Title: Deformation texture prediction: from the Taylor model to the advanced Lamel model
Authors: Van Houtte, Paul ×
Li, Sai-Yi
Seefeldt, Marc
Delannay, Laurent #
Issue Date: 2005
Publisher: Pergamon-elsevier science ltd
Series Title: International journal of plasticity vol:21 issue:3 pages:589-624
Abstract: The paper reports on a recent effort to develop a statistical (or Monte-Carlo) model for quantitative deformation texture prediction which is yet fast enough for implementation in every Gauss point of an FE simulation of a metal-forming process. The principles of Taylor-type models for the prediction of deformation textures of polycrystalline materials are reminded. This includes the full-constraints Taylor theory (every grain of a polycrystal undergoes the same plastic deformation), classical Relaxed Constraints Taylor theory (one or two of the components of the local velocity gradient tensor need not be the same for all grains) and multi-grain models (LAMEL model; mentioning of GIA model). The primal-dual structure of the equations relating strain rates with slip rates, and those relating stresses and resolved shear stresses on slip systems, is made clear. It is then possible to describe the basic philosophy and the mathematical implementation of a new model, called "advanced Lamel model" (ALAMEL). This model is more generally applicable than the previously developed LAMEL model, which is only valid for rolling. Both take interactions between neighbouring grains into account. Finally, quantitative comparisons are given between experimentally observed rolling textures and the predictions of the new model, as well as of other models: full-constraints and relaxed constraints Taylor, LAMEL, GIA, visco-plastic self-consistent and crystal plasticity finite element (CPFEM) models. This was done for IF steel (one thickness reduction) and for two aluminium alloys: AA1200 (five thickness reductions) and AA5182 (one thickness reduction). It was found that for AA1200, the new model is on average the best; for the two other cases, it is among the best models, but the LAMEL or CPFEM models are better. These results suggest that in spite of all simplifications, the ALAMEL model captures (and identifies) the domination mechanisms controlling the development of deformation textures in cubic metals. (C) 2004 Elsevier Ltd. All rights reserved.
ISSN: 0749-6419
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Mechanical Metallurgy Section (-)
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
pub02627.pdf Published 548KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science