
Component Framework Technology for Flexible
Protocol Stacks
Sam Michiels, Pierre Verbaeten

Abstract— The context of this paper and the correspond-
ing challenges are formed by network services and their re-
quirements to the underlying protocol stack. The relevance
of this research is confirmed by three recent trends in net-
work services and their execution environment: growing re-
liance of businesses and individuals on network connectivity,
highly dynamic network characteristics, and a wide range of
connected client device types. This paper proposes DiPS+
(Distrinet Protocol Stack+), a sophisticated software archi-
tecture and component framework to support the devel-
opment of protocol stacks that are easily customizable to
application- and environment-specific requirements.

Keywords— Protocol stack, component framework, soft-
ware architecture

I. Protocol stacks

The main goal of a protocol stack is to enable communic-
ation between devices (also referred to as nodes) that are
attached to a network. Doing so, a protocol stack hides
network transfer details from services running on top of it.
The protocol stack may, for instance, be responsible for de-
livering data correctly at the receiver, even if data can get
lost during transfer (see also Figure 1).

The major tasks of a protocol stack are conceptually
separated in protocol layers stacked on top of each other
(which explains its name). Each layer in a protocol stack
relies on the services offered by the layer underneath. Peer
protocol layers can send information to each other by at-
taching a protocol-specific header (and/or trailer) to the
data that is transferred. Each protocol may add such a
header to a down going packet, resulting in a chain of head-
ers attached to a data packet.

II. Context

The context of this paper and the challenges it addresses
are formed by network services and their requirements to
the underlying system software, i.c. protocol stacks. Net-
work services include web page access on the Internet, e-
mail hosting, offering the latest news facts, information
retrieval, etc. Next to the Internet, other types of network
environments are subject to network service requirements
too: local area networks, in-home networks, or wireless ad-
hoc networks, which are created dynamically when network
nodes approach each other.

The relevance of this research is confirmed by three
trends in network services and their execution environment.
First of all, network (Internet) services have become crit-
ical and indispensable both for driving large businesses as
well as for personal productivity. This growing reliance on

Department of Computer Science, K.U.Leuven, Leuven, Belgium.
E-mail: sam.michiels@cs.kuleuven.ac.be .

IP

Ethernet

Down going 
flow

Up going 
flow

Horizontal
flow

packet

TCP 
header

Sender

data

ReceiverRouter

data
TCP 

header
IP

header

Ethernet
header

TCP

IP

Ethernet

Application

TCP

IP

Ethernet

Application

Fig. 1. Sending a TCP/IP packet via an intermediate router, which
strips the Ethernet and the IP header, selects the next node to
deliver the packet to (i.c. the receiver), and forwards the packet
via the network and datalink layer, which both attach a new
header to the packet.

network connectivity emphasizes the need for robust and
flexible software, also at the operating system level.

Secondly, the Internet has become a highly dynamic
environment with respect to the available network band-
width, the number of parallel requests to process, the type
of services required and also with respect to the service
quality provided. It becomes more and more difficult to
develop a single type of protocol stack that can be fine-
tuned to all these dimensions of variability (e.g. by setting
some parameters) [2]. Moreover, even if the system were
customizable by setting parameters, network variances are
often short-term, which obsoletes manual intervention. By
consequence, it would be more appropriate to develop a
flexible protocol stack that is able to detect various changes
in the environment and adapt itself to handle them.

Thirdly, client devices on the network can be of any type
as opposed to the traditional personal computer. Already a
wide variety of networked client devices can be found, such
as personal digital assistants (PDAs), mobile telephones, or
vehicles equipped with wireless communication channels.
Yet, these types of clients typically have less processing re-
sources available than, for instance, a personal computer.
By consequence, it is important to be able to customize
the system – for instance by providing no more function-
ality than required by the services running on a particular
device. In addition, the available resources should be util-
ized as efficient as possible, by minimizing overhead and by
scheduling processing resources intelligently.



These three trends – growing reliance on net-
work connectivity, highly dynamic environ-
ment characteristics, and a wide range of
client devices – reveal a common challenge
for protocol stack software: offering support
for flexibility at design-, development-, and
execution-time, tailored to application- and/or
network-specific characteristics.

III. Towards flexible protocol stacks

The need to develop flexible protocol stacks originates
from two main shortcomings in traditional protocol stack
designs. First of all, protocol stacks are often designed as
a composition of coarse-grained blocks of code (e.g. pro-
tocol layers) with ambiguous responsibilities. Its mono-
lithic character makes it very difficult to customize a pro-
tocol stack (e.g. by changing specific functionality inside a
particular layer). Also, testing the behavior of a protocol
layer is difficult if the internal code is not sub-divided into
independent modules. A second major shortcoming is that
the behavior of a protocol stack is often fixed at design-
time and fine-tuned to handle a pre-determined load, par-
allelism, service type or provided service quality. Unfor-
tunately, it is very difficult for protocol stack software to
handle major deviations from the average behavior.

It is our belief that an appropriate design method
and an elegant software architecture are required to
manage the complexity inherent to protocol stack software,
and to deal with dynamic network behavior. Although
state-of-the-art software engineering principles (such as
object- and component-oriented programming or open im-
plementation [1]) provide guidelines to develop flexible soft-
ware, all too often these guidelines are neglected during de-
velopment [3]. By consequence, the resulting code is often
inflexible for adaptations, which increases the risk for errors
if code is adapted anyway [9]. Protocol stack developers
therefore should have at their disposal an infrastructure
that enforces such flexible software design.

We propose DiPS+ [4], a sophisticated software archi-
tecture and component framework to support developing
flexible protocol stacks that are easily customizable to
application- and environment-specific requirements. This
flexibility has been achieved by enforcing a strict separa-
tion of concerns in the DiPS+ component framework. The
framework distinguishes not only management from data
processing, but also functionality from concurrency, and
functionality from component interaction.

The DiPS+ component framework plays a central role in
the protocol stack development process. It does not only
offer programmers support in developing protocol stacks, it
also lays the foundation for a robust and lightweight devel-
opment process and a balanced software life-cycle. DiPS+
addresses three core research tracks in protocol stack de-
velopment:
• Self-management has been addressed by providing a
monitoring and management system (DMonA [5]), which
is customizable by application-specific adaptability stra-
tegies. In addition, the self-management plane has been

conceived as an orthogonal extension to the DiPS+ data
plane as it is attached to a component’s entry and exit
points. In this way, DiPS+ units can be reused, whether
or not DMonA is present.
• Testing involves testing functional correctness from day
one of the software development process. Providing a
powerful test framework (DiPSUnit [7], [8]) confirms the
trend towards agile software engineering methodologies,
which are highly iterative and presuppose change of both
the design and the required functionality. This in turn re-
quires the underlying design of production software to be
open to testing.
• Framework optimization compensates for the over-
head that is inherent to the flexibility the DiPS+ com-
ponent framework offers, without necessarily throwing all
flexibility overboard [6]. This sense for real-life concerns is
crucial to protocol stack development.

IV. Conclusions

The strength of DiPS+ is that these three research
tracks are not treated as individual solutions, but share
a well-defined software architecture and component frame-
work underneath. The DiPS+ component framework does
not only offer programmers support in developing protocol
stacks, but also lays the foundation for a robust and light-
weight development process and a balanced software life-
cycle.

Acknowledgments

We would like to thank the members of the networking
task force in the DistriNet research group, and the IWT
for financially supporting a major part of this research.

References

[1] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda, A. Mendhekar,
and G. C. Murphy. Open implementation design guidelines. In
Proceedings of the 19th International Conference on Software En-
gineering (ICSE’97), pages 481–490, Boston, MA, USA, 1997.
ACM Press, New York, NY, USA.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer Sys-
tems, 18(3):263–297, Aug. 2000.

[3] K. J. Lieberherr and I. M. Holland. Assuring good style for object-
oriented programs. IEEE Software, 6(5):38–48, Sept. 1989.

[4] S. Michiels. Component Framework Technology for Adaptable and
Manageable Protocol Stacks. PhD thesis, K.U.Leuven, Dept. of
Computer Science, Leuven, Belgium, Nov. 2003. To be defended.

[5] S. Michiels, L. Desmet, N. Janssens, T. Mahieu, and P. Verbaeten.
Self-adapting concurrency: The DMonA architecture. In D. Gar-
lan, J. Kramer, and A. Wolf, editors, Proceedings of the First
Workshop on Self-Healing Systems (WOSS’02), pages 43–48,
Charleston, SC, USA, 2002. ACM SIGSOFT, ACM press.

[6] S. Michiels, L. Desmet, N. Janssens, T. Mahieu, and P. Verbaeten.
Dips framework optimization. Technical report, K.U.Leuven,
Dept. of Computer Science, Leuven, Belgium, Jan. 2003.

[7] S. Michiels, D. Walravens, N. Janssens, and P. Verbaeten. DiPS:
Filling the Gap between System Software and Testing.

[8] S. Michiels, D. Walravens, N. Janssens, and P. Verbaeten.
DiPSUnit: A JUnit Extension for the DiPS Framework. In Pro-
ceedings of Third International Conference on eXtreme Program-
ming and Agile Processes in Software Engineering (XP2002),
Alghero, Italy, May 2002.

[9] Y. Yokote. The apertos reflective operating system: the
concept and its implementation. In Conference Proceedings on
Object-oriented programming systems, languages, and applica-
tions (OOPSLA), pages 414–434. ACM Press, New York, NY,
USA, 1992.


