Title: Regulation of fibroblast growth factor-2 activity by human ovarian cancer tumor endothelium
Authors: Whitworth, Melissa K ×
Backen, Alison C
Clamp, Andrew R
Wilson, Godfrey
McVey, Rhona
Friedl, Andreas
Rapraeger, Alan C
David, Guido
McGown, Alan
Slade, Richard J
Gallagher, John T
Jayson, Gordon C #
Issue Date: Jun-2005
Series Title: Clinical Cancer Research vol:11 issue:12 pages:4282-8
Abstract: Fibroblast growth factor-2 (FGF-2) is a potent angiogenic cytokine that is dependent on heparan sulfate for its biological activity. We have investigated the relationship among heparan sulfate, FGF-2, and the signal-transducing receptors in human, advanced-stage, serous ovarian adenocarcinoma. Using a unique molecular probe, FR1c-Ap, which consisted of a soluble FGF receptor 1 isoform IIIc covalently linked to an alkaline phosphatase moiety, the distribution of heparan sulfate that had the ability to support the formation of a heparan sulfate/FGF-2/FGFR1 isoform IIIc alkaline phosphatase heparan sulfate construct complex was determined. This may be taken as a surrogate marker for the distribution of biologically active heparan sulfate and was distributed predominantly in endothelial cells and stroma but was absent from adenocarcinoma cells. In situ hybridization revealed the expression of FGFR1 mRNA in the endothelium and reverse transcription-PCR confirmed the presence of FGFR1 isoform IIIc but not isoform IIIb. The presence of FGF-2 around tumor endothelium was detected through immunohistochemistry. Double-staining techniques showed that heparan sulfate was found predominantly at the basal aspect of the endothelium and suggested that syndecan-3 might function as one of the proteoglycans involved in FGF-2 signaling in the endothelium. The data suggest that the entire extracellular signaling apparatus, consisting of FGF-2, biologically active heparan sulfate, and FGFRs capable of responding to FGF-2, is present in ovarian cancer endothelium, thereby highlighting the cytokine and its cognate receptor as potential targets for the antiangiogenic treatment of this disease.
ISSN: 1078-0432
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Genetics Section (-)
Department of Human Genetics - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science