Title: A Digital Design Flow for Secure Integrated Circuits
Authors: Tiri, K ×
Verbauwhede, Ingrid #
Issue Date: 2006
Publisher: IEEE
Series Title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol:25 issue:7 pages:1197-1208
Abstract: Small embedded integrated circuits (ICs) such as smart cards are vulnerable to the so-called side-channel attacks (SCAs). The attacker can gain information by monitoring the power consumption, execution time, electromagnetic radiation, and other information leaked by the switching behavior of digital complementary metal-oxide-semiconductor (CMOS), gates. This paper presents a digital very large scale integrated (VLSI) design flow to create secure power-analysis-attack-resistant ICs. The design flow starts from a normal design in a hardware description language such as very-high-speed integrated circuit (VHSIC) hardware description language (VHDL) or Verilog and provides a direct path to an SCA-resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regular synchronous CMOS standard cell design flow. The basis for power analysis attack resistance is discussed. This paper describes how to adjust the library databases such that the regular single-ended static CMOS standard cells implement a dynamic and differential logic style and such that 20 000+ differential nets can be routed in parallel. This paper also explains how to modify the constraints and rules files for the synthesis, place, and differential route procedures. Measurement-based experimental results have demonstrated that the secure digital design flow is a functional technique to thwart side-channel power analysis. It successfully protects a prototype Advanced Encryption Standard (AES) IC fabricated in an 0.18-mu m CMOS.
ISSN: 0278-0070
Publication status: published
KU Leuven publication type: IT
Appears in Collections:ESAT - COSIC, Computer Security and Industrial Cryptography (+)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
article-631.pdf Published 516KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science