Title: A hierarchical system for recognition, tracking and pose estimation
Authors: Zehnder, P ×
Koller-Meier, E
Van Gool, Luc #
Issue Date: 2005
Publisher: Springer-verlag berlin
Series Title: Machine learning for multimodal interaction vol:3361 pages:329-340
Abstract: This paper presents a new system for recognition, tracking and pose estimation of people in video sequences. It is based on the wavelet transform from the upper body part and uses Support Vector Machines (SVM) for classification. Recognition is carried out hierarchically by first recognizing people and then individual characters. The characteristic features that best discriminate one person from another are learned automatically. Tracking is solved via a particle filter that utilizes the SVM output and a first order kinematic model to obtain a robust scheme that successfully handles occlusion, different poses and camera zooms. For pose estimation a collection of SVM classifiers is evaluated to detect specific, learned poses.
ISSN: 0302-9743
Publication status: published
KU Leuven publication type: IT
Appears in Collections:ESAT - PSI, Processing Speech and Images
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science