Title: The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations
Authors: Halin, P. ×
Lielens, G.
Keunings, Roland
Legat, Vincent #
Issue Date: Nov-1998
Publisher: Elsevier science bv
Series Title: Journal of non-newtonian fluid mechanics vol:79 issue:2-3 pages:387-403
Abstract: We propose a new numerical technique, referred to as the Lagrangian Particle Method (LPM), for computing time-dependent viscoelastic flows using either a differential constitutive equation (macroscopic approach) or a kinetic theory model (micro-macro approach). In LPM, the Eulerian finite element solution of the conservation equations is decoupled from the Lagrangian computation of the extra-stress at a number of discrete particles convected by the flow. In the macroscopic approach, the extra-stress carried by the particles is obtained by integrating the constitutive equation along the particle trajectories. In the micro-macro approach, the extra-stress is computed by solving along the particle paths the stochastic differential equation associated with the kinetic theory model. Results are given for the start-up flow between slightly eccentric rotating cylinders, using the FENE and FENE-P dumbbell models for dilute polymer solutions. (C) 1998 Elsevier Science B.V. All rights reserved.
ISSN: 0377-0257
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Materials Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science