Title: Per-tone equalization for MIMO OFDM systems
Authors: Leus, Geert ×
Moonen, Marc #
Issue Date: Nov-2003
Publisher: Ieee-inst electrical electronics engineers inc
Series Title: IEEE Transactions on signal processing vol:51 issue:11 pages:2965-2975
Abstract: This paper focuses on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems with channel order larger than the cyclic prefix (CP) length. Writing the demodulating fast Fourier transform (FFT) as a sliding FFT followed by a downsampling operation, we show in this paper that by swapping the filtering operations of the MIMO channel and the sliding FFT, the data model for the temporally smoothened received signal of each individual tone of the MIMO OFDM system is very similar to the data model for the temporally smoothened received signal of a MIMO single-carrier (SC) system. As a result, to recover the data symbol vectors, the conventional equalization approach for MIMO SC systems can be applied to each individual tone of the MIMO OFDM system. This so-called per-tone equalization (PTEQ) approach for MIMO OFDM systems is an attractive alternative to the recently developed time-domain equalization (TEQ) approach for MIMO OFDM systems. In the second part of this paper, we focus on direct per-tone equalizer design and adapt an existing semi-blind equalizer design method for space-time block coding (STBC) SC systems to the corresponding semi-blind per-tone equalizer design method for STBC OFDM systems.
ISSN: 1053-587X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Electrical Engineering - miscellaneous
ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics
Faculty of Engineering Science - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science