Journal Of Endodontics
Author:
Keywords:
Science & Technology, Life Sciences & Biomedicine, Dentistry, Oral Surgery & Medicine, Artificial intelligence, computed tomography, convolutional neural network, deep learning, digital imaging, radiology, ENDODONTIC TREATMENT, AUTOTRANSPLANTATION, digital imaging/radiology, Artifacts, Artificial Intelligence, Cone-Beam Computed Tomography, Tooth, Tooth Root, C24/18/068#54689703, 1105 Dentistry, Dentistry, 3203 Dentistry
Abstract:
INTRODUCTION: Tooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging. METHODS: A total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time. RESULTS: Overall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster). CONCLUSIONS: This study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.