ITEM METADATA RECORD
Title: Mutations in the ZNF41 gene are associated with cognitive deficits: identification of a new candidate for X-linked mental retardation
Authors: Shoichet, Sarah A ×
Hoffmann, Kirsten
Menzel, Corinna
Trautmann, Udo
Moser, Bettina
Hoeltzenbein, Maria
Echenne, Bernard
Partington, Michael
Van Bokhoven, Hans
Moraine, Claude
Fryns, Jean-Pierre
Chelly, Jamel
Rott, Hans-Dieter
Ropers, Hans-Hilger
Kalscheuer, Vera M #
Issue Date: Dec-2003
Series Title: American Journal of Human Genetics vol:73 issue:6 pages:1341-54
Abstract: Nonsyndromic X-linked mental retardation (MRX) is defined by an X-linked inheritance pattern of low IQ, problems with adaptive behavior, and the absence of additional specific clinical features. The 13 MRX genes identified to date account for less than one-fifth of all MRX, suggesting that numerous gene defects cause the disorder in other families. In a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21), we have cloned the DNA fragment that contains the X-chromosomal and the autosomal breakpoint. In silico sequence analysis provided no indication of a causative role for the chromosome 7 breakpoint in mental retardation (MR), whereas, on the X chromosome, a zinc-finger gene, ZNF41, was found to be disrupted. Expression studies indicated that ZNF41 transcripts are absent in the patient cell line, suggesting that the mental disorder in this patient results from loss of functional ZNF41. Moreover, screening of a panel of patients with MRX led to the identification of two other ZNF41 mutations that were not found in healthy control individuals. A proline-to-leucine amino acid exchange is present in affected members of one family with MRX. A second family carries an intronic splice-site mutation that results in loss of specific ZNF41 splice variants. Wild-type ZNF41 contains a highly conserved transcriptional repressor domain that is linked to mechanisms of chromatin remodeling, a process that is defective in various other forms of MR. Our results suggest that ZNF41 is critical for cognitive development; further studies aim to elucidate the specific mechanisms by which ZNF41 alterations lead to MR.
URI: 
ISSN: 0002-9297
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical Genetics Section (-)
Department of Human Genetics - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science