about the domain and the task to be performed
into procedural code, we will represent this knowledge explicitly
and automatically derive the desired behavior of the program from
it, by means of various forms of logical inference.

For this approach to really work, however, we need to repre-
sent the domain knowledge in a purely declarative way. That is, it
cannot suffice to just encode solutions to one specific problem in
this domain. Instead, we need to be able to represent the domain
knowledge on its own. Otherwise, we cannot hope to be able to
reuse this same representation to solve the many different problems
and tasks that a single software application might need to perform.
Here, the knowledge base paradigm differs significantly and impor-
tantly from other strands of declarative programming. A knowledge
base is, by nature, not tied to a specific form of inference; it does
not encode a solution to a specific problem, nor is it a program
with an operational semantics. It is only a representation of domain
knowledge, and one should be able to—at least in principle—use it
to solve different problems and tasks, requiring different forms of
inference, such as deduction, model checking, model generation,
update and revision, abduction, learning, etc.

To achieve this, we need a knowledge representation language
that is sufficiently expressive, not (only) in the formal sense of the
word, but also informally. That is, for each natural language state-
ment that we could find in, e.g., the Belgian tax laws, it should be
possible to come up with some formula in the logic that is an “obvi-
ously” correct formalization thereof. The need for such expressive
languages is apparent throughout the domain of Knowledge Rep-



resentation, where we see a general tendency towards increasingly
more expressive languages. This is happening e.g. for description
logics, (e.g., rule languages such as SWRL), constraint program-
ming languages and answer set programming languages (e.g., ag-
gregates, classical negation, disjunction in the head [Leone et al.
2006]) alike. This motivates us to use the language FO[-], which
consists of full first-order logic (FO), together with a number of
useful extensions, such as arithmetic, inductive definitions and ag-
gregates [Denecker 2000]. As such, it offers both the fundamen-
tal constructs of FO (universal/existential quantification, conjunc-
tion, disjunction and negation), as well as the extensions thereof
that many practical applications require.

In building a practical system, we of course have to take into
account the fundamental trade-off between expressivity of the lan-
guage and efficiency of its inference algorithms. For instance, given
FO’s undecidability, there is no hope to use theorem proving for re-
liable problem solving in full FO. One of the contributions of this
paper is to show that all of the inference tasks that arise naturally
within the context of configuration software can be handled effi-
ciently, even for such an expressive language of FO['].

Our approach distinguishes itself by the following properties:

e We use a very expressive language to represent the domain
knowledge

e We treat this language in an entirely declarative way: while
writing the theory, the user does not need to be concerned about
how this will later be used. This allows the same knowledge to
be used to solve different tasks.

e We have algorithms that are able to efficiently perform different
tasks for this expressive language.

These properties distinguish our approach from, e.g [Axling
and Haridi 1994], [Soininen and Niemeld 1999], [Subbarayan
et al. 2004], where the knowledge representation language is ei-
ther propositional or only a fragment of FO; or from approaches
such as [Knolmayer et al. 2000], where the representation has to
be fine-tuned towards the use of a particular inference algorithm
such as Forward Chaining. In this paper we show that applications
such as product configuration software can be developed in rich
extensions of FO, using approximate methods.

We begin by discussing the language FO[-] in Section 2. Section
3 introduces a motivating example. In Section 4, we show that FO[-]
is expressive enough to express the relevant domain knowledge.
Once we have a theory that represents this domain knowledge, we
can proceed in Section 5 with formulating the desired behavior of
the application in logical terms. As a proof of concept, we explain
in Section 6 how we’ve implemented the motivating example. Sec-
tion 7 discusses related work.

2. Preliminaries

We assume familiarity with classical logic. This paper uses the
following terminology. An interpretation S for a vocabulary X
consists of a non-empty domain D, a mapping from each function
symbol f/n to an n-ary function on D, and a mapping from each
predicate symbol P/n to a relation R C D". A three-valued
interpretation V is the same as a two-valued one, except that it
maps each predicate symbol P/n to a function PV from D™ to
the set of truth values {t,f, u}. Such an V assigns a truth value to
each logical atom P(&), namely PV (cY, ..., cv ). The three truth
values can be partially ordered according to precision:

u<,tandu <, f.

This order induces a precision order <;, on interpretations: V. <,
V' if and only if for each predicate P/n and tuple d € D",

-

PV (d) <, PV'(d).

The language that we use in this paper is that of FO[-], which
extends standard FO with a number of useful features, and is also
the language used in the IDP system [Marién et al. 2006].

FO['] is a multi-sorted logic, in which predicates and functions
can be typed. An important feature of FO[-] is that it contains
aggregates. An aggregate expression can be of one of two forms.
The first is

F{z1...zn | ¢(x1,...,20)})
Here F'is an aggregation function such as cardinality, sum, or aver-
age, and the expression denotes the result of applying this function
to the set A of all tuples (z1,...,zy) for which ¢(x1,...,2n)
holds; in case of functions such as sum, which operate on numeri-
cal values instead of tuples, the projection on the first element x; is

used, i.e.,
71")}) = Z Tl

The second kind of aggregate expression is of the form:

cardinality({¢1,...,dn}).

This expression denotes the number of true formulas among the
¢:. To see when such an expression might be useful, we can con-
sider government regulations concerning things such as scholarship
grants; often, there are a number of different criteria that apply, and
to be eligible for the grant, a student has to satisfy at least ¢ of the n
criteria. If we represent each criterion by some formula ¢;(x), we
can concisely write this down in FO[-] as:

vV cardinality({¢1(z), ..., ¢n(x)}) > i < Eligible(x)

A second important feature of FO[-] is that it allows inductive
definitions, i.e., definitions that recursively define a predicate “in
terms of itself”. In mathematical texts, such a definition is often
written down as a set of cases in which the defined relation holds.
FO[:] adopts the same format. For instance, let us consider the
following example, taken from the wikipedia page on the topic':

sum({z1...xn | d(z1,. ..

The prime numbers can be defined as consisting of:
e 2, the smallest prime;

® cach positive integer greater then 1, which is not evenly
divisible by any of the primes smaller than itself.

FO[] offers a formal syntax for representing such an inductive
definition as a set of definitional rules:

Prime(2) —
Vo Prime(z) «— « >1A -3y 1y < zA
Prime(y) A Divisible(z,y)

In [Denecker and Vennekens 2007], it was argued that the for-
mal semantics of such an expression in FO[-] coincides with the
common-sense meaning of the corresponding inductive definition
in mathematics.

Inductive definitions cannot, in general, be expressed in classi-
cal logic; for instance, it is well-known that the transitive closure
of a relation is not first-order definable (see e.g., [Libkin 2004],
Proposition 3.1). Because such definition occur often in practice
(e.g., reachability in a graph, being someone’s ancestor, and so on),
this too is a useful extension of FO.

3. Motivating example

In this section, we analyze one particular piece of configuration
software: a system that allows a student to select his study pro-
gram for the next year. Of course, the university imposes certain re-

"http://wikipedia.org/wiki/Inductive definition



strictions on a student’s choice, which means that we need domain
knowledge about what constitutes a valid study program. Typical
examples of such restrictions include:

e Certain courses belong to a specific module, and can only be
chosen if this module itself is chosen;

e [f a module is chosen, then all courses that belong to it must be
chosen;

e Compulsory courses have to be chosen;

e Each course is worth a number of credits and the student has to
choose 60 credits in total.

This knowledge is declarative in nature: it is written down in
university regulations, where it exist independently from any piece
of software that we might want to develop.

The application now should use this declarative knowledge to
perform certain tasks.

e When the user has selected all courses he wants to follow, the
application should check whether this is valid.

e When the user selects a combination of courses that can never
be part of a valid study program, the application should show
an appropriate error message;

e The application should help the user fill out the form by indi-
cating which other choices are already implied by the selection
that the user has made so far.

Conceptually, there is nothing complicated about these tasks.
Moreover, given that the number of courses available to a student
is never excessively large, there are also no stringent algorithmic
requirements. Nevertheless, it would not be trivial to implement
this application in a traditional imperative language. The reason for
this is that the control flow of the program would need to take into
account quite complex dependencies between different selections.
For instance, consider the following situation:

1. There is a module Artificial Intelligence which contains the
courses Machine Learning and Prolog;

2. There are three optional courses, Declarative Programming,
History of Computer Science and Embedded Software, of which
the student has to select precisely two;

3. Because of the sizable overlap between Prolog and Declarative
Programming, it is not allowed to take both.

Here are but a few of the propagations that the application
should be able to perform:

e Selecting History of Computer Science and Embedded Software
implies that Declarative Programming cannot be selected;

e Selecting History of Computer Science and choosing not to fol-
low Declarative Programming implies that Embedded Software
has to be selected;

e Selecting Machine Learning implies that both History of Com-
puter Science and Embedded Software must be selected;

e Choosing not to take Embedded Software implies that Machine
Learning cannot be selected;

It should be clear that the full list will be rather long. A naive im-
plementation in an imperative programming language such as C or
Java, might include an if-statement representing each of these pos-
sible propagations. An obvious downside of this approach is that it
is hard to make sure that all possible propagations are accounted
for. Moreover, such an implementation is especially unsuitable if
we also take into account the fact that the regulations will most
likely change every year. For instance, suppose that the university

decides to allow each student a single exception to the rule that se-
lecting a module means selecting all of its courses. From a declar-
ative point-of-view, this is a small change, affecting only one of
the many rules that govern the selection procedure. However, in a
naively implemented system, it might be quite some work to fig-
ure out which of the originally implemented propagations should
be removed and which should be added—it might even be easier to
start over from scratch.

An experienced programmer would therefore probably end up
with a design in which each of the different regulations is repre-
sented by some object, which takes care of all the propagations that
should be performed because of this regulation. Essentially, such
a design will lead to the implementation of an ad hoc constraint
propagation system, which will take quite a bit of work to get right.

4. Constructing the Knowledge Base

The central idea of our approach is to start from a purely declara-
tive representation of the domain knowledge. This means that we
should be able to write down this knowledge in a way which is
completely independent from how we might later want to use it.
First, this simplifies the knowledge representation task, because we
are free to put all considerations about the intended behavior of
the application out of our mind for the time being. Second, this
also makes the representation reusable: if in the future, we want
to implement some other functionality in the same domain, we do
not need to change our domain knowledge. For instance, we can
imagine that in addition to our application for students, we also
want to offer a decision support system for the program director,
who has to decide whether a student is allowed certain exceptions
to the general rules. One piece of functionality that such a system
might offer is to pin-point precisely which of the student’s desired
choices violate which of the university regulations. Given the ap-
propriate logical inference algorithm, we could completely reuse
our representation of the domain knowledge to implement this.

So, in our approach, the first step towards implementing the
course selection application is to write down the relevant do-
main knowledge. As mentioned, we will do this in the language
FO[']. It is rather obvious how this would go. In our typed logic,
we first need to decide on the types that we will use. Let us
choose types Course and Module, together with the “built-in”
type Integer. We then have a vocabulary ¥ consisting of predi-
cates Compulsory(Course), NumberOfCredits(Course,Integer), Be-
longsTo(Course,Module), Selected(Course) and Selected(Module).

e Certain courses belong to a specific module, and can only be
chosen if this module itself is chosen;

Vx y : BelongsTo(x,y) A Selected(z) = Selected(y).

e If a module is chosen, then all courses in this module must be
chosen;
Va : Module(z) A Selected(x) =
Yy : Belongs(y,z) = Selected(y).
e Some courses are compulsory, which means they have to be
chosen,
YV : Compulsory(x) = Selected(x).
e Each course is worth a number of credits and the student has to
choose 60 credits in total.
sum({zy : NumberO fCredits(y,x)ASelected(y)}) = 60.
This last formula uses one of the constructs for aggregation that

are present in FO[-]. Without such a construct, one would have to
enumerate all possible combinations of courses that result in 60



credits or more. This would yield a large and unintuitive theory,
which would have to change considerably each time the university
changes the number of credits for even just a single course.

5. Using the Knowledge Base

Once we have a theory T' that represents the relevant domain
knowledge, we can proceed to formulate the desired behavior of
the application in logical terms, relative to 7.

5.1 A simple validation system

Let us first assume that the user enters all of his choices manually,
without any help from the application. Our job is merely to observe
what happens and place this in a logical framework. A first observa-
tion is that we need to distinguish two different kinds of predicates
in the vocabulary:

e Compulsory(Course), BelongsTo(Course,Module) and Num-
berOfCredits(Course,Credits) are all given beforehand and will
be completely known to the system;

e Selected(Course) and Selected(Module) are not known before-
hand and need to be filled in by the user.

We will refer to the first kind of predicates as given and to the
second as wanted. Let I be the set of given predicates and €2 that
of the wanted predicates. Obviously, I" and €2 partition the set of all
predicates in X. In logical terms, the fact that the given predicates
are known up-front means that the application will have at its
disposal some interpretation GG for I'. Note that since all courses,
modules and number of credits are known up-front also means that
the domain of this interpretation will be finite. The eventual end-
state that the application should reach is one in which the user has
chosen an interpretation for the wanted predicates such that all the
university regulations are satisfied. That is, an interpretation W for
Q such that:

WUGET. @)
Here, W U G denotes the interpretation for the vocabulary 3 that
interprets all predicates P € T by P and all predicates P € Q by

PW . One requirement for our system is therefore that it should be
able to perform the following task.

Task 1 (model checking). Given a vocabulary ¥, an FO['] theory
T over 3 and a two-valued Y-interpretation I with a finite domain,
model checking is the problem of deciding whether I |=T.

It is well-known that the data complexity of this problem is
polynomial time for FO, and this is still the case for FO[-][Marién
et al. 2006]. Of course, the theory data complexity is perhaps not
an ideal measure, here, since the theory itself may also be subject
to change and could grow quite large. However, as long as the
nesting depth and formula width (i.e. the maximal number of free
variables in a subformula) of additional formulas are bounded, the
combined complexity of model checking for FO[-] remains in P.
In practice, (comprehensible) formulas produced by human experts
are bounded in this way.

The user constructs his desired interpretation W only in a grad-
ual way. Initially, the application knows nothing about it, but as it
runs it obtains more and more information, checkbox by checkbox.
This means the application goes through a sequence Wy, ..., W,
of three-valued interpretations for €2, that starts out with the least-
precise interpretation L, as Wy (i.e., Wy assigns u to each atom),
and grows increasingly more precise as the user fills in the form,
ie.

Lp:VVO Spwl Spgpwn

If the user has completed his selection, then W,, should cor-

respond to a two-valued interpretation W. How the user precisely

goes from W; to W41 depends on the Ul design. The most gen-
eral case is that, for each course, he has both the option to indicate
that he wants to follow it and to indicate explicitly that he doesn’t.
This means he can turn an atom which was u into either t or f. It
is also common to see UI’s in which the option to explicitly not
select something is not present. Either way, the Ul should also of-
fer a button “done”, to allow the user to indicate that he does not
want to select any more courses; the last step to reach W, is that
of switching all atoms that are still uin W,,_; to f.

5.2 Detecting errors

Let us now expand the functionality of this simple system. A first
obvious improvement is to be more proactive in our error reporting:
instead of waiting until the very end, we should flag errors as soon
as they are made. To be more concrete, we know that the user has
made a wrong choice, once it becomes impossible to fill out the
remaining choices in such a way that the end result will be valid.
So, we can report an error if the system reaches an interpretation
‘W such that there no longer exists a two-valued interpretation W
for which:

W>WandGUW =T.

It is obvious that this way of reporting errors is sound and complete
with respect to criterion (1), i.e., for each sequence Wy, ..., W,
if we would get an error at some W, then the two-valued inter-
pretation W, cannot satisfy (1) and, vice versa, if W,, does not
satisfy (1), then we will get an error at some W, (albeit that this
may only happen for i = n).

Task 2 (model expansion). Let T' be an FO[:] theory over a vo-
cabulary % and let T be a subset of the predicates in ¥.. Let V
be a three-valued interpretation with a finite domain, such that the
projection of V on I is two-valued. A two-valued interpretation S
is a solution to the model expansion problem with input (T, V) if
SETandS >, V.

Notice that if V is two-valued, then model expansion simply
becomes model checking. It was shown in [Marién et al. 2006]
that model expansion for FO[-] is always in NP and, moreover,
that there exists input (T, V') for which it is NP-complete. Again,
this is speaking just of data-complexity, but the complexity bound
continues to hold as long as nesting depth and width are bounded,
which we can expect to be the case in practice.

5.3 Auto-completion

A second useful improvement is to help the user by filling out parts
of the form for him. Indeed, if a certain new choice is implied by
the choices made so far, then we can already fill this in ourselves.
Given a three-valued interpretation W, and an atom A such that
AWi = u, we say that the choice for A = t (or A = f) is forced iff
it is the case that for each two-valued W such that W >, W,

if GUW |= T then A" =t (or, resp., AV =),

Note that if no such W exists (i.e., if the user has already made
some invalid choice), then all atoms are both be forced to be
true and forced to be false. To take this possibility into account,
we extend the lattice of interpretations with a maximally precise
element inconsistent, that is more precise than each two-valued
interpretation.

Task 3 (model completion). Given an FO[-] theory T over vocabu-
lary 3 and a three-valued interpretation V - with a finite domain -
for X, compute the greatest lower bound (w.r.t. <p,) of all solutions
to the model expansion problem (T, V), i.e., construct

V=N {582, Vand S =T}.



Again, this way of assisting the user is sound and complete
w.rt. (1), i.e., for each W such that GUW = T, W >, W;
iff W >, W;. Every time the user makes a choice, we thus can
replace the current three-valued interpretation W by its completion
‘W and update the form accordingly.

However, this task is computationally quite hard. Let us con-
sider the associated decision problem: given 7', V and some
V', where again V and V' have finite domains, decide whether

V’ = V. Since we can decide whether there exists a solution
to the model expansion problem (7', V) by checking whether
V = inconsistent, there exist theories for which this prob-

lem is at least NP-complete. For an upper bound, let us consider
the subproblem of deciding whether a single atom is forced to be
true/false. This is in co-NP. Hence, we can solve the entire problem
in polynomial time, given an oracle to decide the status of each sin-
gle atom. Therefore, the problem is in level Af of the polynomial
hierarchy.

Because of these complexity considerations, our actual imple-
mentation uses a recently developed approximation method [Wit-
tocx et al. 2008], which computes a polynomial time approximation
V of V. This algorithm is sound, in the sense that V' <, V. The
price we pay for tractability is of course that the inequality might
be strict.

5.4 Undoing choices

Thus far, we have not yet considered what happens when the user
changes his mind halfway through a run of the program. This can
manifest itself in two ways: either the user tries to undo one of the
choices he made himself, or he wants to deselect one of the courses
that the application auto-selected.

The first case is easy. What happens here is that the user turns an
atom that was t back into u. We thus obtain a new state which is less
precise than the previous one, i.e., the applications goes from some
W, to a W; <, W,. Of course, the UI then should display W',
instead of W, so undoing a choice also undoes all other choices
that were implied by it. Note that we can just use the algorithm of
Section 5.3 to compute this, regardless of the order in which the
user wants to undo his choices.

The second case is a bit trickier. Here, the user attempts to undo
some choice Selected(C') that was made automatically, i.e., one
that is t in W; but not in W;. The problem is of course that W
still contains whatever choices it were that implied Selected(C)
in the first place. So, switching Selected(C) from t to u buys the
user nothing: he will still either have to undo some of the choices
from W that imply Selected(C'), or else be forced to reselect
Selected(C) in the future. Therefore, we might as well prevent
the user from performing such actions, and only allow him to undo
those choices that he has made itself. Of course the interface should
visually make a difference between choices that are made by the
user, which he can undo or change, and the ones we deduced for
him, which the user cannot change directly.

There is of course also another alternative and that is to try to
automatically undo some of the user’s choices so that Selected(C')
would no longer be implied. That is, we could look for some
W’ <, W, which still has some W >, W' such that WUG E T
and Selected(C) is £ in W. In order not to undo too much of the
user’s work, this W’ should be as close as possible to W, so we
would be looking for those W' such that the set of atoms which
are u in W’ but t in W; is minimal. However, there are two main
disadvantages to this approach. First, because of this minimality
criterion it is computationally hard. Second, in this way we might
undo more of the user’s choices than he intended, which could
cause behavior that is hard to understand and potentially frustrating.

5.5 Explaining errors

In subsection 5.2. we showed how we could see detecting errors as
a model expansion task. However, merely detecting an error is of
course not very useful. It would greatly benefit the user if we could
also explain why his choice is not allowed.

Suppose that the application has reached a three-valued inter-
pretation V, such that no interpretation S >, V is still a model
of T'. An explanation of the conflict should consist of two essential
components:

e a number of choices made by the user that together cause the
conflict.

e a number of sentences of the theory 7" that explain the conflict.

For instance, imagine that we represented the domain knowledge
explained in Section 3 by means of a theory that contains the
following sentence:

=SelectedCourse(Prolog Programming)A )

SelectedCourse(Declarative Programming).
If the user is not aware of this rule and tries to select both courses,
a good configuration program would give him the following error
report:

It is not valid to make these choices:
¢ Prolog Programming, Declarative Programming
because they violate this constrains:

e Itis not allowed to follow both Prolog Programming and
Declarative Programming.

(Where, of course, the programmer should provide this natural
language version of (2).) With this information, the user knows not
only how to solve the conflict, but also why there was a conflict in
the first place.

Task 4 (explaining inconsistency). Given an FO|:] theory T over
vocabulary ¥, and a three-valued interpretation 'V for % so that
it is no longer the case that there exits a S >, V for which
S = T. Find an explanation for the inconsistency, consisting of
the following two minimal sets:

1. a minimal subset T' C T such that for each S >, V, S|~ T,
2. a three-valued interpretation

N<, {V'|V' <, Vandforall S >, V', S |- T}.

Again, this task is computationally quit hard. In [Wittocx et al.
2009] a model expansion algorithm is described based on the afore-
mentioned approximation method. This algorithm has the advan-
tage that it can be traced. When the algorithm detects an incon-
sistency this means that some atom has to be both t and f at the
same time. We can then look at the trace and see which user made
selections and which rules were used to infer this.

6. Implementation

We have analyzed in Section 5 the desired behavior of the example
application and formulated it in logical terminology. We saw that
there are four main logical inference tasks of interest. In this sec-
tion, we will summarize how we have used these to implement the
application.

Recall that we have a theory T' in vocabulary X, where the
predicates of 3 are partitioned into given predicates I' and wanted
predicates Q = {Selected(Module), Selected(Course)}. We
are also given an interpretation G for the predicates I'.

The application has a simple UI, that contains a list of check-
boxes for all the courses and modules, as well as a button for final-



izing the selection. The state of the application consists of a three-
valued interpretation 'V for the vocabulary 3. The Ul visualizes the
approximation V of the completion V of V, in a way which makes
a clear distinction between the choices made by the user (i.e., those
in V) and those inferred by the application (i.e., those in V but not
in V). By clicking on a checkbox for this second kind of choice,
the user can ask for an explanation of why it has been inferred.
This is implemented by means of some additional bookkeeping in
the algorithm that infers it, similar to the algorithm for explaining
errors.

At the start of the application, V is initialized to interpret I' by
G, the predicate Selected(M odule) by the function that maps all
modules to u, and the predicate Selected(Course) by the function
that maps all courses to u.

The user can perform three actions, each of which affects the
state 'V (and, hence, produces the corresponding change to the
visualization of V on the screen):

e He can select a course (or module) ¢ for which is SelectedV (c)
u. In this case, we change V by setting Selected” (c) = t.

e He can unselect a course (or module) ¢ for which Selected” (c) =

t. In this case, we change V by setting Selected” (c) = u.

e He can click the button “done”. We then construct a two-valued
interpretation F representing his final choices: Selected” (¢) =

t for all ¢ such that Selected” (¢) = t; all other Selected” (c)
are f. We then check whether F' |= T If not, we produce an
error message and do not change the state of the program; oth-
erwise, we commit I to our student data base and terminate.

Because of our use of the approximation algorithm, all of these
tasks run in polynomial time. Moreover, for all of the theories we
tried in our experiments, the approximation always managed to
achieve optimal precision, apart from certain rare cases involving
aggregates.

We have implemented this application by means of a simple
Java program that provides a Ul, which visualizes the underlies
three-valued interpretation and calls the approximation method and
the IDP-system [Marién et al. 2006], which is a model expansion
system for FO[-], as described above. This application can be down-
loaded at the following URL:

http://www.cs.kuleuven.be/~hanne/demo/

7. Related work

We are not the first to apply Al research to the problem of develop-
ing configuration software. [Soininen and Niemeld 1999] present a
system to automatically compute valid configurations without user
interaction. This is a slightly different setting to ours, since one of
the things that interests us is precisely the demands that are imposed
by the interactiveness of the system (responsiveness, error report-
ing, auto-completion). The language they use is a form of proposi-
tional logic programs. Another logic programming approach is that
of [Axling and Haridi 1994], which does focus on the interactive
aspects. They represent domain knowledge in the Sicstus Object
System, using a representation which is specialized towards con-
figuration tasks involving actual physical objects, such as computer
components. It seems less suited to represent, for instance, the regu-
lations for tax return forms. [Vanden Bossche et al. 2007] describes
an ontology based development methodology using OWL (together
with, as we understand it, several application-specific extensions),
whereas [Subbarayan et al. 2004] describes binary decision dia-
gram and constraint programming based approaches to developing
configuration software. Probably the oldest interactive knowledge
base systems are so-called expert systems [Nikolopoulus 1997].
These are typically rule based: the domain knowledge is repre-

sented as a set of implications, which is then used to reason ei-
ther by forward chaining (deriving the consequence from its an-
tecedents) or backward chaining (deriving that one of its possible
antecedents has to have caused the consequence). Here, the interac-
tions with the user are all governed by the same inference method
and, moreover, getting the desired behavior often requires that this
method of inference already be taken into account while construct-
ing the theory.

A first thing that all of these approaches have in common when
compared to our proposal is that they use a language that is less
general than FO[]. By using FO[:], we hope that our method will
be applicable to a significantly larger class of applications. Indeed,
this language is not only expressive, but also general, in the sense
that it is not geared towards any specific application area. Moreover,
it is based on classical logic, the most studied and best understood
logic in mathematics and computer science. We could consider, for
instance, Answer Set Programming [Gelfond and Lifschitz 1991]
as an alternative [Baral 2003], but this is probably going to be less
familiar to people than classical logic. Moreover, it might perhaps
be less suited to represent, e.g., the regulations for a valid study
program, since this domain knowledge does not require any of the
epistemic or minimal-model features of ASP, but does contain, e.g,
nested quantifiers and equivalences.

A second difference is that it is precisely one of our goals
to analyze the use of different methods of logical inference to
implement the different tasks that arise within a software system,
all using the same domain knowledge. The above approaches all
consider a single form of inference: forward/backward chaining for
the expert systems, SLD-resolution for the Prolog systems, model
generation for ASP, and so on.

There also exist several more ad hoc KR systems that take
an approach somewhat similar to ours. For instance, [Balduccini
et al. 2006] uses a Java shell on top of an Answer Set Program-
ming system to implement a decision support system for a partic-
ular diagnosis-and-repair problem in the context of NASA’s space
shuttle program. Again, the difference to our work is that we are
trying to develop a generally applicable framework, that provides
a range of domain-independent inference algorithms. By contrast,
the aforementioned system uses a single inference algorithm and
implements different tasks by changing, from within the imperative
shell, the theory on which they are performed. The way in which
these changes are made is particular to the application in question.

In as much as that our method also constructs a formal model
of (certain aspects of) the behavior of a software program, it is
related to research on workflow languages such as [van der Aalst
and ter Hofstede 2005]. However, whereas they essentially regard
the events/actions that occur in a software program as black boxes,
we have a semantic model, which focuses precisely on describing
the interactions with the user in terms of the domain knowledge.
Therefore, our focus is significantly different. Nevertheless, more
semantically oriented workflow languages also exist [Davulcu et al.
1998]. These do not yet go as far, however, as to have a full
representation of the domain knowledge, that can be considered
separately from the behavior of the system.

8. Conclusions and future work

One important source of complexity in software engineering is that
declarative domain knowledge and procedural knowledge about the
desired behavior of the system are delicately intertwined through-
out a typical software program. In this paper, we presented an ap-
proach that is aimed toward separating these two components com-
pletely. Our framework consists of the expressive language FO[],
together with a number of different inference tasks for this lan-
guage. We have shown by means of a detailed example that, using
these tools, it is possible to easily and elegantly develop configu-



ration software. All that is required from the software engineer is
to, first, write down the domain knowledge in FO[-], and, second,
to then define the desired behavior of the system in terms of the
different inference tasks that we have discerned.

Similar approaches to developing configuration software, such
as [Subbarayan et al. 2004], are essentially propositional in nature.
By offering full first-order quantification as well as aggregates, our
approach makes the task of writing down the domain knowledge
significantly easier. In the field of knowledge representation, there
is a general trend towards more expressive languages, acknowledg-
ing the practical need for such features. This is seen in Answer
Set Programming (e.g., aggregates, classical negation, disjunction
in the head, [Leone et al. 2006]), Description Logic (e.g., rule lan-
guages such as SWRL) and Constraint Programming. The limiting
factor is of course always the efficiency of the inference algorithms.
In this paper, we have catalogued all of the reasoning tasks that are
needed to implement configuration software, and have shown that
all of these can be adequately approximated in polynomial time for
the expressive language FO[].

In future work, we hope to extend our methodology to a larger
class of software application. While the three inference tasks we
have presented here seem adequate to handle simple configura-
tion software, more complex applications might also require other
forms of logical inference, which have yet to be defined and imple-
mented. One particular issue here is that we have currently limited
ourselves to finite domains only. There are many applications that
require types with potentially infinite domains, such as strings, inte-
gers, and so on. Theoretically, our approximation algorithm easily
accommodates such types, since, in principle, we do not need to
be able to conclude anything about them until the user fills in their
values. However, it would of course be more useful to propagate
information sooner. For instance, in a calendar system, if a meet-
ing has to be finished by a certain time and the user schedules the
start of the meeting at a time which is already past the deadline,
we like to be able to flag this error. Such functionality could be
achieved by integrating constraint propagation techniques into the
approximation algorithm. This is currently the subject of ongoing
research.
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