Title: Microstructural evolution in polymer blends
Authors: Tucker, CL ×
Moldenaers, Paula #
Issue Date: 2002
Publisher: Annual reviews
Series Title: Annual review of fluid mechanics vol:34 pages:177-210
Abstract: Microstructure in an immiscible polymer blend consists of the size, shape, and orientation of the phases. Blends exhibit many interesting behaviors, including enhanced elasticity at small strains, drop-size hysteresis, enhanced shear thinning, and stress relaxation curves whose shapes are sensitive to deformation history. These behaviors are directly related to changes in the microstructure, which result from phase deformation, coalescence, retraction, and different types of breakup. These phenomena are reviewed, together with models that describe them, Rheological measurements can probe the microstructure because microstructure contributes directly to stress through interfacial tension. Rheo-optical experiments also provide important insights. Droplet theories explain most of the phenomena for Newtonian phases at low concentrations. Behaviors at high volume fractions or with strongly non-Newtonian phases are less well understood.
ISSN: 0066-4189
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter, Rheology and Technology Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science