This item still needs to be validated !
Title: Intracellular pH shifts in cultured kidney (A6) cells: effects on apical Na+ transport
Authors: Zeiske, W
Smets, I
Ameloot, M
Steels, P
Van Driessche, Willy #
Issue Date: Sep-1999
Publisher: Amer physiological soc
Series Title: American Journal of Physiology. Cell Physiology vol:277 issue:3 pages:C469-C479
Abstract: Intracellular pH shifts in cultured kidney (A6) cells: effects on apical Na+ transport. Am. J. Physiol. 277 (Cell Physiol. 46): C469-C479, 1999.-We report, for the epithelial Nat channel (ENaC) in A6 cells, the modulation by cell pH (pH(c)) of the transepithelial Na+ current (I-Na), the current through the individual Na+ channel (i), the open Nat channel density (N-o), and the kinetic parameters of the relationship between INa and the apical Naf concentration. The i and N-o, were evaluated from the Lorentzian IN, noise induced by the apical Na+ channel blocker 6-chloro-3,5-diaminopyrazine-2-carboxamide pH(c) shifts were induced, under strict and volume-controlled experimental conditions, by apical/basolateral NH4Cl pulses or basolateral arrest of the Na+/H+ exchanger (Nat removal; block by ethylisopropylamiloride) and were measured with the pH-sensitive probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein. The changes in pH, were positively correlated to changes in IN, and the apically dominated transepithelial conductance. The sole pH(c)-sensitive parameter underlying INa was N-o. Only the saturation value of the INa kinetics was subject to changes in pH(c). pH(c)-dependent changes in N-o may be caused by influencing P-o, the ENaC open probability, or/and the total channel number, N-T = N-o/P-o.
ISSN: 0363-6143
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Cellular and Molecular Medicine - miscellaneous
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science