Download PDF

Angewandte Chemie-International Edition

Publication date: 2021-06-07
Volume: 60 Pages: 13294 - 13301
Publisher: Wiley

Author:

Tauber, Carolin
Wamser, Rebekka ; Arkona, Christoph ; Tuegend, Marisa ; Abdul Aziz, Umer Bin ; Pach, Szymon ; Schulz, Robert ; Jochmans, Dirk ; Wolber, Gerhard ; Neyts, Johan ; Rademann, Joerg

Keywords:

Science & Technology, Physical Sciences, Chemistry, Multidisciplinary, Chemistry, aldol condensations, antivirals, chemical evolution, protease inhibition, protein-templated reactions, 3C Viral Proteases, Antiviral Agents, Biocatalysis, Carbon, Enterovirus D, Human, Evolution, Chemical, Humans, Kinetics, Thermodynamics, 03 Chemical Sciences, Organic Chemistry, 34 Chemical sciences

Abstract:

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.