Title: Kernel-based data fusion for gene prioritization
Authors: De Bie, Tijl ×
Tranchevent, Léon-Charles
van Oeffelen, Liesbeth
Moreau, Yves #
Issue Date: Jul-2007
Publisher: Oxford University Press
Series Title: Bioinformatics vol:23 issue:13 pages:I125-I132
Abstract: MOTIVATION: Hunting disease genes is a problem of primary importance in biomedical research. Biologists usually approach this problem in two steps: first a set of candidate genes is identified using traditional positional cloning or high-throughput genomics techniques; second, these genes are further investigated and validated in the wet lab, one by one. To speed up discovery and limit the number of costly wet lab experiments, biologists must test the candidate genes starting with the most probable candidates. So far, biologists have relied on literature studies, extensive queries to multiple databases and hunches about expected properties of the disease gene to determine such an ordering. Recently, we have introduced the data mining tool ENDEAVOUR (Aerts et al., 2006), which performs this task automatically by relying on different genome-wide data sources, such as Gene Ontology, literature, microarray, sequence and more. RESULTS: In this article, we present a novel kernel method that operates in the same setting: based on a number of different views on a set of training genes, a prioritization of test genes is obtained. We furthermore provide a thorough learning theoretical analysis of the method's guaranteed performance. Finally, we apply the method to the disease data sets on which ENDEAVOUR (Aerts et al., 2006) has been benchmarked, and report a considerable improvement in empirical performance. AVAILABILITY: The MATLAB code used in the empirical results will be made publicly available.
ISSN: 1367-4803
Publication status: published
KU Leuven publication type: IT
Appears in Collections:ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics
Electrical Engineering - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
69717_i125.pdf Published 170KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science