Title: Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
Authors: Yesilata, B ×
Clasen, Christian
McKinley, GH #
Issue Date: Feb-2006
Publisher: Elsevier science bv
Series Title: Journal of non-newtonian fluid mechanics vol:133 issue:2-3 pages:73-90
Abstract: Nonlinear shear and extensional flow dynamics of a wormlike micellar solution based on erucyl bis(2-hydroxyethyl) methyl ammonium chloride (EHAC) are reported here. The influences of surfactant (EHAC) and salt (NH4Cl) concentrations on the linear viscoelastic parameters are determined using small amplitude oscillatory shear experiments. The steady and time-dependent shear rheology is determined in a double gap Couette cell, and transient extensional flow measurements are performed in a capillary breakup extensional rheometer (CABER). In the nonlinear shear flow experiments, the micellar fluid samples show strong hysteretic behavior upon increasing and decreasing the imposed shear stress due to the development of shear-banding instabilities. The non-monotone flow curves of stress versus shear rate can be successfully modeled in a macroscopic sense by using the single-mode Giesekus constitutive equation. The temporal evolution of the flow structure of the surfactant solutions in the Couette flow geometry is analyzed by instantaneous shear rate measurements for various values of controlled shear stress. along with FFT analysis. The results indicate that the steady flow bifurcates to a global time-dependent state as soon as the shear-banding/hysteresis regime is reached. Increasing the salt-surfactant ratio or the temperature is found to stabilize the flow, and corresponds to decreasing values of anisotropy factor in the Giesekus model. Finally, we have investigated the dynamics of capillary breakup of the micellar fluid samples in uniaxial extensional flow The filament thinning behavior of the micellar fluid samples is also accurately predicted by the Giesekus constitutive equation. Indeed quantitative agreement between the experimental and numerical results can be obtained providing that the relaxation time of the wormlike micellar solutions in extensional flows is a factor of three lower than in shear flows. (c) 2005 Elsevier B.V. All rights reserved.
ISSN: 0377-0257
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter, Rheology and Technology Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science