Title: Stability of intergranular phases in hot-pressed Si3N4 studied with mechanical spectroscopy and in-situ high-temperature XRD
Authors: Duan, Ren-Guan ×
Roebben, Gert
Vleugels, Jef
Van der Biest, Omer #
Issue Date: Oct-2002
Publisher: Elsevier Science Publishers
Series Title: Journal of the European Ceramic Society vol:22 issue:11 pages:1897-1904
Abstract: The impulse excitation technique (IET) and high temperature X-ray diffraction (HTXRD) were used to investigate the inter-granular glass phase and its crystallisation behaviour in four hot-pressed silicon nitrides. The internal friction or damping peak height measured with IET near the glass transition temperature, T., is used as a qualitative indicator for the amount of residual intergranular amorphous phase after sintering. Silicon nitride powder was hot-pressed with different sintering additives. The silicon nitride containing 4 wt.% Al2O3 does not reveal an internal friction peak at T-g, i.e. it does not contain a significant amount of intergranular glass phase. Three other silicon nitrides, containing either 8 wt.% Y2O3, 6 wt.% Y2O3+2 wt.% Al2O3, or 2 wt.% Y2O3 + 4 wt.% Al2O3 + 2 wt.% TiN, do show an internal friction peak near T-g. This " T-g-peak" is nearly unaffected by heating up to 1400 degreesC in the silicon nitride with Y2O3 + Al2O3 + TiN sintering aids, whereas the amount of intergranular glass in the ceramics containing either Y2O3 + Al2O3 or Y2O3 as a sintering aid is strongly reduced by subsequent heating. As observed from HTXRD, the onset temperature of crystallisation of the intergranular glass in the ceramic containing Y2O3 + Al2O3 sintering aids is about 1100 degreesC, with the formation of Y-N-apatite (Y20N4Si12O48) and O-sialon (Al0.04Si1.96N1.96O1.04). The O-sialon phase in the yttria and alumina containing ceramics, formed either during sintering or during heat treatment, is not stable at elevated temperatures and dissolves in the intergranular glass phase between 1300 and 1400 degreesC. The O-sialon phase in the ceramic without Y2O3 sintering additive, however, is thermally stable. The presence of Ti4+ ions in the intergranular glass phase is suggested to inhibit its crystallisation, resulting in a stable high temperature damping behaviour. (C) 2002 Elsevier Science Ltd. All rights reserved.
ISSN: 0955-2219
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physical Metallurgy and Materials Engineering Section (-)
Department of Materials Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
pub02145.pdf Published 313KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science