This item still needs to be validated !
ITEM METADATA RECORD
Title: Preferential segregation to the step edges on Pt-Re catalyst particles
Authors: Helfensteyn, Steve ×
Creemers, Claude #
Issue Date: Jun-2002
Publisher: Elsevier science bv
Series Title: Surface science vol:507 pages:783-788
Abstract: Monte Carlo simulations combined with the "macroscopic atom" model are used to investigate surface segregation in platinum-rhenium reforming catalysts. Two irregularly shaped particles of different size are implemented as an approximation to the active grains in commercial catalysts. Disordered configurations with bulk concentrations between 20 and 80 at.% Pt are studied. For all configurations segregation of Pt, the catalytically active element, is observed, up to 100 at.% Pt for the Pt-richer particles. The extent of segregation is in full agreement with the considerably lower surface tension of Pt and the negative enthalpy of solution in the Pt-Re system. It is furthermore less pronounced at higher temperatures, as it should be for exothermic segregation in disordered alloys. For the lowest concentrations the bulk is depleted upon segregation and this of course is more pronounced for the smaller particle. The interesting phenomenon that is observed is a strongly preferential segregation to the lattice sites with lowest coordination at the step edges. By systematically increasing the Pt-content of the particle the Surface sites are sequentially filled in order of increasing coordination, in full agreement with thermodynamical considerations. This observation possibly points at steps and kinks as the active catalyst sites and is also in agreement with experimental evidence on Pt-surfaces [Surf. Sci. 128 (1983) 176] that showed a systematical increase in activity for rougher surfaces. (C) 2002 Elsevier Science B.V. All rights reserved.
URI: 
ISSN: 0039-6028
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Chemical Engineering - miscellaneous
Process Engineering for Sustainable Systems Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science