International Journal Of Molecular Sciences
Author:
Keywords:
Science & Technology, Life Sciences & Biomedicine, Physical Sciences, Biochemistry & Molecular Biology, Chemistry, Multidisciplinary, Chemistry, alpha-synuclein, A53T, A30P, ITPKB, Parkinson's disease, PD cortex, Drosophila, AGE-RELATED-CHANGES, METAANALYSIS, PATHOLOGY, SELECTION, RISK, IP3K2, Parkinson’s disease, α-synuclein, Humans, alpha-Synuclein, Mutation, Neurons, Parkinson Disease, C14/18/102#54689613, 0399 Other Chemical Sciences, 0604 Genetics, 0699 Other Biological Sciences, Chemical Physics, 3101 Biochemistry and cell biology, 3107 Microbiology, 3404 Medicinal and biomolecular chemistry
Abstract:
Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.