Title: cDNA cloning, functional expression, and characterization of chicken sulfotransferases belonging to the SULT1B and SULT1C families
Authors: Wilson, Lesley A ×
Reyns, Geert
Darras, Veerle
Coughtrie, Michael W H #
Issue Date: 1-Jul-2004
Series Title: Archives of biochemistry and biophysics vol:428 issue:1 pages:64-72
Abstract: A search of the chicken expressed sequence tag (EST) database identified 2 cDNA clones that appeared to represent members of the SULT1B and SULT1C enzyme families. These cDNAs were fully sequenced and found to contain full-length inserts. Phylogenetic analysis of the derived amino acid sequences clearly placed them as the first members of the chicken SULT1B and SULT1C families, respectively, to be identified, and we propose they be named SULT1B1 and SULT1C1. (CHICK)SULT1B1 shares approximately 60% amino acid sequence identity with mammalian SULT1B enzymes, whereas the closest neighbor to (CHICK)SULT1C1 was the ortholog (RAT)SULT1C1, with 68% identity. We cloned these cDNAs into the bacterial expression vectors from the pET series. Transformed Escherichia coli cells strongly expressed the recombinant proteins. Purification of the recombinant enzymes from E. coli was accomplished by a three-step procedure involving ammonium sulfate precipitation, anion exchange chromatography, and affinity chromatography. The purified enzymes displayed subunit molecular weights of approximately 35,000Da on SDS-PAGE, as predicted, and were both able to sulfate a wide range of compounds, including xenobiotics and endogenous substrates such as iodothyronines. Detailed kinetic analysis showed SULT1C1 was more prolific in that it was able to sulfate dopamine, tyramine, and apomorphine, which SULT1B1 was not. 2-Bromophenol was the best substrate for both enzymes. We also raised antibodies against these proteins, which were able to detect the SULTs by ELISA, and which were able to strongly inhibit the recombinant enzymes. This is the first detailed characterization of sulfotransferases from the chicken, and it demonstrates that the avian and mammalian SULT1 enzymes are closely related in both structure and function.
ISSN: 0003-9861
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Animal Physiology and Neurobiology Section - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Wilson et al._2004_Archives of Biochemistry and Biophysics_vol428_p64-72.pdf Published 390KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science