Polyesters with 1,4,7-trioxanonyl segments in their main chain. Novel ion-conducting matrices

J.J.A. Mertens⁺, L.W. Jenneskens^{*+}, B.B. Wentzel⁺, M. Wübbenhorst⁺⁺, J. van Turnhout⁺⁺ and R.H.M. van de Leur⁺⁺⁺

- ⁺ Debye Institute, Department of Physical Organic Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- ++ Department of Polymer Science and Technology, Technical University Delft, Julianalaan 136, 2628 BL Delft, The Netherlands
- +++ TNO Plastics and Rubber Research Institute, P.O. Box 6031, 2600 JA Delft, The Netherlands

The amorphous polyester 1a prepared by melt condensation of 1,5-bis-(9-hydroxy-1,4,7-trioxanonyl)naphthalene (2a) and adipoylchloride (3a), which contains bis-1,4,7-trioxanonyl (triethyleneglycol) segments in its main chain, represents a matrix for ion-conducting materials. Despite the fact that only triethyleneglycol segments are present, which are shorter than the minimum required for full solvation of Li⁺ cations, ion-conductivities of $\sigma = 3.3 \times 10^{-5}$ S cm⁻¹ at 368 K are found for Li⁺/1a 0.25 (cations per polymer repeat unit). Hence, more than one bis-1,4,7-trioxanonyl segment (either intra- or interchain) has to be involved in Li⁺ complexation. The σ value compares favorably with previous data for more complex polymer matrices.

1. Introduction

The development of processible solvent-free polymer electrolytes with ion-conductivities in the range $10^{-5}-10^{-2}$ S cm⁻¹ at either ambient or elevated temperatures is a topical subject [1–3]. Suitable polymer matrices have to fullfil a number of requirements: 1) They have to solvate inorganic salts such as LiX and NaX with X being ClO_4^- or $CF_3SO_3^-$, which is achieved by incorporation of $-(CH_2CH_2X)_n$ — units [X being O, N and S] capable of coordinating these metal cations. 2) Since segmental motion of the polymer chains is a prerequisite for effective ion-transport, the polymer electrolytes have to be amorphous and preferably possess a low glass transition temperature (T_g) . 3) They have to be both dimensionally as well as mechanically stable.

Taking into account these criteria poly(ethylene oxide) [PEO] was identified as an archetypal material [4, 5]. However, a drawback is the crystallinity of PEO and its salt/PEO complexes, which impairs ion-transport. To circumvent this problem PEO-derived co-polymers, networks and blends, as well as comb-branch polymers containing oligo(ethyleneglycol) side-chains and hyperbranched poly(ethyleneglycols) have been prepared and evaluated [1, 6–8].

Here we report the synthesis of a well-defined amorphous linear polyester (1a) obtained by melt condensation of 1,5-bis-(9-hydroxy-1,4,7-trioxanonyl)naphthalene (2a) and adipoylchloride (3a), which contains bis-1,4,7-trioxanonyl (triethyleneglycol) segments in its main chain. For solvent-free polymer electrolytes LiClO₄/1a ion-conductivities up to $\sigma = 3.3 \times 10^{-5}$ S cm⁻¹ at 368 K are obtained. Since the bis-1,4,7-trioxanonyl segments are shorter than the minimum required for full solvation of a Li⁺ cation, more than one segment (either intra- or interchain) has to be involved in Li⁺ complexation. These results hold promise for the development of defined amorphous linear polyesters as well as crosslinked systems possessing higher σ values at even lower, viz. ambient, temperatures.

Fax: +31-302534533 e-mail: jennesk@chem.ruu.nl

2. Results and discussion

To establish the potential of linear polyesters with 1,4,7-trioxanonyl segments in their main chain for application as ionic conductors, polymers $1\mathbf{a} - \mathbf{d}$ were prepared by melt condensation [9]. Diol monomers 1,5-bis-(9-hydroxy-1,4,7-trioxanonyl)naphthalene ($2\mathbf{a}$) and 1,4-bis-(9-hydroxy-1,4,7-trioxanonyl)benzene ($2\mathbf{b}$) were polymerized with either adipoylchloride ($3\mathbf{a}$) or terephthaloylchloride ($3\mathbf{b}$), respectively (Scheme 1). The high

Scheme 1.

molecular weight fraction was separated from both linear and cyclic oligomers [10] by precipitation in CH₃OH and, if necessary, purified by reprecipitation (1a-c, highly viscous oils and 1d, solid, Table 1). According to ¹H and ¹³C-NMR as well as FT-IR spectroscopy endgroups were not discernible. Size exclusion chromatography (SEC) gave molecular weight distributions $M_{\rm w}$ $(D = M_{\rm w}/M_{\rm n})$ for **1a-d** in the range 1.6×10^4 (1.80) to 7.9×10^4 (2.56, Table 1) [11]. The thermal stability of **1a-d** was determined using thermogravimetry $[TGA(N_2)]$; no weight loss is found below 600 K. Wide angle X-ray diffraction (WAXD), polarization microscopy and differential scanning calorimetry (DSC) revealed that polyesters 1a-c are amorphous materials with T_g (DSC) values below room temperature (Table 1). Polyester 1d, by contrast, is semicrystalline; discrete WAXD reflections (d = 4.1, 3.9 and 3.65 Å) as well as a T_g (DSC) of 244 K and a melt

Table 1. Selected data of polyesters $1 \mathbf{a} - \mathbf{d}$ prepared by melt condensation.

Polyesters	Monomers	Yield [%]	M _w [SEC]	D $[M_{\rm w}/M_{\rm n}]$	$T_{\rm g} [\rm K] $ $(T_{\rm onset}/T_{\rm offset})$	$TGA (N_2) [K]$ $(T_{onset}/T_{max})^b$	T _(5% weight loss) [K]	T _(100% weight loss) [K]
1a	2 a/3 a	75	4.8×10^4	1.99	$T_{\rm g} = 252.8$ (251/255)	598/683	637	900
1 b	2 a/3 b	65	1.6×10^4	1.80	$T_{\rm g} = 282.5$ (280/285)	608/713	664	1120
1 c	2 b/3 b	58	2.2×10^4	1.89	$T_{\rm g} = 267.2$ (266/269)	598/718	636	955
1 d	2 b/3 a	40ª	7.9×10^4	2.56	$T_{\rm g} = 244$ (243/246) $T_{\rm m} = 333$ [$\Delta H = 55 {\rm Jg}^{-1}$]	608/695	655	865

Reprecipitated twice in order to remove low molecular weight material.

 $T_{\rm max}$ taken from first derivative curve.

endotherm $T_{\rm m}$ (DSC) at 333 K with ΔH 55 J g⁻¹ were found. As expected on the basis of the hydrocarbon architectures of the polyesters, the $T_{\rm g}$ (DSC) values increase in going from 1d, 1a, 1c to 1b, i.e. $T_{\rm g}$ (DSC) increases with increasing rigidity of especially the incorporated aromatic moieties.

To gain insight into the application of these linear polyesters as matrices for ion-conduction, solvent-free salt/ polymer complexes, viz. polymer electrolytes, were prepared of 1a and b, which differ only in the type of bis-acid chloride incorporated, via the following procedure. THF solutions of either polyester 1a or 1b and LiClO₄ were mixed followed by slow evaporation of the solvent under a N₂ atmosphere, giving highly viscous residues. To remove remaining traces of solvent the samples were dried in vacuo at 393 K. Salt/polymer complexes containing 0.125 to 1.0 Li⁺ cations per polymer repeat unit, viz. the number of oxygen atoms per cation varies from 80 to 10, were obtained. WAXD and DSC showed that all solvent-free polymer electrolytes LiClO₄/1a and LiClO₄/1b are amorphous materials. In both series T_g (DSC) increases concomitantly with increasing Li⁺ cation concentration. Linear relationships are found between the inverse of T_g (T_g^{-1}) and the Li⁺ cation concentration expressed in mol dm⁻³ polymer (r^2 ; LiClO₄/1a, 0.96 and LiClO₄/1b, 0.95, Fig. 1). This indicates that the 1,4,7-trioxanonyl (triethyleneglycol) segments in the polymer main chain preferably form interchain, non-covalent physical (ion-dipole) crosslinks which will restrict segmental motions of the polymer. Since the slopes are similar (LiClO₄/1a, -2.80 × 10^{-4} dm³ $\text{mol}^{-1} \text{ K}^{-1} \text{ and LiClO}_4/1 \text{ b} -2.77 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1})$ [12] differences in hydrocarbon architecture of 1a and 1b derived from the monomers 2a and 3a, and 2a and 3b, respectively, appear not to affect Li⁺ cation complexation. Moreover, the excellent agreement of the slopes with that found for isocyanate crosslinked PEO networks (-2.7 \times 10⁻⁴ dm³ mol⁻¹ K⁻¹) [7] suggests that, independent of the polymer hydrocarbon architecture, the increase of $T_{\rm g}$ upon addition of Li⁺ cations can be solely attributed to Li⁺ cation complexation by the ethyleneglycol sequences present in the main chain.

Fig. 1. Plot of $T_{\rm g}^{-1}$ for series LiClO₄/1 **a** (\mathbf{m}) and LiClO₄/1 **b** (\bullet) versus the amount of LiClO₄ expressed in mol dm⁻³ polymer [12].

Because polymer electrolytes $\text{LiClO}_4/1\mathbf{a}$ possess the lowest T_g values, their ion-conducting properties as a function of temperature and Li^+ cation concentration were assessed using AC impedance spectroscopy data (Experimental) [13]. With respect to pristine $\mathbf{1a}$, incorporation of LiClO_4 leads to an increase of three orders of magnitude in ion-conductivity, i.e., from $\sigma = 2.6 \times 10^{-8} \, \text{S cm}^{-1}$ for $\mathbf{1a}$ to $\sigma = 3.3 \times 10^{-5} \, \text{S cm}^{-1}$ at 368 K for $\text{Li}^+/1\mathbf{a}$ 0.25. In contrast, all polymers containing Li^+ cations show at high temperatures (368 K) only a relatively small variation in σ (less than a factor 4). In fact the polymer electrolyte with a moderate concentation of Li^+ cations possesses the best ion-conducting properties (Fig. 2).

Nonetheless, the high temperature value $\sigma = 3.3 \times 10^{-5}$ S cm⁻¹ at 368 K is comparable with values determined for PEO derived polymer electrolytes: LiClO₄/PEO (6 × 10⁻⁶ S cm⁻¹ at 312 K) [14], NaI/PEO (10⁻⁶ S cm⁻¹ at 298 K) [15], LiClO₄/oxymethylene linked PEO (5 × 10⁻⁵ S cm⁻¹ at 298 K) [16], LiClO₄/PEO blends (10⁻⁵ S cm⁻¹ at 298 K) [17] and LiClO₄/hyperbranched poly(ethyleneglycols) (10⁻⁵ S cm⁻¹ at 303 K) [8].

Fig. 2. Log σ vs. 1000/T for salt/polymer complexes LiClO₄/1 a; (o) uncomplexed 1a, (o) Li⁺/1a 0.13, (o) Li⁺/1a 0.25, (o) Li⁺/1a 0.50; (d) Log f_0^a vs. 1000/T for Li⁺/1a 0.13.

The value of σ is markedly temperature dependent, albeit non-Arrhenius like, and was therefore analyzed using a Vogel-Fulcher-Tamman (VFT) [18] type equation (Eq. (1))

$$\sigma(T) = \sigma_{\infty} \exp\left(\frac{-E_{v}}{R(T - T_{v})}\right)$$
 (1)

in which R and T_v represent the gas constant [8.31 J mol⁻¹ K⁻¹] and Vogel scaling temperature, while σ_{∞} and E_v [kJ mol⁻¹] denote the ultimate conductivity and Vogel 'activation' energy. The fit results are shown in Fig. 2 (lines) as well as in Table 2. In order to enable a more convenient comparison of the conductivity curves the data are also presented as a function of the reduced temperature $T-T_v$ giving the linear graphs shown in Fig. 3. Although the absolute values of σ for polymer electrolytes LiClO₄/1a do not differ very much, an increasing temperature coefficient dlog/d $(1/(T-T_v)) \propto E_v$ with increasing Li⁺ cation content is found.

As reported previously [19], the high accuracy of the VFTfits in the temperature range $T_g < T < T_g + 100$ implies a strong interrelation of the ionic conductivity with the

Fig. 3. Log σ vs. $1000/(T-T_{\rm v})$ for salt/polymer complexes LiClO₄/1a; (o) uncomplexed 1a, (o) Li⁺/1a 0.13, (o) Li⁺/1a 0.25, (o) Li⁺/1a 0.50.

relaxation of the chain segments at and above the glass-rubber transition (a-relaxation, viz. glass transition temperature $T_{\rm g}$). Further support for this conjunction was obtained by fitting the mean relaxation time τ_0 of the a-relaxation process taken from the dielectric loss peak with a VFT-equation $\ln \tau = \ln \tau_{\infty} - E_{\rm v}/R(T-T_{\rm v})$. An example is presented in Fig. 2 for polymer electrolyte Li⁺/1a 0.13. Indeed, the VFT-parameters ($T_{\rm v}$ and $E_{\rm v}$) of both the dielectric relaxation rate (frequency $f_0 = 1/2\pi\tau_0$) and the conductivity compare very well. Only a slight divergence between $\log \sigma(T)$ and $\log f_0(T)$ occurs near $T_{\rm g}$, which is expressed by a difference in $T_{\rm v}$ of ca. 5 K.

The observed strong coupling between segmental motion and ion-conduction can be rationalized in different ways. Considering that electrical conduction generally depends on the charge carrier concentration n_i , the charge q_i and the charge carrier mobility μ_i (Eq. (2)),

$$\sigma = \sum_{i} n_{i} q_{i} \mu_{i} \tag{2}$$

we conceive that the chain mobility might control either the generation (release of Li^+ cations) or the mobility μ_i of the charge carriers or both. Under the assumption that the charge carrier mobility μ_i is related to the free volume

Table 2. VFT and WLF fit parameters for Li⁺/1 a polymer electrolytes.

	T _g DSC ^a [K]	VFT parameters			WLF/free volume parameters					
Sample		$\log \sigma_{\infty}$	$E_{\rm v}$ [kJ mol ⁻¹]	<i>T</i> _v [K]	$\log \sigma_{T_{\mathrm{g}}}$	C_1	C ₂ [K]	$f(T_{\rm g})$	$a_{\rm f} \times 10^4$ [K ⁻¹]	
Li ⁺ / 1 a 0.00	253	-2.64	8.58	215.8	-14.64	12.0	37.2	0.036	9.7	
$Li^{+}/1 a 0.13$	265	-0.61	6.41	231.1	-10.5	9.9	33.9	0.044	12.9	
$Li^{+}/1 a 0.25$	268	0.18	6.90	233.4	-10.22	10.4	34.6	0.042	12.1	
Li ⁺ / 1 a 0.50	277	0.55	8.25	235.6	-9.85	10.4	41.4	0.042	10.1	
Li ⁺ / 1 a 0.13	265		6.0 ^b	236 ^b		10.7	29			

^a T_g DSC was also determined for Li⁺/1 a 0.33 (272 K) Li⁺/1 a 0.67 (285 K) and Li⁺/1 a 1.00 (294 K) [see Fig. 1].

VFT parameters determined from the α -peak (see text).

[20], the temperature dependence $\sigma(T)$ can be described by the William-Landel-Ferry (WLF) [21] equation (Eq. (3))

$$\log\left(\frac{\sigma(T)}{\sigma_{T_g}}\right) = \frac{C_1(T - T_g)}{C_2 + T - T_g} \tag{3}$$

in which $C_1=17.4$ and $C_2=51.6$ K represent 'universal' constants for amorphous polymers. $T_{\rm g}$ is the dilatometric glass transition temperature ($\approx T_{\rm g}$ (DSC)) and $\sigma_{T_{\rm g}}$ denotes the conductivity at $T_{\rm g}$. Note that Eqs. (1) and (3) are essentially equivalent and can be transformed into each other using the relations $C_2=T_{\rm g}-T_{\rm v}$, $C_1=E_{\rm v}/(2.30\,R\,C_2)$ and $\log\sigma_{T_{\rm g}}=\log\sigma_{\infty}-C_1$ [22].

The WLF parameters C_1 and C_2 can be related directly to quantities resulting from the free volume concept by the expressions $f(T_g) = b/(\ln 10 C_1)$ and $a_f = f(T_g)/C_2$, where $f(T_g)$ and a_f denote the fractional free volume at T_g and its temperature coefficient; b is a constant. With b = 1 [20, 21], a_f and $f(T_g)$ were calculated. The results are given in Table 2 and show a significantly higher fractional free volume at $T_{\rm g}$ for the polymer electrolytes containing Li⁺ cations. This can be likely attributed to the occurrence of non-covalent physical (ion-dipole) crosslinking. It is noteworthy that also pristine **1a** exhibits an $f(T_g)$ value of 0.036, which is higher than that predicted using the 'universal' constants [$f(T_g)$ 0.025]. The behavior of a_f will be discussed in detail in combination with a comprehensive analysis of dipolar relaxation phenomena in a forthcoming paper [23].

It seems plausible that Li⁺ cation complexation will be affected by changes in segmental motion of the polymer chains. Consequently, the concentration of mobile Li⁺ cations might vary. Our observation that for increasing Li⁺ cation contents, viz. Li⁺/1a > 0.25, σ does not increase anymore, suggests that the mobility μ_i of the Li⁺ cations is hindered by reduction of the number and length of flexible ethyleneglycol sequences due to (temporary) physical crosslinking (Fig. 2).

3. Conclusions

The readily accessible, amorphous polyester 1a, which contains bis-1,4,7-trioxanonyl (triethyleneglycol) segments in its main chain, represents a matrix for ion-conducting materials. Despite the fact that only triethyleneglycol segments are present, which are shorter than the minimum required for full solvation of Li⁺ cations, ion-conductivities of $\sigma = 3.3 \times 10^{-5}$ S cm $^{-1}$ at 368 K are found for Li⁺/1a 0.25 (cations per polymer repeat unit). Hence, more than one bis-1,4,7-trioxanonyl segment (either intra- or interchain) has to be involved in Li⁺ complexation. The σ value compares favorably with previous data for more complex polymer matrices. The results hold promise for the development of defined linear polyesters as well as crosslinked systems possessing higher σ values at even lower, viz. ambient, temperatures.

4. Experimental

4.1. Monomer synthesis

1,5-Bis-(9-hydroxy-1,4,7-trioxanonyl)naphthalene (2a) and 1,4-bis-(9-hydroxy-1,4-7-trioxanonyl)benzene (2b) were synthesized by etherification of 1,5-bishydroxynaphthalene and 1,4-bishydroxybenzene, respectively, with 2 equiv. 2-[2-(2-chloroethoxy)ethoxy]ethanol with potassium carbonate as base using available literature procedures [24, 25]. The analytical data of 2a and 2b were in full agreement with those reported earlier.

4.2. Melt polycondensation

The different combinations of the diols 2a-b (5 mmol) and bis-acid chlorides 3a-b (5 mmol) were mixed in a Schlenk apparatus under a dry N2 atmosphere and, subsequently, heated to 373 K under continuous evacuation to remove evolved HCl(g). After ca. 20 min the reaction mixture became too viscous to enable magnetic stirring. Therefore, the temperature was raised to 453 K for 20 min to force polycondensation to completion. After cooling the reaction mixture was dissolved in THF (30 ml) and precipitated in vigorously stirred CH₃OH (180 ml) (Scheme 1). NMR spectra were recorded on a Bruker AC 300 spectrometer at 300.13 (¹H) and 75.47 (¹³C) MHz using the solvent as internal standard. Molecular weight distributions were determined with size exclusion chromatography (Thermo Separation Products Spectra Series P200, Shodex Standard KF-804 column, eluent THF, UV detection (λ = 254 nm), reference polystyrene standards). Thermal properties were determined with differential scanning calorimetry (Mettler DSC 12-E, temperature range 233-473 K; heating and cooling rate 5 K min⁻¹ and 2 K min⁻¹, respectively) and thermogravimetry (TGA (N2), Perkin Elmer TGS-2 with an autobalance AR-2, temperature range 323-1123 K, heating rate 20 K min⁻¹). Dielectric measurements were performed on dried samples with AC impedance spectroscopy (Solartron 1250/1260 Frequency Response Analyzer for frequencies up to 1 kHz and a Hewlett-Packard 4284A LCR Meter for frequencies between 1 kHz and 1 MHz) by using parallel plates as well as a comb-like electrode geometry on a glass plate [26]. To circumvent resistance to ion flow at the electrode-electrolyte interface a sinusoidal voltage was applied to the system. Ion-conductivities σ (S cm⁻¹) were determined by fitting of up to two relaxation functions and a (ohmic) conduction term to the complex permittivity ϵ^{*} measured in the frequency range from 0.1 Hz to 100 kHz.

1a (from 2a and 3a): ¹H NMR (CDCl₃): δ 7.85 (d, 2H, ${}^{3}J = 8.5$ Hz), 7.33 (dd, 2H, ${}^{3}J = 8.5$ Hz and ${}^{3}J = 7.6$ Hz), 6.83 (d, 2H, ${}^{3}J = 7.6$ Hz), 4.29 – 4.26 (m, 4H), 4.23 – 4.20 (m, 4H), 3.99 – 3.94 (m, 4H), 3.80 – 3.77 (m, 4H), 3.72 – 3.66 (m, 8H), 2.32 – 2.28 (m, 4H), 1.65 – 1.60 (m, 4H) ppm; 13 C NMR (CDCl₃): δ 173.1, 154.3, 126.8, 125.1, 114.6, 105.7, 70.9, 70.6, 69.8, 69.2, 67.9, 63.4, 33.7 and 24.2 ppm; IR(KBr) 3060, 2947, 2883, 1741, 1273, 1143 and 787 cm⁻¹ (see also Table 1 and Scheme 1);

Anal. Calcd for $(C_{28}H_{38}O_{10})_n$: C, 62.91; H, 7.17. Found: C, 62.84; H, 7.13.

1b (from **2a** and **3b**): ¹H NMR (CDCl₃): δ 8.07 (s, 4H), 7.83 (d, 2H, ³J = 8.5 Hz), 7.31 (dd, 2H, ³J = 8.5 Hz and ³J = 7.6 Hz), 6.79 (d, 2H, ³J = 7.6 Hz), 4.49–4.46 (m, 4H), 4.27–4.24 (m, 4H), 3.99–3.96 (m, 4H), 3.86–3.72 (m, 12H) ppm; ¹³C NMR (CDCl₃): δ 165.7, 154.3, 133.9, 129.6, 126.7, 125.0, 114.6, 105.6, 71.0, 70.7, 69.8, 69.1, 67.8 and 64.4 ppm; IR(KBr) 3088, 2893, 1728, 1278, 1111 and 787 cm⁻¹ (see also Table 1 and Scheme 1); Anal. Calcd for (C₃₀H₃₄O₁₀)_n: C, 64.97; H, 6.18. Found: C, 64.85; H, 6.20.

1c (from 2b and 3b): 1 H NMR (CDCl₃): δ 8.10 (s, 4H), 6.81 (s, 4H), 4.51–4.48 (m, 4H), 4.06–4.03 (m, 4H), 3.87–3.80 (m, 8H), 3.77–3.73 (m, 8H) ppm; 13 C NMR (CDCl₃): δ 165.6, 153.0, 133.9, 129.6, 115.4, 70.7, 70.6, 69.9, 69.1, 67.9 and 64.4 ppm; IR(KBr) 3065, 2940, 2890, 1732, 1280, 1120 and 730 cm⁻¹ (see also Table 1 and Scheme 1).

1d (from **2b** and **3a**): 1 H NMR (CDCl₃): δ 6.83 (s, 4H), 4.24–4.20 (m, 4H), 4.08–4.05 (m, 4H), 3.84–3.80 (m, 4H), 3.71–3.68 (m, 12H), 2.34 (m, 4H), 1.67–1.64 (m, 4H) ppm; 13 C NMR (DMSO- d_6): δ 172.5, 152.4, 115.2, 69.7, 69.6, 68.9, 68.2, 67.4, 62.9, 32.9 and 23.7 ppm; IR(KBr) 3051, 2918, 2870, 1734, 1242, 1118 and 780 cm⁻¹ (see also Table 1 and Scheme 1).

References

- [1] M.A. Ratner, D.F. Shriver, Chem. Rev. 1988, 88, 109.
- [2] K. Murata, Electrochim. Acta 1995, 13-14, 2177.
- [3] M. Andrei, A. Roggero, L. Marchese, S. Passerini, *Polymer* 1994, 35, 3592.
- [4] D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 1973, 14, 589.
- [5] M.B. Armand, J.M. Chabagno, M.J. Duclot, in *Fast Ion Transport in Solids* (Eds: P. Vashishta, J.N. Mundy, G.K. Shenoy), North-Holland, Amsterdam 1979, p. 131.
- [6] Z. Florjanczyk, W. Krawiec, W. Wieczorek, M. Siekierski, J. Polym. Sci. B 1995, 33, 629.

- [7] J.-F. Le Nest, A. Gandini, H. Cheradame, Br. Polym. J. 1988, 20, 253; J.-F. Le Nest, A. Gandini, H. Cheradame, J.-P. Cohen-Addad, Macromolecules 1988, 21, 1117.
- [8] C.J. Hawker, F. Chu, P.J. Pomery, D.J.T. Hill, Macromolecules 1996, 29, 3831.
- [9] M. Ballauf, Makromol. Chem., Rapid Commun. 1986, 7, 407.
- [10] I.J.A. Mertens, L.W. Jenneskens, E.J. Vlietstra, A.C. van der Kerk-van Hoof, J.W. Zwikker, W.J.J. Smeets, A.L. Spek, J. Chem. Soc., Chem. Commun. 1995, 1621.
- [11] M. Ignatova, N. Manolova, I. Rashkov, Macromol. Chem. Phys. 1995, 196, 2695.
- [12] Slopes of $-2.80 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1} \text{ and } -2.77 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$ were obtained under the assumption that the density (d) of polymers $1\mathbf{a} \mathbf{b}$ is 1 kg dm⁻³. With either d = 0.9 or 1.1 kg dm⁻³ the slopes are $-3.11 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1} \text{ and } -3.10 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$, and, $2.54 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$ and $-2.53 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$, respectively.
- [13] J.R. MacDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, 1987, Wiley, New York.
- [14] D.J. Bannister, G.R. Davies, I.M. Ward, J.E. McIntyre, *Polymer* 1984, 25, 1600.
- [15] P. Manoravi, I.I. Selvaraj, V. Chandrasekhar, K. Shahi, *Polymer* 1993, 34, 1339.
- [16] C.V. Nicholas, D.J. Wilson, C. Booth, J.R.M. Giles, Br. Polym. J. 1988, 20, 289.
- [17] W. Wieczorek, A. Zalewska, D. Raducha, Z. Florjanczyk, J.R. Stevens, A. Ferry, P. Jacobsson, *Macromolecules* **1996**, 29, 143.
- [18] H. Vogel, Z. Phys. 1921, 22, 645; G. Tamman, G. Hesse, Z. Anorg. Allg. Chem. 1926, 156, 245; G.S. Fulcher, J. Am. Ceram. Soc. 1971, 54, 591.
- [19] T. Miyamoto, K. Shibayama, J. Appl. Phys. 1973, 44, 5372.
- [20] A.K. Doolittle, J. Appl. Phys. 1951, 22, 1471; 1952, 23, 236.
- [21] M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 1955, 77, 3701.
- [22] For a review see: M.A. Ratner, Polymer Electrolytes Reviews-I (Eds: J.R. Callum, C.A. Vincent), Elsevier Applied Science, London 1987, p. 173.
- [23] I.J.A. Mertens, M. Wübbenhorst, L.W. Jenneskens, W. Ooster-baan, B. B. Wentzel, J. van Turnhout, unpublished.
- [24] M.J. Gunter, D.C.R. Hockless, M.R. Johnston, B.W. Skelton, A.H. White, J. Am. Chem. Soc. 1994, 116, 4810.
- [25] P.L. Anelli, P.R. Ashton, N. Spencer, A.M.Z. Slawin, J.F. Stod-dart, D.J. Williams, Angew. Chem., Int. Ed. Engl. 1991, 30, 1036.
- [26] H.W.L. Bruckman, M.P. de Goeje, Prog. Org. Coatings 1992, 20, 501.

Received April 17, 1997