Title: Inhibition of angiogenesis by blockers of volume-regulated anion channels
Authors: Manolopoulos, V G ×
Liekens, Sandra
Koolwijk, P
Voets, Thomas
Peters, E
Droogmans, Guillaume
Lelkes, P I
De Clercq, Erik
Nilius, Bernd #
Issue Date: Feb-2000
Publisher: Pergamon
Series Title: General Pharmacology vol:34 issue:2 pages:107-116
Abstract: Osmotic cell swelling activates an outwardly rectifying Cl(-) current in endothelial cells that is mediated by volume-regulated anion channels (VRACs). In the past, we have shown that serum-induced proliferation of endothelial cells is arrested in the presence of compounds that potently block the endothelial VRACs. Here we report on the effects of four chemically distinct VRAC blockers [5-nitro-2-(3-phenylpropylamino)benzoic acid] (NPPB), mibefradil, tamoxifen, and clomiphene-on several models of experimental angiogenesis. Mibefradil (20 microM), NPPB (100 microM), tamoxifen (20 microM), and clomiphene (20 microM) inhibited tube formation by rat microvascular endothelial cells plated on matrigel by 42.9 +/- 8.8%, 25.3 +/- 10.4%, 32.2 +/- 4.5%, and 20 +/- 5.8%, respectively (p < 0.05). Additionally, NPPB (50-100 microM) and mibefradil (10-30 microM) significantly inhibited bFGF (10 ng/ml) + TNFalpha (2.5 ng/ml)-stimulated microvessel formation by human microvascular endothelial cells plated on fibrin by 30-70%. Furthermore, NPPB, mibefradil, and clomiphene concentration dependently inhibited spontaneous microvessel formation in the rat aorta-ring assay and vessel development in the chick chorioallantoic membrane assay. These results suggest that VRAC blockers are potent inhibitors of angiogenesis and thus might serve as therapeutic tools in tumor growth and other angiogenesis-dependent diseases.
ISSN: 0306-3623
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Virology and Chemotherapy (Rega Institute)
Laboratory of Ion Channel Research
Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science