ITEM METADATA RECORD
Title: Flow-induced anisotropy in mixtures of associative polymers and latex particles
Authors: Belzung, B ×
Lequeux, F
Vermant, Jan
Mewis, Joannes #
Issue Date: Apr-2000
Publisher: Academic press inc
Series Title: Journal of colloid and interface science vol:224 issue:1 pages:179-187
Abstract: The effect of associative polymers on the structure and rheological behavior of colloidal suspensions is discussed. Adding associative polymer is known to increase the viscosity of the suspensions. At high shear rates the increase is close to what could be expected on the basis of the hydrodynamic effects of the added polymer. At low shear rates the viscosity increases much more. Small-angle light scattering (SALS) during flow is used here to investigate the underlying structural mechanisms. The SALS patterns indicate that the associative polymer changes the particulate structure: characteristic butterfly patterns appear even at relatively low particle volume fractions. They are not present in the suspensions without associative polymer. The patterns indicate that fluctuations in particle concentration are more pronounced in the flow direction than in the vorticity direction and that anisotropic particulate structures with an orientation along the vorticity direction develop. The evolution of their characteristic length scale during how has been followed over time. Changing the hydrophilic part of the polymer from polyacrylamide to polyacrylic acid induces stronger associative interactions. In the suspensions this results in a reduction of the relative viscosity rather than an increase, The difference in degree of associativity between the polymers also has an effect on the SALS patterns in the suspensions both at rest and during flow. The rheology as well as the SALS suggest the presence of a strong polymer network in the second system. The competition between adsorption of the associative polymer on the particles with the intermolecular associations between the polymer chains seems to be responsible for the observed differences. (C) 2000 Academic Press.
URI: 
ISSN: 0021-9797
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter, Rheology and Technology Section
Chemical Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science