Title: Influence of martensite stabilization on the low-temperature non-linear anelasticity in Cu-Zn-Al shape memory alloys
Authors: Kustov, S. ×
Golyandin, S.
Sapozhnikov, K.
Cesari, E.
Van Humbeeck, Jan
De Batist, R. #
Issue Date: Jun-2002
Publisher: Pergamon-elsevier science ltd
Series Title: Acta Materialia vol:50 issue:11 pages:3023-3044
Abstract: The advanced acoustic technique has been used to investigate the mobility of partial dislocations/intervariant boundaries in the beta(1)' martensite of a Cu-Zn-Al alloy subjected to the martensite stabilization and to the beta-phase ageing, suppressing the stabilization effect. The non-linear anelasticity has been studied for frequencies of about 100 kHz and strain amplitudes 2x10(-7)-2x10(-4) over the temperature range 300-8 K. Measurements at low temperatures, below approximately 70 K, allowed us to eliminate anelastic effects associated with the motion of quenched-in defects, which are 'frozen' for these temperatures, and to assess the intrinsic mobility of partial dislocation/intervariant boundaries. The results obtained for stabilized samples are compared with those for beta-phase aged samples, and with the previously reported data for the Cu-Al-Ni alloy, which is not prone to the stabilization at ambient temperatures. We suggest distinguishing mechanisms of stabilization according to their localization: a homogeneous and a heterogeneous component. Namely, short-range reordering occurring in the bulk of the crystal is responsible for the homogeneous component of the stabilization. The local rearrangement of the martensite structure in the vicinity of lattice defects (pinning of partial dislocations/intervariant boundaries by quenched-in defects and more intense than in the bulk localized reordering) is assumed to be responsible for the heterogeneous component of the stabilization process. The acoustic technique is shown to be able to distinguish and to study details of various effects associated with the heterogeneous and homogeneous changes in the structure of martensite, induced by the stabilization and different heat treatments. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
ISSN: 1359-6454
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physical Metallurgy and Materials Engineering Section (-)
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
pub02012.pdf Published 335KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science