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Abstract Protecting users in the ubiquitous online world is becoming
more and more important, as shown by web application security – or the
lack thereof – making the mainstream news. One of the more harmful
attacks is cross-site request forgery (CSRF), which allows an attacker to
make requests to certain web applications while impersonating the user
without their awareness. Existing client-side protection mechanisms do
not fully mitigate the problem or have a degrading effect on the browsing
experience of the user, especially with web 2.0 techniques such as AJAX,
mashups and single sign-on. To fill this gap, this paper makes three con-
tributions: first, a thorough traffic analysis on real-world traffic quanti-
fies the amount of cross-domain traffic and identifies its specific proper-
ties. Second, a client-side enforcement policy has been constructed and
a Firefox extension, named CsFire (CeaseFire), has been implemented
to autonomously mitigate CSRF attacks as precise as possible. Evalu-
ation was done using specific CSRF scenarios, as well as in real-life by
a group of test users. Third, the granularity of the client-side policy is
improved even further by incorporating server-specific policy refinements
about intended cross-domain traffic.

1 Introduction

Cross-Site Request Forgery (CSRF) is a web application attack vector that can
be leveraged by an attacker to force an unwitting user’s browser to perform
actions on a third party website, possibly reusing all cached authentication cre-
dentials of that user. In 2007, CSRF was listed as one of the most serious web
application vulnerability in the OWASP Top Ten [15]. In 2008, Zeller and Felten
documented a number of serious CSRF vulnerabilities in high-profile websites,
among which was a vulnerability on the home banking website of ING Direct [23].

One of the root causes of CSRF is the abuse of cached credentials in cross-
domain requests. A website can easily trigger new requests to web applications
in a different trust domain without any user intervention. This results in the
browser sending out cross-domain requests, while implicitly using credentials
cached in the browser (such as cookies, SSL certificates or login/password pairs).



From a server point of view, these implicitly authenticated requests are legitimate
and are requested on behalf of the user. The user, however, is not aware that he
sent out those requests, nor that he approved them.

Currently, a whole range of techniques exist to mitigate CSRF, either by pro-
tecting the server application or by protecting the end-user (e.g. via a browser
extension or a client-side proxy). Unfortunately, the server-side protection mech-
anisms are not yet widely adopted. On the other side, most of the client-side
solutions provide only limited protection or can not deal with complex web 2.0
applications, which use techniques such as AJAX, mashups or single sign-on
(SSO). As a result, even the most cautious web user is unable to appropri-
ately protect himself against CSRF, without compromising heavily on usability.
Therefore, it is necessary to construct more robust client-side protection tech-
niques against CSRF, capable of dealing with current and next-generation web
applications.

This paper presents the following contributions. First, it describes the results
of an extensive, real-world traffic analysis. This analysis shows how many of
the requests a browser makes are cross-domain and what their properties are.
Second, we define CsFire, an autonomous client-side protection policy, which
is independent of user-input or server-provided information. This policy will
determine which cross-domain traffic is considered harmful and will propose
an appropriate action, such as blocking the request or removing the implicit
authentication credentials from the request. The paper also discusses how this
policy can be enforced within the Firefox browser. Finally, this autonomous
policy can be extended by server-specific refinements, to achieve a more flexible
and fine-grained enforcement.

This research builds upon previous work [13]. The main achievements with
respect to the previous preliminary results are (1) a much finer-grained pol-
icy allowing a secure-by-default solution without service degradation, and (2) a
thorough evaluation of the proposed prototype.

The remainder of this paper is structured as follows. Section 2 provides some
background information on CSRF, explores the current state-of-the-art and de-
fines the requirements of client-side mitigation solutions. Next, the detailed traf-
fic analysis results are presented, along with the autonomous client policy, in
Section 3. Section 4 describes the client-side solution in great detail. The re-
finements with server-specific policies and its implementation are discussed in
Section 5. Our solution is evaluated extensively by means of test scenarios, along
with a group of test users. The evaluation results can be found in Section 6. In
Section 7, the presented work is related to alternative mitigation techniques and,
finally, Section 8 summarizes the contributions of this paper.

2 Background

This section provides some background information on CSRF and available
countermeasures. We will also define the requirements for client-side mitigation
against CSRF.



2.1 Cross-Site Request Forgery (CSRF)

HTTP is a stateless client-server protocol [5], which uses certain methods to
transfer data between web servers and browsers. The two most frequently used
HTTP methods are GET and POST. Conforming to the HTTP specification,
GET methods are used to fetch data from the server, whereas POST methods
are used to update server state. In practice however, GET and POST methods
are used interchangeably, and both can trigger server-side state changes.

Because of the stateless nature of HTTP, session management is built on top
of HTTP. This is typically done by means of cookies, which are small amounts of
session-specific data, created by the server application and stored in the browser.
Alternative approaches such as URL rewriting or hidden form parameters exist
as well [17]. This session-specific data is sent back with each request to that
particular web application, without any user intervention.

Similarly, HTTP basic authentication attaches encoded credentials to each
individual request to enable server-side authentication and authorization. For
user convenience, the credentials are typically cached within the browser, and
are only requested once for the lifespan of the browser session.

Other (albeit lesser used) authentication schemes include client side SSL and
IP-based access control [9], of which the latter is mainly used on intranets. This
paper will focus on the first two authentication mechanisms.

To perform a successful CSRF attack, a number of conditions need to be
met:

1. The target website must use implicit authentication, such as through cookies
or HTTP authentication, as mentioned above.

2. The targeted user must already have been authenticated to the target web
application, and the user’s browser must have cached the authentication
credentials.

3. An attacker forces the user’s browser to make an HTTP request to the target
web application.

When all three conditions are met, the browser will automatically add the im-
plicit authentication, making the request appear as a legitimate one to the target
server.

In general, CSRF attacks happen cross-domain, where an attacker tricks the
user into connecting to another site. Strictly speaking, CSRF can also occur
within the same domain, e.g. due to a script injection vulnerability or when
multiple users can host a web site within the same domain (universities, ISP’s,
. . . ). The focus of this paper lies on the cross-domain CSRF attacks.

2.2 Existing countermeasures

A number of CSRF protection techniques exist, by either protecting the server
application or by protecting the end-user. This section briefly discusses both.



Client-side countermeasures The most widespread countermeasure is the Same
Origin Policy (SOP) [22], implemented in most browsers. This policy limits ac-
cess to DOM properties and methods to scripts from the same ‘origin’, where
origin is usually defined as the triple <domain name, protocol, tcp port>1. This
prevents a malicious script on the website evil.com from reading out session
identifiers stored in a cookie from homebanking.com, for example. Unfortunately,
the protection offered by the SOP is insufficient. Although the SOP prevents the
requesting script from accessing the cookies or DOM properties of a page from
another origin, it does not prevent an attacker from making requests to other
origins. The attacker can still trigger new requests and use cached credentials,
even though the SOP prevents the attacker from processing responses sent back
from the server.

On top of SOP, client-side countermeasures exist to monitor and filter cross-
domain requests. They typically operate as a client-side proxy [9] or as an exten-
sion in the browser [18,23]. These countermeasures monitor outgoing requests
and incoming responses, and filter out implicit authentication or block cross-
domain requests. Unfortunately, these client-side mitigation techniques suffer
from various problems, as will be discussed in Section 7.

Server-side countermeasures A number of server-side mitigation techniques ex-
ists as well, of which the most popular class is the use of secret tokens [4,10,16].
Each response from the server embeds a secret token into the web page (e.g. a
hidden parameter in an HTML form). For each incoming request, the server ver-
ifies that the received token originated from the server, and is correctly bound to
the user’s session. Since the SOP prevents the attacker from reading responses
from other origins, this is an effective server-side countermeasure.

Another class of server-side countermeasure relies on the HTTP referer
header to determine the origin of the request. Unfortunately, quite often browsers
or proxies block this header for privacy reasons [2]. Furthermore, an attacker can
spoof HTTP headers, e.g. via Flash or request smuggling [11,12].

More intrusively, Barth et al. propose an additional HTTP header to indicate
the origin of the request [2]. This header should not be removed by the browser
or proxies, and is less privacy-intrusive than the referer. In addition to such an
origin header, W3C proposes to add additional headers to the responses as
well, to give server-side cross-domain information to the browser [19].

2.3 Requirements for client-side protection

As stated before, the quality and applicability of the client-side countermea-
sures is still inadequate. The client-side mechanisms are necessarily generic, as
they have to work for every web application, in every application domain. This
usually makes them too coarse grained, often resulting in too permissive or too
restrictive enforcement. In addition, most countermeasures do not handle current
technologies well, such as JavaScript, AJAX and single sign-on (SSO).

1 This definition of ‘origin’ will be used throughout the remainder of this paper.



Therefore, we propose the following requirements for a client-side CSRF so-
lution in a contemporary web 2.0 context.

R1. The client-side protection should not depend on user input. Nowadays, a
substantial fraction of web requests in an average browsing session is cross-
domain (see Section 6). It is infeasible for the user to validate requests.
Furthermore, users can not be expected to know which third parties a web
application needs to function correctly. Therefore, a transparent operation
is essential.

R2. The protection mechanism should be usable in a web 2.0 context, without
noticeable service degradation. The solution should support the dynamic
interaction behavior of today’s applications (i.e., ‘mashups’), and embrace
current and future web technologies.

R3. Secure by default. The solution should have minimal false negatives using
its default configuration.

3 Secure cross-domain policy

The previous sections have made clear that even though there are effective coun-
termeasures available, the user is left vulnerable due to the slow adoption of these
countermeasures. In this section we will propose a policy defining exactly which
cross-domain traffic is allowed and when protective measures need to be taken.
This fine-grained policy, which is the main contribution of this paper, allows the
users to protect themselves from malicious attackers and ill-secured websites.

To be able to determine an effective policy, information about cross-domain
traffic is of crucial importance. By analyzing common cross-domain traffic, we
can determine which request properties the policy enforcement mechanism can
use to base its decisions on.

3.1 Properties of cross-domain traffic

We have collected real-life traffic from about 15 volunteers over a time period of
2 weeks, resulting in a total of 750334 requests. The analysis of this traffic has
revealed a number of properties that can be used to determine a secure cross-
domain policy. We will discuss the traffic by pointing out how the requests are
distributed in the total data set. We will examine the data through the strict
SOP, which uses the triple <full domain name, protocol, tcp port>, as well as the
relaxed SOP, which only considers the actual domain name (e.g. example.com.
These detailed results are consistent with one million earlier recorded requests,
as reported in [13].

A first overview, presented in Table 1, shows the distribution between the
different request methods (GET, POST and other). Striking is that for the strict
SOP, almost 43% of the requests are cross-domain. For the relaxed SOP, this is
nearly 33%. The number of cross-domain requests is dominated by GET requests,
with the POST requests having a minimal share.



As far as the other methods are concerned, we have discovered a very small
number of HEAD and OPTIONS requests. Due to their insignificant amount,
we do not focus on this type of requests. We do acknowledge that they need to
be investigated in future research.

GET POST Other Total

Cross-domain requests 320529 1793 0 322322
(strict SOP) (42.72%) (0.24%) (0.00%) (42.96%)

Cross-domain requests 242084 1503 0 243587
(relaxed SOP) (32.26%) (0.20%) (0.00%) (32.46%)

All requests 722298 28025 11 750334
(96.26%) (3.74%) (0.00%) (100.00%)

Table 1. Traffic statistics: overview of all traffic (for each row, the percentages of the
first 3 columns add up to the percentage of the last column)

Table 2 shows a detailed analysis of the GET requests. The columns show
how much requests carry parameters (Params), how many requests are initiated
by direct user interaction, such as clicking a link or submitting a form (User),
how many requests contain a cookie header (Cookies) and how many requests
carry HTTP authentication credentials (HTTP Auth). The results show that ap-
proximately 24% of the GET requests contain parameters. Furthermore, we can
see that a very small amount of the GET-requests, especially of the cross-domain
GET requests, originate from direct user interaction. The data also shows that
cookies are a very popular authentication mechanism, whereas HTTP authenti-
cation is rarely used for cross-domain requests.

Params User Cookies HTTP Auth Total

Cross-domain requests 82587 1734 116632 26 320529
(strict SOP) (25.77%) (0.54%) (36.39%) (0.08%) (42.72%)

Cross-domain requests 58372 1100 59980 1 242084
(relaxed SOP) (24.11%) (0.45%) (24.78%) (0.00%) (32.26%)

All GET requests 168509 7132 411056 651 722298
(23.33%) (0.99%) (56.91%) (0.89%) (96.26%)

Table 2. Traffic statistics: overview of GET requests (for each row, the percentages in
the columns are independent of each other and calculated against the total in the last
column)

The analysis of the POST requests is summarized in Table 3, categorized
in the same way as the GET requests, except for the presence of parameters.
This data shows the same patterns as for the GET requests, albeit on a much
smaller scale. We do see a larger percentage of cross-domain requests being
initiated by the user, instead of being conducted automatically. Again, the HTTP
authentication mechanism suffers in popularity, but cookies are used quite often.

3.2 Defining a policy

A policy blocking all cross-domain traffic is undoubtedly the most secure policy.
However, from the traffic analysis we can easily conclude that this would lead to a



User Cookies HTTP Auth Total

Cross-domain requests 158 1005 0 1793
(strict SOP) (8.81%) (56.05%) (0.00%) (0.24%)

Cross-domain requests 25 753 0 1503
(relaxed SOP) (1.66%) (50.10%) (0.00%) (0.20%)

All POST requests 930 23056 96 28025
(3.32%) (82.27%) (1.99%) (3.74%)

Table 3. Traffic statistics: overview of POST requests (for each row, the percentages
in the columns are independent of each other and calculated against the total in the
last column)

severely degraded user experience, which conflicts with the second requirement
of a good client-side solution. A policy that meets all three requirements will
have to be more fine-grained and sophisticated. To achieve this goal, the policy
can choose from three options for cross-domain requests: the two extremes are
either allowing or blocking a cross-domain request. The road in the middle leads
to stripping the request from authentication information, either in the form of
cookies or HTTP authentication headers.

In order to preserve as much compatibility as possible, we have chosen to use
the relaxed SOP to determine whether a request is cross-domain or not. This is
comparable to JavaScript, where a relaxation of the origin is also allowed. We
will now define the policy actions for each type of request and where possible,
we will add further refinements. We will start by examining POST requests,
followed by the GET requests. An overview of the policy is given in Table 4.

For a relaxed SOP, the traffic analysis shows that only 0.20 % of the cross-
domain requests are POST requests, of which 1.66% is the result of direct user
interaction. Therefore, we propose to strip all POST requests, even the manually
submitted POST requests. This effectively protects the user from potentially
dangerous UI redressing attacks [14], while having a minimal effect on the user
experience.

Even though the HTTP protocol specification [5] states that GET requests
should not have state-altering effects, we will ensure that CSRF attacks using
GET requests are also prevented. This means that the policy for GET requests
will have to be fine-grained. Since requests with parameters have a higher risk
factor, we will define different rules for GET requests carrying parameters and
GET requests without any parameters. The traffic analysis has shown that cross-
domain GET requests with parameters are very common, which means that
the attack vector is quite large too. Therefore, we propose to strip all GET
requests with parameters from any authentication information. The GET re-
quests without any parameters are less risky, since they are not likely to have
a state-altering effect. Therefore, we have decided to allow GET requests with
no parameters, if the request originates from user-interaction (e.g. clicking on
a link). This helps preserving the unaltered user experience, because otherwise,
when the user is logged in on a certain website, such as Facebook, and follows
a link to www.facebook.com in for an example a search engine, the authentica-
tion information would be removed, which requires the user to re-authenticate.



GET requests without any parameters that are not the result of direct user in-
teraction will be stripped to cover all bases. If such a request would depend on
authentication information, a re-authentication will be necessary.

Properties Decision

GET
Parameters STRIP

No parameters
User initiated ACCEPT
Not User initiated STRIP

POST
User initiated STRIP
Not User initiated STRIP

Table 4. The secure default policy for cross-domain traffic

4 Mitigating malicious cross-domain requests

In the previous section we have determined a policy to counter CSRF attacks.
The policy will be enforced by a few specific components, each with their own
responsibility. One of these components is the policy information point (PIP),
where all the available information is collected. This information can be leveraged
by the policy decision point (PDP) to make a decision about a certain request.
This decision is used by the policy enforcement point (PEP), which will provide
active protection for the user. We have implemented this policy as CsFire, an
extension2 for Mozilla Firefox that incorporates each of these components. The
technical details of CsFire will now be discussed.

4.1 The Firefox architecture

Mozilla Firefox, the second most popular browser, comes with an open and exten-
sible architecture. This architecture is fully aimed at accommodating possible
browser extensions. Extension development for Firefox is fairly simple and is
done using provided XPCOM components [21]. Our Firefox extension has been
developed using JavaScript and XPCOM components provided by Firefox itself.

To facilitate extensions wishing to influence the browsing experience, Firefox
provides several possibilities to examine or modify the traffic. For our extension,
the following four capabilities are extremely important:

– Influencing the user interface using XUL overlays
– Intercepting content-influencing actions by means of the content-policy

event
– Intercepting HTTP requests before they are sent by observing the http-on-

modify-request event (This is the point where the policy needs to be en-
forced).

– Intercepting HTTP responses before they are processed by observing the
http-on-examine-response event

2 The extension can be downloaded from https://distrinet.cs.kuleuven.be/

software/CsFire/.



4.2 Policy enforcement in Firefox

When a new HTTP request is received, the PEP needs to actively enforce the
policy to prevent CSRF attacks. To determine how to handle the request, the
PEP contacts the PDP which can either decide to allow the request, block it or
strip it from any authentication information.

Enforcing an allow or block decision is straightforward: allowing a request
requires no interaction, while blocking a request is simply done by signaling an
error to Firefox. Upon receiving this error message, Firefox will abort the request.
Stripping authentication information is less straightforward and consists of two
parts: stripping cookies and stripping HTTP authentication credentials. How
this can be done will be explained in the following paragraphs.

Firefox 3.5 has introduced a private browsing mode, which causes Firefox to
switch to a mode where no cookies or HTTP authentication from the user’s
database are used. Private browsing mode stores no information about surfing
sessions and uses a separate cookie and authentication store, which is deleted
upon leaving private browsing mode. Unfortunately, we were not able to lever-
age this private browsing mode to strip authentication information from cross-
domain requests, due to some difficulties. The major setback is the fact that
Firefox makes an entire context switch when entering private browsing mode.
This causes active tabs to be reloaded in this private mode, which essentially
causes false origin information and influences all parallel surfing sessions.

Another approach is to manually remove the necessary HTTP headers when
examining the HTTP request, before it is sent out. This technique is very ef-
fective on the cookie headers, but does not work for authorization headers.
These headers are either added upon receiving a response code of 401 or 407 or
appended automatically during an already authenticated session. In the former
case, the headers are available upon examining the request and can be removed,
but in the latter case, they are only added after the request has been examined.
Obviously, this poses a problem, since the headers can not be easily removed.

Investigating this problem revealed that to implement the private browsing
mode, the Firefox developers have added a new load flag3, LOAD ANONYMOUS,
which prevents the addition of any cookie or authorization headers. If we set
this flag when we are examining the HTTP request, we can prevent the addition
of the authorization header. This is not the case for the cookie header, but
as mentioned before, the cookie header, which at this point is already added to
the request, can be easily removed.

4.3 Considerations of web 2.0

The difficulty of preventing CSRF can not necessarily be contributed to the
nature of the attack, but more to the complex traffic patterns that are present
in the modern web 2.0 context. Especially sites extensively using AJAX, single

3 Load flags can be set from everywhere in the browser and are checked by the Firefox
core during the construction of the request.



sign-on (SSO) mechanisms or mashup techniques, which combines content of
multiple different websites, make it hard to distinguish intended user traffic from
unintended or malicious traffic. Web 2.0 techniques such as AJAX and SSO can
be dealt with appropriately, but mashups are extremely difficult to distinguish
from CSRF attacks. Our solution has no degrading effect on websites using
AJAX and SSO, but can be inadequate on mashup sites depending on implicit
authentication to construct their content.

A SSO session typically uses multiple redirects to go from the site the user
is visiting to an SSO service. During these redirects, authentication tokens are
exchanged. When the original site receives a valid authentication token, the user
is authenticated. Since all these redirects are usually cross-domain, no cookies or
HTTP authentication headers can be used anyway, due to the SOP restrictions
implemented in browsers. The authentication tokens are typically encoded in
the redirection URLs. Our extension is able to deal with these multiple redirects
and does not break SSO sessions.

5 Server contributions to a more fine-grained policy

The policy up until now was completely based on information available at the
client-side. Unfortunately, such a policy fails to reflect intentions of web appli-
cations, where cross-domain traffic may be desired in certain occasions. To be
able to obtain a more fine-grained policy, containing per site directives about
cross-domain traffic, we have introduced an optional server policy. This server
policy can tighten or weaken the default client policy. For instance, a server can
prohibit any cross-domain traffic, even if authentication information is stripped,
but can also allow intended cross-domain traffic from certain sites.

The technical implementation of server-side policies are fairly straightfor-
ward: the server defines a cross-domain policy in a pre-determined location,
using a pre-determined syntax. The policy syntax, which is based on JSON, is
expressed in the ABNF metasyntax language [3] and is available online4. The
policy is retrieved and parsed by the browser extension at the client side. The
policy is used by the PDP when decisions about cross-domain traffic need to be
made.

The server policy has been made as expressive as possible, without requiring
too many details to be filled out. The server policy can specify whether the
strict SOP or the relaxed SOP needs to be used. Next to this, a list of intended
cross-domain traffic can be specified. This intended traffic consists of a set of
origins and a set of destinations, along with the policy actions to take. We have
also provided the option to specify certain cookies that are allowed, instead of
stripping all cookies. Finally, we also allow the use of the wild card character *,
to specify rules for all hosts. An example policy can be found in Figure 1.

Technically, the server policy is enforced as follows: when the PDP has to
decide about a certain request, the request is checked against the target server
4 http://www.cs.kuleuven.be/~lieven/research/ESSoS2010/serverpolicy-abnf.

txt



{"strictDomainEnforcement": true,

"intendedCrossDomainInteraction": [

{"blockHttpAuth": false,

"blockCookies": false,

"methods": ["*"],

"cookieExceptions": [],

"origins": [{

"host": "www.ticket.com",

"port": 443,

"protocol": "https",

"path": "/request.php" }],

"destinations"= [{

"port": 443,

"protocol": "https",

"path": "/confirm.php" }]},

{"blockHttpAuth": true,

"blockCookies": true,

"methods": ["getNoParam"],

"cookieExceptions": ["language"],

"origins": [{ "host": "*" }]

}]}

Figure 1. An example server policy

policy. If a match is found, the decision specified by the policy will be found. If
no match is found, the request is handled by the default client policy.

At the time, the composition of the server policy and the secure by default
client policy to a unified policy is very rudimentary. This needs to be refined, such
that the server can introduce policy refinements, without severely compromising
the client-side policy. These refinements are left to future research.

6 Evaluation

CSRF attacks, as described earlier, are cross-domain requests abusing the cached
authentication credentials of a user, to make state-altering changes to the target
application. Knowing whether a request is state altering or not, is very applica-
tion specific and very hard to detect at the client-side. The solution we proposed
in the previous sections, examines all cross-domain traffic (intended and un-
intended) and limits the capabilities of such cross-domain requests, thus also
prevents CSRF attacks. The extension is evaluated using a testbed of specially
created test scenarios, to confirm that the capabilities of cross-domain requests
are indeed limited as specified by the policy. A second part of the evaluation is
done by a group of test users, that have used the extension during their nor-
mal, everyday surfing sessions. This part of the evaluation will confirm that
even though the extension intercepts all cross-domain traffic – and not only the
CSRF attacks –, the user experience is not affected by this fact. We conclude by
presenting a few complex scenarios, that have been tested separately.



6.1 Extensive evaluation using the scenario testbed

To evaluate the effectiveness of CSRF prevention techniques, including our own
solution, we have created a suite of test scenarios. These scenarios try to execute
a CSRF attack in all different ways possible in the HTTP protocol, the HTML
specification and the CSS markup language. The protocol and language specifi-
cations have been examined for cross-domain traffic possibilities. Each possible
security risk was captured in a single scenario. Where applicable, a scenario has
a version where the user initiates the request, as well as an automated version
using JavaScript. For completeness, an additional JavaScript version using time-
outs was created. In total, we have used a test suite of 59 scenarios. For requests
originating from JavaScript, no scenarios are created, since these requests are
typically blocked by the SOP.

Some highlights of these testing scenarios are redirects, either by the Location
header, the Refresh header5 or the meta-tag. For CSS, all attributes that use
an URL as a value are possible CSRF attack vectors.

The extension has been evaluated against each of these scenarios. For every
scenario, the CSRF attack was effectively prevented. Some scenarios conducted
a hidden CSRF attack, in which case the user does not notice the attack being
prevented. In case the attack is clearly visible, such as by opening a link in the
current window, the user is presented with an authentication prompt for the
targeted site. This is an altered user experience, but since an unwanted attack
is prevented, this can not be considered a degradation of the surfing experience.

When discussing related work, these test scenarios will be used for the eval-
uation of other CSRF prevention solutions.

6.2 Real-life evaluation

A group of more than 50 test users, consisting of colleagues, students and mem-
bers of the OWASP Chapter Belgium, has used CsFire with the policy as defined
in this paper for over three months. The extension provides a feedback button,
where users can easily enter a comment whenever they encounter unexpected
effects. The results of a 1 month time slice are presented in Table 5. These num-
bers show that the extension has processed 1,561,389 requests, of which 27% was
stripped of authentication credentials. The feedback logged by the users was lim-
ited to 3 messages, which was confirmed verbally after the testing period.

Apart from the transparent evaluation by a group of test users, certain spe-
cific scenarios have been tested as well. This includes the use of single sign-on
services such as Shibboleth and OpenID. The use of typical web 2.0 sites such
as Facebook or iGoogle was also included in the evaluation.

The only minor issue we detected, with the help of the feedback possibility of
the extension, was with sites using multiple top-level domains. For instance, when
Google performs authentication, a couple of redirects happen between several

5 Even though the Refresh header is not part of the official HTTP specification, it is
supported by browsers.



Number of processed requests 1,561,389
Number of ACCEPT decisions 1,141,807
Number of BLOCK decisions 0
Number of STRIP decisions 419,582
Number of feedback messages 3

Table 5. A 1 month time slice of evaluation data

google.com domains and the google.be domain. This causes certain important
session cookies to be stripped, which invalidates the newly authenticated session.
This problem occurs for example with the calendar gadget of iGoogle, as well as
the login form for code.google.com. This issue has not been registered on other
Google services, such as Gmail, or any other websites.

These issues show why it is very difficult for an autonomous client-side pol-
icy to determine legitimate cross-domain traffic from malicious cross-domain
traffic. This problem shows the importance of a server-side policy, which could
relax the client-side policy in such a way that requests between google.be and
google.com would be allowed.

A side-effect from the way Firefox handles its tabs becomes visible when
using multiple tabs to access the same website. If a user is authenticated in tab
one, a session cookie has probably been established. If the user now accesses this
site in another tab, using a cross-domain request, the cookies will be stripped.
This will cause the sessions in both tabs to be invalidated, which is a minor
degrading experience. This behavior is very application-specific, since it depends
on the way the application handles authentication and session management. This
behavior has been experienced on LinkedIn, but does not appear on Facebook or
Wikipedia. This problem can be mitigated with the integration of tab-isolation
techniques. Such techniques are not yet available for Mozilla Firefox, but are in
place in Google Chrome [7] and Microsoft Gazelle [20].

7 Related work

In this section, we discuss CSRF protection mechanisms that where an inspi-
ration to our solution: RequestRodeo and the Adobe Flash cross-domain policy.
We also discuss two competing solutions: BEAP and RequestPolicy. Finally, we
discuss BEEP, which proposes server-enforced policies, which can lead to future
improvements of CSRF protection techniques.

RequestRodeo The work of Johns and Winter aptly describes the issues with
CSRF and a way to resolve these issues [9]. They propose RequestRodeo, a
client-side proxy which protects the user from CSRF attacks. The proxy pro-
cesses incoming responses and augments each URL with a unique token. These
tokens are stored, along with the URL where they originated. Whenever the
proxy receives an outgoing request, the token is stripped off and the origin is
retrieved. If the origin does not match the destination of the request, the request
is considered suspicious. Suspicious requests will be stripped of authentication
credentials in the form of cookies or HTTP authorization headers. Reque-
stRodeo also protects against IP address based attacks, by using an external



proxy to check the global accessibility of web servers. If a server is not reachable
from the outside world, it is considered to be an intranet server that requires
additional protection. The user will have to explicitly confirm the validity of
such internal cross-domain requests.

By stripping authentication credentials instead of blocking the request, Re-
questRodeo makes an important contribution, which lies at the basis of this
work. Protecting against IP address based attacks is novel, and could also be
added to our browser extension using the same approach. Johns and Winter do
encounter some difficulties due to the use of a client-side proxy, which lacks con-
text information. They also rely on a rewriting technique to include the unique
token in each URL. These issues gain in importance in a web 2.0 world, where
web pages are becoming more and more complex, which can be dealt with grace-
fully by means of a browser extension. Our solution is able to use full context
information to determine which requests are authorized or initiated by a user.

Adobe Flash By default, the Adobe flash player does not allow flash objects
to access content retrieved from other websites. By means of a server-provided
configurable policy, Adobe provides the option to relax the secure by default
policy [1]. The target server can specify trusted origins, which have access to
its resources, even with cross-domain requests. This technique was a source of
inspiration for our own server-provided policies.

One unfortunate side-effect with the Adobe cross-domain policy and the ex-
ample above is that a lot of sites have implemented an allow all policy [23]. To
obtain a secure unified policy, smart composition of client and server-provided
policies is crucial.

BEAP (AntiCSRF) Mao, Li and Molloy present a technique called Browser-
Enforced Authenticity Protection [14]. Their solution resembles our solution, in
a sense that they also aim to remove authentication credentials and have imple-
mented a Firefox extension. Their policy to determine suspicious requests is quite
flexible and based on the fact that GET requests should not be used for sensitive
operations. As this may hold in theory, practice tells us otherwise, especially in
the modern web 2.0 world. GET requests not carrying an authorization header
are not considered sensitive, which leaves certain windows of attack open. BEAP
addresses one of these issues, namely UI redressing, by using a source-set instead
of a single source, the origin of the page. All the origins in the set, which are the
origins of all ancestor frames, need to match the destination of the new request
before it is allowed.

We have tested the provided Firefox extension against various test scenarios.
The extension only works effectively against cross-domain POST requests, which
is an expected consequence of the protection policy they propose. Unfortunately,
the provided extension does not remove the authorization header and only
seems to remove the cookie header. Our solution proposes a more realistic and
more secure policy, and contributes technically by providing a clean way to
actually remove an authorization header in Firefox.



RequestPolicy Samuel has implemented a Firefox extension against CSRF at-
tacks [18]. RequestPolicy is aimed at fully preventing CSRF attacks, which is
realized by blocking cross-domain traffic, unless the sites are whitelisted. The cri-
teria used to identify suspicious cross-domain traffic are user interaction and a
relaxed SOP. Whenever a user is directly responsible for a cross-domain request,
by clicking on a link or submitting a form, the request is allowed. Otherwise,
traffic going to another domain is blocked. the extension allows a way to add
whitelisted sites, such that traffic from x.com is allowed to retrieve content from
y.com. By default, the extension proposes some whitelist entries, such as traffic
from facebook.com to fbcdn.com.

When testing the RequestPolicy extension against our test scenarios, we
found that almost all CSRF attacks are effectively blocked. Only the attacks
which are caused by direct user interaction succeeded, which was expected. Un-
fortunately, when testing the extension by surfing on the internet, our experience
was severely degraded. For starters, opening search results on Google stopped
working. The cause for this issue is that clicking a search result actually retrieves
a Google page6, which uses JavaScript to redirect the user to the correct website.
This JavaScript redirect is considered suspicious and therefore blocked. Apart
from the Google issue, other sites suffered very noticeable effects. For instance,
the popular site slashdot.org suffers major UI problems, since the stylesheet
is loaded from a separate domain. These issues do not occur in our solution,
since we only strip authentication information, instead of completely blocking
cross-domain traffic.

BEEP Jim, Swamy and Hicks propose Browser-enforced Embedded Policies,
which uses a server-provided policy to defeat malicious JavaScript. They argue
that the browser is the ideal point to prevent the execution of malicious scripts,
since the browser has the entire script at execution time, even if it is obfuscated
or comes from multiple sources. Their solution is to inject a protection script at
the server, which will be run first by the browser and validates other scripts.

Such a server-provided but client-enforced technique is very similar to our
solution, which is able to use server-provided policies and enforces security at
the client-side. The solution proposed in BEEP can be an inspiration to work
towards unified client-server CSRF protection mechanisms.

8 Conclusion

We have shown the need for an autonomous client-side CSRF protection mecha-
nism, especially since the already existing server-side protection mechanisms fail
to get widely adopted and the available client-side solutions do not suffice. We
have provided an answer to this requirement with our client-side browser exten-
sion which effectively protects the user from CSRF attacks. A predefined policy
6 When investigating this issue, not much information about this issue was found. We

have noticed that this effect does not happen consistently, but have not found any
logic behind this Google behavior.



is used to determine which cross-domain requests need to be restricted, by either
blocking the request or stripping the request from authentication credentials.

This work builds on preliminary results presented in an earlier paper, but
presents much more detailed results in every section. We have conducted an
extensive traffic analysis, which resulted in a number of request properties that
can be used to determine the appropriate policy action for a cross-domain re-
quest. The predefined client-side policy uses these fine-grained criteria to achieve
a policy that protects the user, without influencing the user experience in a neg-
ative way. In case cross-domain traffic is intended, which is not known by the
client, servers can provide a cross-domain policy specifying which cross-domain
requests are allowed. The browser extension merges both the client-side policy
and the server-provided policy, to preserve the available protection mechanisms
but also to offer as much flexibility as possible.

The policy and the enforcement mechanism have been thoroughly evalu-
ated against CSRF attack scenarios, which cover all possibilities to mount a
CSRF attack using HTTP, HTML or CSS properties. We have also collected
results from a group of test users, which have actively used the extension during
their normal surfing sessions. Finally, we have evaluated the extension against
a few complex scenarios, such as sites using a single sign-on (SSO) mechanism
or mashup techniques. Aside from one minor issue with sites spanning multiple
top-level domains, no degrading effects where monitored, while all CSRF attack
scenarios where successfully prevented. Even on mashup sites and sites using
SSO mechanisms, no problems where detected.

The solution in this paper is not yet perfect and there is still room for im-
provement. Future research will focus on the refinement of the composition of a
client-side policy and server-provided policies. The policies need to be extended
to include other traffic besides GET and POST. Finally, the use of other au-
thentication mechanisms, such as for instance SSL authentication, needs to be
further investigated to prevent CSRF attacks abusing such credentials.
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