ITEM METADATA RECORD
Title: Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast
Authors: Thevissen, Karin ×
Ayscough, K.R.
Aerts, An
Du, W.
De Brucker, Katrijn
Meert, Els
Ausma, J.
Borgers, M.
Cammue, Bruno
Fran├žois, Isabelle #
Issue Date: 27-Jun-2007
Series Title: Journal of Biological Chemistry vol:282 issue:30 pages:21592-21597
Abstract: The antifungal compound miconazole inhibits ergosterol biosynthesis and induces reactive oxygen species (ROS) in susceptible yeast species. To further uncover the mechanism of miconazole antifungal action and tolerance mechanisms, we screened the complete set of haploid Saccharomyces cerevisiae gene deletion mutants for mutants with an altered miconazole sensitivity phenotype. We identified 29 S. cerevisiae genes, which when deleted conferred at least 4-fold hypersensitivity to miconazole. Major functional groups encode proteins involved in tryptophan biosynthesis, membrane trafficking including endocytosis, regulation of actin cytoskeleton, and gene expression. With respect to the antifungal activity of miconazole, we demonstrate an antagonism with tryptophan and a synergy with a yeast endocytosis inhibitor. Because actin dynamics and induction of ROS are linked in yeast, we further focused on miconazole-mediated changes in actin cytoskeleton organization. In this respect, we demonstrate that miconazole induces changes in the actin cytoskeleton, indicative of increased filament stability, prior to ROS induction. These data provide novel mechanistic insights in the mode of action of a ROS-inducing azole.
URI: 
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre of Microbial and Plant Genetics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science