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ABSTRACT.
‘ Intelligent backtracking for an interpreter of Horn clause logic programs.

An interpreter of Horn clause logic programs is given a goal statement
{= A v X A (n>= 1) and a set of Horn clauses of the form B<- B
(m > 6) and attempts to derive a sequence of goal statements endlng in tEe
empty goal statement.
The basic cycle of the interpreter is
- select a literal A, in the current goal statement.

- select a Horn olauée B<-B such that A. and B have a most general
unifier (@) and derive a new goaT statement
<= (A1 "’Ai-1’51’ g Bm A1+1’ ..,An)e
In general, different Horn clauses match with A,. This non-determinism can

be represented as an or-tree. At the implementationllevel, this non-determinism
is usually handled by backtracking : only one path at a time is explored in the
or-tree. A simple backtracking system such as in the current PROLOG respects
the total ordering provided by the selection function and returns to the
previous goal statement when the current one has no solutions. However,
possibly the previous goal statement has no solutions for just the same reasons.

In this paper we define a partial ordering over the different steps in a
derivation. This partial ordering allows us to find a goal statement that
cannot be unsolvable for the same reasons as the current one ("backtrackpoint").

Moreover, this partial ordering allows us to reorder the steps of the
derivation, without 1losing any possible solutions, such that not all steps
executed since the "backtrackpoint" must be undone.

This partial ordering also reduces the amount of computation necessary to
derive all solutions when the derivation of a solution contains independent
subproblems.



1. Horn clause logic programs.

1.1. Syntax and declarative semantics.

2.2,

1.3.

A Horn clause program comprises a set of procedure declarations and a
"main program" or "goal statement". Procedure declarations are expressions
of the form B<-A,,...,A (n >= 0) where B,A.,...,A are atomic formulas.
They can be reaa as logic statements i.e. for all values of the variables,
B is true if A &...&A_ are true.

An atomic formula is an expression of the form R(t1,...,tn) where R is
a n-adie relation and t1,...,tn are terms, i.e. functional expressions,
constants or variables. We distinguish constants from variables by
starting the former ones with an upper case letter and the latter ones by a
lower case letter.

A declaration B<-A ""’An where the atom B has a relation name R is
the declaration of a procedure for the relation R.

The main program is given by an expression of the form <-A_,...,A
(n >= 1) where the "procedure calls" A, are again atomic formulas. Th?s
main program can be interpreted as a request to find a constructive proof
of Jx1,...,xm (A1 &...& An) where x1,...,xm are the variables in

|
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The procedural interpretation.

The main program <-A_.,...,A is evaluated as follows : we select an
arbitrary procedure cal A . =R(t1,...,tp). We invoke a procedure for the
relation R of this call, by Searching for a declaration R(t'1,...,t'p)
<-B ""’Bn such that R(t1,...,tp) and R(t'1,...,t'p) unify with a most
general unifier © . We transform the main program into a new set of
procedure calls <-(A.,...,A -1’B1""’Bm’Ai 1,...,A )® which is the new
state of the computation. This process is reEeated until we reach an empty
set of procedure calls. The composition 6 .. 02..... ©, of the unifying
substitutions 61,..., Bk of this computation, applied to the variables

in the initial set of calls, is the output of the computation.
Non-determinism.

The above evaluation mechanism is non-deterministic in two respects.
First, there is, in the current set of procedure calls, the choice of the
call to be executed in the next step. Control over this selection is of
crucial importance for efficiency of the computation and - because the
really intelligent scheduler is still unknown and is not likely to be found
in the near future - has to be done by the user. In current
implementations of the language PROLOG, [1,2,3] selection is done in a
strictly 1left to right order. The user has to adapt his logic programs in
such a way that this selection rule gives an adequate efficiency of the
computation. Work is under way [U4] to provide a more flexible control.
This will allow the same overall efficiency with a sometimes much simpler
logic program. Notice that the selection rule has no effect on the number
of derivable solutions.

The second non-determinism results from the possibility of different
procedures matching the selected call. Each of them leads to an
alternative branch in the computation. We can explore these branches in
parallel, or, we can explore the alternatives sequentially, and find all
solutions, using backtracking, if for the strategy used to select the call,
each branch terminates with a solution or a failure. Observe that the same
restriction on the selection of calls is necessary in order te terminate a
parallel execution when searching all possible solutions.

Where a naive backtracking system will rigorously explore all
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alternatives, a more intelligent one will learn from previous failures and
successes how to get a faster exploration of the remaining alternatives.
In this paper we study such an intelligent backtracking system.

The same subject has been studied by some MSc students at Imperial
College in London in a project led by Robert Kowalski, a project that had
its origins in the study of Sussman's HACKER. Intelligent backtracking in
connection graphs is discussed by Cox and Pietrzykowski [5,6].

2. Naive backtracking.

An interpreter is given a set S of procedure calls of the form <-A
(the "goal statement") . 1Its basic cyecle is the following
- select a literal A, of S
- select a procedure B(-B1,...,B whose heading B matches with A,(B and Ai
have a most general unifier € ) and derive the new set
K=Agyeeeshy 13BoyeeayByAL 1yee. ,An)e

,4..,A

1 n

In general, k procedures match the selected literal A, and thus, k new
states are derivable. We can represent these alternative solutions as branches
in an or-tree e.g.

0
5
L’////////f” l;m\\mn\\\\h\h 1
S S 3
/ 1 2 3
2 \\\\\\\2 2
S S S
1 2 3
3
S

The terminal nodes are either solutions (the empty set of calls) or failure
nodes (none of the procedures matches the selected call). Backtracking explores
this or-tree using a gepth-first, left-EETright search strategy. Once all iE?e
sclutions to some S, descendant of S are found, the system restores S
and i{h?here are stilf some untried alternﬁtives to match the 1literal selected
in 8 , one of them is tried and S 1 ii? derived. If there are no more
alternatives, it means all solutions t8+ Sk- are found and the system
backtracks to the previous level.

The shortcoming of this system is that several states occurring in
different branches of the or-tree share some procedure calls, and, in executing
these calls, the same computations are done in each branch. To be more
specific, consider an initial set of calls <-A,B where the literals A and B do
not share any variable. Suppose the selection rule is such that the call A is
completely executed before the call B is selected. A naive backtrackingsystem
will derive a first solution for A characterized by a substitution @ ., then will
execute the call B @, and will derive all solutions to this call, then will
backtrack to A, deriving a second solution, characterized by 6., will execute the
call E392,... until all solutions are derived. However, because A and B do not
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share any variables B6, = B8, = ... = B6_ = B. The system will execute the same
call B n times (n being the nAumber of solutions for A); in other words, the same

node will occur in n different branches of the or-tree. A more intelligent
system should recognize this independence, should execute both calls A and B
only once and should combine the n solutions 61,...,63 for A with the m

solutions V,I,...,U’ for B to obtain the n % m solutionsnei.h". for the initial
problem <-A,B. In tﬁe special case where m = 0, such an intellfgent system will
not attempt to remedy the failure of B by deriving another solution for A, but
will conclude the unsolvability of the total problem.

The current state of a computation can be characterized by an and-tree
where the calls of the original goal statement are the branches of the root
node. At each step, a leaf is selected and becomes the root of the calls in the
body of the applied procedure. The order in which the calls are selected is, in
a naive system, also the order in which backtracking is performed and
characterizes the whole computation.

Example :

c
e e
1 / : /43\
c \c c
21 / 22 Sy 31
c c
221 222

total ordering of selection
and backtracking

We can think of the computation as starting with a fictitious goal
statement <-C,. The original goal statement is <-C1,02,C . The order of
selection is C.,C,,C.,C Backtracking occurs in the reverSe order. The

current goal stgteﬁengz is <-C.,C,.,C o ,C... Once all solutions to the
17721 521 22% 31

current goal statement are found, the system™ restores <-C1,C 1,022,0 1

Augmented with, for each call, the list of untried procedures and %he appl%ed

substitution, this tree defines the whole computation.

The father of a call is the call by which the former is created i.e. 02 is
the father of C,,andC,,.

The offspring of a call consists of all calls in the subtree with that call
as root i.e. the set {021,022,0221,0222} is the offspring of Cz.

3. A more accurate backtracking on failure.

A call A on some relation R has, when it is executed, a certain pattern
(its arguments have a certain value). This pattern (or parts of it) determines
the definitions matched by the call. The actual expression of the pattern is
determined by some of the calls already executed, especially by its father and
other ancestors but, eventually, also by others. In executing a call, the
system searches for the first definition matching the call. Assume that the
system can determine which of the previously executed calls generate parts of
the pattern which are essential for the eventual mismatches and for the first
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match. Let D, denote such a set for a call A. We say that a call "depends" on
all calls in its D-set. We delay the precise definition of this dependency
relation until the next section, but we can already make some observations about
it

1. Including too many calls in the D-set of a call cannot cause the 1loss of
solutions; however, we can expect that a smaller D-set gives more accurate
backtracking.

2. Any reasonable definition of the dependency relation, has to be transitive.
Indeed, when the first definition matching a call A critically depends on
the pattern generated during the execution of a ecall B, and the same
relationship exists between the calls B and C, then the call A must also
depend on the call C. As a consequence, it is sufficient to keep track of
the calls on which each call "depends directly" (those not induced by
transitivity).

. A call is at least dependent on its father (and by transitivity on its
other ancestors): indeed, a call only exists because its father has been
executed with a particular definition.

Ly

Each call in a D-set has a corresponding goal statement, i.e. the goal
statement in which that call has been selected.

With all these observations in mind, we can state what the system has to do
when it selects some call A which does not match any procedure definition. A

naive backtracking system will restore the previous goal statement say G and
will try another procedure definition for the call B. However, undcing B is
insufficient when B does not belong to the set D,. Indeed, in this case, the

system did not need the substitutions generated by the call B to detect the
unsolvability of the call A and, thus, changing these substitutions cannot make
the call A solvable. We conclude that we have to backtrack further and to
restore the goal statement G, with C the most recently executed call in D,.
Indeed, restoring any of the goal statements between G and G cannot make tﬁe
call A solvable, and we do not have to explore the corresponding branches of the
or-tree.
Notes
1. The most recently executed call in DA is one of those on which A depends
directly.
2. Either G still contains the call A, eventually with a less specified
pattern, or C is the father of A (because the father of A belongs to D Yiu
3. The goal statements corresponding to the set D are the only points in the
or-tree where possibly successful alternatives can start. By alternative,
we mean a point which can lead to a different pattern for the call A or no
call A at all, in other words a goal statement which c¢an lead to
derivations where the same conflict does not occur. On the contrary all
goal statements in the or-tree corresponding to a solution are branching
points which can lead to different solutions.

Having rejected the current solution for C, the system searches another
definition matching C and, eventually, tries the call A again. To assure that
the system - when it, using the other definitions for C, still fails to derive a

solution - also tries a new start from the goal statements corresponding to the
remainder of the set D we have to update the D-set of the call C. We have to
replace D by the union of D, and { D - C}. This extended set is still in

agreement with the intended defiInition of the D-sets, indeed it contains all
calls which contribute to the generation of patterns essential in the rejection
of all tried definitions for the call C. Now, one of these definitions is
rejected because it causes a conflict with the call A. Also the pattern of A is
essential in this confliet and thus, those calls creating the critical parts of
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that pattern (those causing the failure of all available definitions) must be in
the D-set of the call C.

This update of the D-set brings us back to the initial assumption about the
D-set (now for the call C instead of A) and thus, the above reasoning can be
repeated.

Systematic updating of the D-sets involved - when backtracking and when
trying new definitions for a call - assures that the system, in search for a
first solution, will try all valuable branching points of the or-tree and will
prune all others. As the system has learned from previous failures, these other
branches are doomed to fail.

Assuming that the calls in the original goal statement depend on some
fictitious node, the direct dependency defines a partial ordering over the nodes
of the and-tree. We sketch a simple example (in addition of the and-tree, we
indicate the direct dependencies by arrows).

GB=<-B,C

GC=<-D,E,C

GD=<-D,E,F

GF=<-G,E,F

GE=<-G,E,H

When the call E in G fails, the system restores GC (C being the most
recent call in D_ = {B,C?)

E

updates D : D = Uf{D., -C}

c Cnew Cold

.
i

D E

E

removes direct dependencies induced by transitivity and tries another definition
for the call C.



4. Defining dependency.

4.1, A special case : naive backtracking.

The assumption that every call depends on all previously executed
calls leads to the total ordering of a naive backtracking system. Indeed,
as a consequence of transitivity, each call depends directly on only one
call, the one previously executed, and thus backtracking always restores
the previous goal statement.

4.2, A definition based on the unification algorithm.

It is the unification algorithm which decides whether or not a call
matches a certain definition. In doing so, the unification algorithm does
not need access to all parts of the pattern. As soon as it finds a
mismatch, it does not need the remainder of the pattern. Also in unifying
a term with a variable, it does not need the components of the term (as far
as the occurcheck is unnecessary). The unification algorithm has access to
all components generated by calls on which the current call depends.
Initially, the current call depends on its father (because as we already
said, the call only exists as a consequence of executing the father with a
particular procedure definition) and, by transitivity, on those calls on
which the father depends and the unification algorithm has access to all
substitutions generated by these calls. As soon as the unification
algorithm needs access to other substitutions, dependencies are added.

An example :

A call : P (

) —
—~ e~
o s
—~
[\ ™
—
H) s
—~ e~
o
M8 -
—
g
~—
oy —
—~
wn

q)

T —

The substitutions x <- f(k,l) has been generated by the call (1),
k <-4 by (2), 1<~ f(m,n) by (3), m <- B by (4) and n <~ f(p,q) by (5).
Suppose the call P initially depends on (1) but not on (2) (3) (4) and (5).
As a consequence, while executing the call P the unification algorithm
initially only has access to the substitution x <- f(k,1l). It knows k and
1 are bound but it does not know to which terms.

Assuming that the attempted definition is

P(f(r,f(s,t))) <- Q(r,s)), P(£(s,t))
the system has to unify the bound variable x with the term f(r,f(s,t)). To
do so, it has to know the value of x. Because the call depends on (1) the
unification algorithm can access f(k, 1) without adding new dependencies.
The functors are the same and the system has to unify their arguments. It
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has to unify the bound variable k with the free variable r. Because this
is the first occurrence of r, unification must be possible (whatever the
value of k), and the substitution r <- k can be generated without accessing
the value of k, thus without making the current call dependent on (2). In
the next step the bound variable 1 has to be unified with the term f(s,t).
To do so we have to access the first approximation of 1 : f(m,n).

The necessity to access this structure makes the current call P
dependent on (3). In the next step we have to unify the free variable s
with the bound variable m and the free variable t with the bound variable
n. Again, because these are the first occurrences of s and t, they cannot
occur inside the terms to which m and n are bound, and the substitutions
s<-m, t<-n can be generated without accessing the values of m and n, thus
without making the current call dependent on (4) and (5).

Giving the substitutions generated by the call P a label (6), the
children of P become :

and P (f(

They depend initially on their father (6) (the call P) and the calls on
which the father depends i.e. (1) and (3).

Notes :

1. An implementor should consider possible optimisations for example,
because the children depend on (6), they can as well be replaced by

Q ( k and P (Ff (

)
5

e

, m)
2) | )
B

to—2
—
3%
~

Hy e—1

)
P , a)

2. In unifying a free variable with a bound variable, when the occurcheck
is necessary, the current call becomes dependent on 2all calls
generating parts of the term to which that bound variable is bound.
As a consequence, to get accurate backtracking, it is necessary to
perform the occurcheck only where it really is necessary. Most
implementors of languages based on logic do not apply an cccurcheck at
all, however, some programs have been written where the occurcheck is
essential [7]. Further in this paper, we argue that dependencies
caused by occurchecks have only to be added when the occurcheck causes
the failure of the unification.

In detecting a mismatch, the wunification algorithm can have some
choice because there can be more than one disagreement between the call and
the definition. 1In such cases it seems preferable to access structures
generated by the least recent calls, they will give the deepest
backtracking and the highest number of pruned branches in the or-tree.

We illustrate the backtracking behaviour with the n-queens problem for
n=4. The initial goal statement is



<~ Perm (4.3.2.1.Nil, 1) Pair (4.3.2.1.Nil, 1, g) Safe (q)

The execution order is strictly 1left to right. The call Pernm
generates a permutation 1 of the list 4.3.2.1. Nil, e.g. 1.2.3.4. Nil, the
procedure Pair combines its first two argument lists into a queenboard q
with one queen in each row and one queen in each column e.g.
p(4,1).p(3,2).p(2,3).p(1,4).Nil.

The procedure Safe rejects the queenboard and causes backtracking when
it finds two queens on the same diagonal. A naive backtracking system will
systematically generate all permutations until some permutation passes all
checks created by Safe. In our system, to detect a conflict between for
example the first and the second queen, Safe needs no access to the
remainder of the permutation, and thus is not dependent on the non-
deterministic procedures generating that remainder. As a consequence it
will not try to solve the conflict by generating other remainders of the
permutation but will backtrack immediately to the procedure generating the
second queen. The interested reader finds a detailed analysis of this
behaviour in the remainder of this section.

The complete program is

Perm (Nil, Nil) <-

Perm (x.y, u.v) <~ Del (u, x.y, w) Perm (w, V)
Del (x, x.y, y) <=

Del (u, x.y, x.v) <= Del (u, y, V)

Pair (Nil, Nil, Nil) <-

Pair (x.y, u.v, p(x,u).w) <~ Pair (y, v, w)
Safe (Nil) <~

Safe (p.q) <- Check (p, q) Safe (q)

Check (p, Nil) <-

Check (p, q.r) <- Diag (p, q) Check (p, r)

For simplicity, we assume Diag defined as a set of assertions about
gueens not on the same diagonal.

Diag (p(1,1), p(1,2)) <-
Diag (p(1s1)1 p(2!3)) <{-



(0)
(1) -f"”i:::::;;’ :::::::::?I:E;___-___--*__“'““““-————— (15)

Perm (4.3.2.1.Nil,1) Pair (4.3.2.1.Nil,1,q) Safe (q)

Safe (g1)
(2)
DelI(u1,u.3.2.1.Nil,w1) (3)
Perm (w1,v1) (11)
\ N s \_/paip (3.2.1.Nil,v1,q1)
\\\\h_-(16)

Check (p(4,ul),q1)

N

Check (p(4,ut),q2)

(17)
- Diag (D(H:U”:D(&uz))

(4) I

Del (u2,3.2.1.Nil,w2) (5)
\Lh__ﬁ*’14,~9erm (w2,v2) (12)
/ \_‘/Pair (2.0 N11,v2,52)

/ I

(6) e il

Del (u3,2.1.Nil,w3) (1)
Perm (w3,v3) (13)

et
% 7 vair (1.Ni1,v3,q3)
/’
(8) i

Del (ul,1.Nil,wd) (9)
Perm (wid,v4) (14)
- Pair (Nil,vl,ql)
* % *

And-tree and dependecy-graph at the point where call (17)
causes a failure.
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]! wil we
|(1) | (2) | (%)
ut.vi Res 1. N1l 2.1.Nil
@ | | 3
4 wy2.v2
W |1
3 u3.v3
6) | | (7
2 ub.vi
@ | | @
1 Nil

q
| (10)

p(4,u1) . q1

(2) | [ (1)
4 p(3,u2) . q2

() | | (12)
3 P(2:U3) o )
(6) | [ (13)
2 p(1,uld) ql
8) | | (14)
1 Nil

Substitutions generated by the different calls.

(0)

(1)~ (10)=e— (15)

=

(2) <@ (3)=— (11) =+—(16)

(4)’//‘r

(6) g (7) p— (13)

(5) ——(12) (17)

(8) #— (9)eg— (14)

Direct dependency-graph .
(17) fails because of the conflict between the first and the second queen.

- F] -

w3 wi
| (6) | (8)
LNil Nil



(0)
(1) =g (10 ) == (15)

(2) -t (3)=——(11)=a— (16)

(4 )~ (5)-—(1’2)
(sé(?)——m’s)
(8 )t (9) =up— (14)

The goal statement prior to the execution of call (16)
is restored, and the D-set of (16) is updated.

No other definition for (16) is available and the system
backtracks further.

- restore the goal statement prior to the execution of (15);
update D-set

- restore the goal statement prior to the execution of (11);
update D-set

There is still no alternative definition available and the
dependency-graph becomes as follows

(0)
(1)=— (10)
cz}-/:(3> (11)
(u)—é—‘é('?/
(6)4(7)
(8)4(9)

- restore the goal statement prior to the execution of (10);
update D-set

- restore the goal statement prior to the execution of (4);
update D-set

The dependency-graph is now :

z

(2) = (3)

(4)/

(4) (pDel(u2,3.2.1.Nil,w2)) has an alternative definition., The system has
backtracked correctly to the point where the second queen was chosen. A
naive backtracksystem would try to find other solutions for the last queen,
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the last but one, ... !

5. On the order of execution.

We claim that any order of execution allowed by the partial ordering leads
to the same current goal statement and the same dependency-graph.

We give a simple example :

A(f(x)) <= C(x)
C(x) <- D(g(x))
B(h(y)) <~ E(y)
E(y) <- F(k(y))
<~ A(x0) B(y0)

5::::::? (0);:::::\

(1) fxo) (2) (TO)
(3) ﬁ(x1) (4) E(f1)
D(g(x2)) F(k(y2))

x0 y0
| (1) | (2)
f(x1) h(y1)
/(3) J#)
X2 ye

The sequence of ecalls (1) (2) (3) (4) 1leads to the goal statement
<-D(g(x2)),F(k(y2)).

We claim that any sequence allowed by the partial ordering of the
dependency-graph, i.e. (1) (3) (2) (4) and (2) (4) (1) (3), leads to the same
goal statement and the same dependency-graph.

We know from resolution theory that the order of different resolution steps
does not change the final clause.

We only have to show that the dependencies are also unchanged. We do this
by arguing that two successive steps, not dependent on each other, can be
interchanged without causing changes in the dependency-graph.

Suppose we execute a call A. It matches the i-th definition and results in
a substitution G = {x <'Sk}' The next call executed is a call B. It matches
the j-th definition ang results in a substitution @ = {y, <-t }.

- k k

Suppose B is not dependent on A.

Now we execute B before A. Because B was not dependent on A, it did not
look at the substitution U  generated by A and consequently it does not matter
for B whether or not the substitution § is present. B will again matech the
j=th definition with the same substitution @ . Executing A after B, the
unification algorithm surely can, as before, reject the first i - 1 definitions
without looking at @ and this will result in the same dependencies as before.
Because interchanging the resolutionsteps does not change the final clause, the
call A must match the i-th definition, but, will the unification algorithm look
at the substitution @ ? Suppose it does. Then the unification algorithm must
find some pair of the form x - s to be unified, with x a variable bound by the
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substitution ©(x<-t € © ) and s bound to some term. Indeed, only in such a
situation must the unification algorithm look at @ and does A become dependent
on B. This is not possible, indeed, in that case executing A before B must have
resulted in x<-s € T and, during the execution of B, a pair x - t to be
unified. At that point, either t<{-x was generated or the unification algorithm
had to look up x and B becames dependent on A. This contradicts the assumptions
that B does not depend on A and that x<{-t €8 . Thus while executing A after B,
the unification algorithm does not need & and will generate the same
substitution and the same dependencies as before. Because ¥ and & are the
same as before, all calls executed after A and B get the same dependencies and
the interchanging of A and B does not affect the dependency-graph.

There is a weak point in the above reasoning : we did not mention
occurchecks. Maybe, changing the execution order causes different occurchecks
and these occurchecks in turn cause different dependencies.

An example

A(x1,%x1) <= RA(x1)
B(f(x2)) <- RB(x2)
<= A(XO,YOJ B(XO)

Starting with the call A we get x1<-x0 and we have to wunify y0 with x1.
Before generating the substitution y0<-x1, we have to verify that y0 does not
occur inside the substitution for x1. Then we execute the call B and we get the
substitution x0<-f(x2).

The dependency-graph is

//r—(o)Q

(1) A(x0,y0) (2) B(;O)

RA(x1) RB(x2)

Starting with the call B we get the substitution x0<-f(x2) then while
executing A, we have to unify x0 with x1. Because it is the first occurrence of
X1, we can generate x1<-x0. Then we have to unify y0 with x1 : we have to
verify that y0 does not occur in the substitution for x1. For this test, we
need to access also the substitution x0<-f(x2) thus the call A becomes dependent
on B : we get a different dependency-graph.

,1::::52(0)::::?\

(2) Aéxo,yo) (1) B(x0)
| S ] )
RA(x1) RB(x2)
We can solve this problem by some subtle reasoning. As we already

mentioned in the previous section, we should only execute the occurchecks which
are really necessary. In fact the only necessary occurchecks are those causing
the failure of the unification. Now, when changing the order of execution, we
know that the derivation is possible and therefore the occurchecks cannot cause
a failure and are unnecessary. Thus the above reasoning was correct and
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changing the order of execution - respecting the partial ordering - does not
change the dependency-graph. We even can apply this observation about the
necessity of the occurcheck with retrospective effect, i.e. when we detect that
it does not cause a failure, we conclude we should not have done it and we leave
the dependency-graph unchanged. We only add the dependencies caused by an
occurcheck when it causes the failure of the unification.

As a consequence of the property that we can change the order of execution,
when we backtrack, we can choose between any of the calls on which the failing
call depends directly. We undo the selected one, say A, and of the calls
executed after A, we have only to undo those dependent on A. Then we make A
directly dependent on the other calls on which the failing call depends
directly, remove the direct dependencies induced by transitivity of others and
try another definition for the call A.

When there is a good selection function available, it seems reasonable to
backtrack to the most recent call in the direct dependency relation. 1Is the
selection function rather poor, then it can be useful to analyse the effect on
the size of the search space of the different possible "backtrackpoints".
Eventually, the selection strategy could learn from this analysis.

In the queensexample at the end of the previous section, the failing call
(17) depends directly on (4) and (16). Backtracking to (4) yields the graph :

(0)

/,;"

(1) ~———-— (10) ~—o (15)

//)f'

(2) ¢———— (3)—(11) ———(16)

(4)

This backtracking is preferable to the one used, because both end with the
application of another procedure for call (4), but here, a greather part of the
computation has been saved.

6. Finding all solutions.

As we already briefly mentioned in the introductory sections, to find all
solutions when there are different independent subproblems, each having a set of
solutions, a backtracking-system will execute some subproblems several times.
The goal of this section is to avoid this inefficiency. We introduce our method
by a simple example.

The program :

<- AB(x,y)
AB(x,y) <- A(x) B(y)
A(f(x)) <= RA(x)
A(g(x)) <- QA(x)
RA(A) <-

RA(B) <-

QA(C) <=

B(g(y)) <- RB(y)
B(k(y)) <- QB(y)
RB(E) <-

RB(F) <-



QB(G) <-

Assume a first solution has been found :

(1) AB(x,y)
/
(2) A(xo)“/ QG) B(y0)
|
(4) RA(x1) (5) RB(y1)
., :.
X y
| (1) [ (1)
x0 y0
| 2) (3)
f(x1) gly1)
| (&) | (5)
A E

This first solution {x<-f(A), y<-g(E)} can be derived by all sequences
allowed by the partial ordering. Let us choose one of these orderings i.e. (1)
(2) (3) (4) (5).

The sequence of goal statements is then :

G0 = AB(x,y)

G1 = A(x0) B(y0)
G2 = RA(x1) B(y0)
63 = RA(x1) RB(y1)
'G',4 = RB(Y1)

G5 =0

To find all solutions, we have to explore all branches of the corresponding
or-tree :

We can explore this or-tree bottom up i.e. find all solutions for GH then
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all solutions for 03 . then all solutions for G.. To improve the
efficiency, we will- divide, where possible, these goéal statements into
independent subproblems. We can solve these subproblems independently of each
other and obtain the solutions for the complete goal statement by making the
cross=-product of their solutions. 1In fact, we will not explicitly compute the
set of solutions for each successive goal statement. As the example will
illustrate, we only compute a solutionset for well chosen subproblems (See the
"merge procedure" below.)

G, (=RB(y1)) consists of a single call, all its solutions can be found
simply by bracktracking over the call RB(y1).

By expanding Gg into G , another call RA(x1) enters the goal statement.
The dependency-graph shows és that both are independent. All solutions for G3
could be found by :

- searching for all solutions of each subproblem, using normal backtracking;
this yields [{y1<-E}, {yi<~F}] for BRB(y1) and [{x1<-a}, {x1<-B}] for
RA(x1).

- making the cross-product of both sets; this yields : [{yi<-E, x1<-A},
{y1<-F, x1<-A}, {y1<-E, x1<-B}, {y1<-F, x1<-B}].

In the next step, the subproblem RB(y1) expands into the subproblem B(y0)
(the call being replaced by its father) while the other subproblem remains
unchanged, Still, the solutions for each of the subproblems can be obtained by
backtracking. Similarly, while moving ¢to G , the call RA(x1) expands into
A(x0) and we have two independent subproblems AExO) and B(y0) : the solutions
for each of them can be found by backtracking. The last step is more
interesting : here, both independent subproblems merge into the single call
AB(x,y). Systematic backtracking is inefficient for this goal statement. We
apply the following "merge procedure" :

1. Find all solutions for the subproblem A(x0) i.e. [{x0<=f(4)}, {x0<-f(B)},
{x0<-g(C)}1]. In general, this is done by recursively applying the "find-
all-sclutions" methods, which in this example simplifies to systematic
backtracking over the nodes (2) and (4). In fact, the system alternates
between :

- Find a new solution : systematic backtracking over all nodes in the
current solutions but intelligent backtracking over the new nodes
(those entering the graph when it grows again : for these nodes we
again search a first solution).

- PFind all solutions for the subproblem.

2. Similarly, find all solutions for B(y0) i.e. [{y0<-g(E)}, {y0<-g(F)},
{y0<-k(G)}1].

3. Compute all solutions for A(x0), B(y0) by making the cross-product of both
sets : i.e. [{x0<-f(A), yO<-g(E)}, {x0<-f(A), yO<-g(F)}, ...].

4. The "current solution set" for AB(x,y) is obtained by making the
composition of the substitution applied on the call ({x<-x0, y<-y0}) with
the substitutions of the above set : i.e. [{x<-f(a), y<-g(E)}, ...] (we
are only interested in substitutions for the variables in the goal
statement AB(x,y)).

5. We can reduce the dependency-graph and summarize the obtained results in a
"reduced node". The reduced node 1, replaces all calls involved ((5) (4)
(3) (2) (1)) and has, instead of a single substitution, a set of
substitutions (the ‘'“current solution set") characterizing all obtained
results.
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The graph becomes

(l1a)
AB (x,y)

A single reduced node with a current solution set and a 1list of untried
procedure definitions (in this example empty).

Now, we determine where the next "merge" operation must be performed, or,
as in this example, start to collect the solutions for the initial goal
statement :

- take the current solutions set
- find all remaining solutions, by alternating between
- find a new solution
and - find all solutions

Where a backtracking system directly starts collecting all solutions for
the initial goal statement, the above procedure collects solutions for well
chosen subproblems, and merges these subproblems into bigger ones until finally
the original problem with its solutions is obtained.

The merge of subproblems is not always as simple as in the example above.

There, in expanding G1 into G , the entering call AB replaced its two
independent children A and B. In~ general G, consists of an independent
subproblem A ,...,A (n>= 1) and another independent subproblem B.,...,B

(m >= 1). By extending the goal statement G. into G. , a call C enters. C 1s

such that some of the A, as well as some of“the B éepend on it. The new goal
statement consists of the calls {A.} U {B.} U {C}j— { children of C }. C
becomes the reduced node, its cufrent sdlution set is obtained as described in
the above example. Unlike the simple case, those Ai and B. which are not
children of C remain 1in the graph and depend on C : indeéd, they have to be
executed again when the backtracking mechanism tries the remaining procedure
definitions on C.

When a first solution is found and we start to collect all solutions, we do
not' have to decide immediately which or-tree we will use in the derivation of
all solutions. We can take this decision step by step, we only have to be
careful to respect the partial ordering. Respecting the partial ordering means
that the call entering the goal statement has no other call depending on it
which is not yet 1in the goal statement. Manipulation is simpler and the
alternatives are clearer when we perform an update of the dependency-graph which
is similar with the one used in section 3. 1Initially, each subproblem consists
of a single call with a certain D-set. This call is named the representative
call of the subproblem. When a subproblem is extended, the entering call
becomes the new representative call and its D-set is updated with the D-set of
the old representative call; similarly, in the case of a merge, the entering
call becomes the representative call and its D-set is updated with the D-sets of
the representative calls of the merging subproblems (the representative call
becomes the reduced node). Now, the dependencies between the other calls in the
subproblems and calls not yet in the goal statement can be ignored and, in each
step, to extend the goal statement, we can choose between the calls which are
such that the only calls dependent on them are representative calls.

We now give a non-trivial example.
Example

A program to compute all binary trees having a certain leaf profile.
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- X.y represents a list with first element x and remainder y.

- Nil represents an empty list.

- x¥y represents a binary tree with x and y subtrees.

Tree (x.Nil, x) <~

Tree (x.y.z,

Append (Nil, x, x) <~
Append (x.u, v, x.w)<-Append (u, v,
<~ Tree (A.B.C.D.E.F.Nil, z)

We give the computation of a first
execution order. As first definition
suited for our purposes
lists. We only give
subtree is similar.

(1)

Tree (A.

(2) ########,,fj:::QJ

Append (s,t,A.B.C.D.E.F.Nil)

N

Append (s1,t,B.C.D.E.F.Nil)

()]
Append (s2,t,C.D.E.F.Nil)

(5)
Append (s3,t,D.E.F.Nil)

(1)
Append (sh,tl,A.B.s2)

Append (s5,td4,B.s2)
|

(11)

Append (s6,t6,B.

(12)

u¥v)<-Append (s, t, x.

y.z) Tree (s, u) Tree (t, v)

W)

solution in a strictly 1left to

into two

B.C.D.E.F.Nil,z)

i)

/’_Tree (t’V)

(6)
Tree (s,u)
(9) | —— (10)

Tree (s4,u1) = Tree (t4,v1)

(13) (14)
Tree (t6,v2)

C.s3) Tree (s6,u2) '
‘)/////’* ¥

Append (s7,t6,C.s3)

#

And-tree and dependency-graph.

Substitutions made during the execution of the different calls :

1 1 {z<-u*v}

2 : {s<-A.s1}
3 : {s1<-B.s2}
4 : {s2¢-C.s3}
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5 : {s3<-Nil, t<-D.E.F.Nil}
6 : {u<-ul¥*vi}

7 : {sli<-A.s5]}

8 : {s5<-Nil, tl<-B.s2}

9 : {uic-4}

10 @ {vi<-u2#y2}

11 : {s6<-B.sT}

12 : {s7<-Nil, t6<-C.s3}
13 : {u2<-B}

14 1 {v2<-C}

We start with the empty goal statement. It can be extended with one of
those calls on which nothing depends e.g. (9) (13) or (14). We choose (14).
(14) depends on (12) and (5). However, both have other dependent calls not yet
in the goal statement. We concentrate on (12). First we extend the goal
statement with (13) (now we have two independent subgoals), then we extend it
with (12) : we have to perform a merge.

Solutions of (14) : the current solution is {v2<-C}; backtracking yields no
other ones.

Solutions of (13) : [{u2<-B}]

Cross-product : [{v2<-C, u2<-B}]

Current solution set of (12) (13) (14) : [{s7<-Nil, té6<~C.s3, u2<-B,
v2<-C}]

Part of the reduced graph :

(10)

Remark that the calls (13) and (14) stay in the graph and that the
"representative" call (12) now depends on (5).

We want to extend the goal statement further with in order the nodes (11),
(10), (8). However, before extending it with (8), we first have to extend it
with (9), which is independent, and then, we have again to perform a merge.

Solutions for (9) : [{ul1<-A}]

Solutions for (10) : current solution [{v1<-B¥C}]

We search other solutions by a systematic backtracking over the nodes
(12, ) (11) and (10), while a solution is only found when it also solves the
calls (13) and (14) dependent on the reduced node (12,)

In fact, we search a first solution for the subproblem, but starting with
one of the untried procedures for call (12). When we find one, we again start
to collect all solutions, (still for the subproblem (10)). This subproblem has
no other solutions.

Cross-product : [{ ul<-4, vi<-B¥C }]

Current solution set for (8) (9) (10)

[{s5<-Nil, tl4<-B.s2, ui<-A, vi1<-B¥C}]

Part of the reduced graph :
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(6)

N

\b

(5) (8 ) (9) (10)
- *;:t::_##/’/,/

We can further expand the goal statement with (7) and (6). The graph

becomes :
(1)
v
1l
(3) —_ (5] (15)
(4) (7) (9) (10) -
4 l Py
(5) (8 ) P
*

Before extending the goal statement with (5) we have to extend it with the
whole subtree of (15), then we have again to perform a merge.

Solutions of (6) : current solution set : [{u<-A * (B¥C)}1. Other
solutions have to be derived by backtracking over the nodes (8y) , (7) and (6).
This results in a second solution {u<-(A¥B) ¥ C}.

Solutions for (15) : similar as for the left subtree, we can derive the
solution set [{v<-D ¥ (E*F)}, {v<-(D*E) * Fi].

After making the cross-product of both sets, we obtain as current solution
set for (5) (6) (15)

[{s3¢-Nil, t<-D.E.F.Nil, w-A * (B¥C), v<-D * (E*F)},
{s3<-Nil, t<-D.E.F.Nil, ué-A * (B¥C), v<-(D¥E) * F},
{s3¢-Nil, t<-D.E.F.Nil, u<-(A¥B) * C, v<-D * (E¥F)},
{s3¢<-Nil, t<-D.E.F.Nil, u<-(A¥B) * C, v<-(D¥E) * F}]

The reduced graph becomes :

m/(
)

(3)

)
>

Now the goal statement can be expanded by, in order, 4, 3, 2 and 1 to reach the

1)

P =



initial goal statement.

Its current solution set is :
A * (B¥C)) * (D * (E*F))},
A ® (B%¥C)) * ((D*E) * F)},
(A*B) ¥ C) * (D *® (E*F))},
(A%*B) ® C) ® ((D*E) * F)}]

[{
{
{
{

el

Other solutions will be obtained by systematic backtracking over the nodes
(54) (4) (3) (2) and (1). The process will start with applying the recursive
append definition on call (5) and with deriving (using intelligent backtracking)
a new solution. Then, applying successive merge operations, this new solution
is transformed into a new solution set and the search for another solution in
the new reduced graph starts. This process repeats until all solutions are
found.

Some subtle problems can appear from time to time. The dependency-graph is
based on the procedure definitions already used, but the ones that have not yet
been tried can cause some new dependencies. This gives trouble when a call
becomes dependent on a reduced node

We give a simple example
PQ(x,y) <- P(x,y) Q(x)
P(x,y) <- PP(y)

P(A,B) <-

P(B,C) <-

Q(B) <-

Q(C) <-

PP(D) <-

PP(E) <-

First solution :

PQ(x,y)

P{x,y)/ \satx)

x<-B

PP(y)

y<-D

*

As far as this first solution’is concerned, P(x,y) and Q(x) are two independent
subproblems which merge into the initial goal statement. To find all solutions,
we perform a merge

Solutions of Q(x) : [{x<-B}, {x<-C}]

Here we can define an intermediate dependency-graph with ncde Q reduced and
having an empty list of untried procedure defiinitions.
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PQ(x,y)

*
) [{x<-B}, {x<-C}]
PP(y)

y<-=D

Solutions of P(x,y)

Backtracking over PP results in the solutions {y<-D} and ({y<-E}. Trying
the other procedure definitions for P makes P dependent on the reduced node Q.

To find all solutions for P(x,y), Q(x), we have to be very careful. A
first set of solutions is found by making the cross-product of the solutions
already derived for P and Q :

[{x<-B, y<-D}, {x<-B, y<-E} {x<-C, y<-D}, {x<-C, y<-E}].
Others are found by applying the yet untried procedures for P, to each solution
of Q. For x<-B, this results in a solution {x<-B, y<-C}; x<-C results in a
failure. This results in the following reduced graph :

/PQ(X,Y)‘\
P(x,y) ~HEE\H\\\:;Q (x)
= *
=

[ {x<-B, y<=D}, {x<-B, y<-E}
{x<-C, y<-D}, {x<-C, y<-E}, {x<-B, y<-C}]

Qg does not change its (empty) set of untried procedures. Instead of deriving
the current solution set for PQ, the additional dependency has forced us to
first derive a current solution set for Q(x), P(x,y). The further reduction to
derive all solutions for the initial goal statement can be done usual.

7. Exploiting determinism.

The dependency-graph representing the state of the computation can be
simplified by exploiting the present determinism. When we execute a call which
depends directly on its father only and there is only one definition between the
available definitions matching the call, then we can interpret the execution of
this call and the father as a single step in the computation, i.e. obtained by
applying a preprocessed procedure on the father. Thus we can remove the node
representing the son from the dependency-graph while the 1list of untried
procedures for the father remains unchanged.

A simple example :
<- P(B,y) Q(y,2z)
P(x,y) <- PA(x,y) PB(x,y)

P(x,y) <= PP(x,y)
PA(A,y) <- PA1(y)
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PA(B,y) <- PA2(y)

Dependency-graph after executing the calls P and PA :

? i, |

P(B,y) Q(y,z)

e

PA(B,y) PB(B,y)

PA2(y)

Preprocessing the call PA in the first definition of P leads to two
procedures

P(A,y) <- PA1(y) PB(A,y)
P(B,y) <- PA2(y) PB(B,y)

In general, preprocessing is not interesting : it leads to a different list
of untried procedures (for the call P). However, when only one of the
preprocessed procedures matches (as in the above example), then the 1list of
untried procedures remains unchanged and we can derive in a single step the
following dependency-graph.

27N

P(4,y) Qly,z)

O\

PA2(y) PB(B,y)

It differs from the first graph only by the fact that the determinate call
PA is disappeared. Instead of performing preprocessing, we prefer to perform
postprocessing, i.e. when we execute the call PA, we observe that it only
matches one procedure, and only depends on its father; we conclude that we could
have applied a preprocessed procedure on the father call without changing its
list of untried procedures. We apply the preprocessed procedure afterwards : we
remove the determinate call from the graph and we extend the substitution of the
father call with the substitutions made during the current step.

In fact, it is not necessary for the call to depend directly on its father
only. However, when the son also depends on a third call, then we have to make
the father dependent on that third call. This probably will result in a less
accurate backtracking : it becomes impossible to backtrack from the son to that
third call, also a failure of the father caused by for example another son will
unnecessarily lead to backtracking towards that third call.

8. Conclusions.

We have defined a partial ordering over the set of calls involved in the
execution of a goal statement.

This partial ordering, built by the unification algorithm, allows the
accurate determination of all calls which can break a given failure. Moreover,
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it allows the reordering of the executed calls such that only a minimal number
of calls must be undone during backtracking.

This partial ordering also allows the isolation of independent subgoals. A
method to find all solutions, which wuses a limited form of parallelism to
exploit the detected independence of subgoals is given.

Qur method still contains non-deterministic steps

- When detecting that a call does not match a certain definition, the
unification algorithm can sometimes choose which substitutions it will
access and thus which dependencies it will add.

- When an unsuccessful call triggers backtracking, the system has to choose
one of the calls on which the failing call depends directly.

- While searching all solutions, there can be different calls by which the
goal statement can be extended.

All these choices affect the size of the search space and thus the
efficiency of the computation. Determining (simple) criteria to make the right
choices remains an area of further research. Another interesting question is
whether we can develop selection strategies which can learn from the behaviour
of the backtrackingsystem. The development of such a learning system could be a
major step towards the development of systems which can execute logic programs
efficiently without need for any user-specified control information.
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