Title: Factored orthogonal transformations for recursive eigendecomposition
Authors: Vanpoucke, FJ ×
Moonen, Marc
Deprettere, EF #
Issue Date: Mar-1997
Publisher: Ieee-inst electrical electronics engineers inc
Series Title: IEEE Transactions on circuits and systems ii-analog and digital signal processing vol:44 issue:3 pages:253-256
Abstract: Factorizations of orthogonal matrices play an important role in modern digital signal processing. Here we focus on their usefulness in the field of recursive eigendecomposition methods. We concentrate on recursive algorithms which use Givens rotations to update the eigenvector matrix. The orthogonality of the estimated eigenvector matrix is known to be crucial for the numerical stability of the recursive algorithms. It is shown that this property can be enforced by decomposing the orthogonal matrix into a sequence of simple plane rotations. Then a rotation method for updating the plane rotations is developed. This method has the advantage that loss of numerical accuracy is avoided while retaining the inherent parallel structure of the algorithm. Moreover, it consists solely of rotation operations. Therefore, the new method is ideally suited for execution on parallel architectures which have dedicated rotation nodes, such as a CORDIC processor.
ISSN: 1057-7130
Publication status: published
KU Leuven publication type: IT
Appears in Collections:ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science