Title: Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination
Authors: Valdramidis, V P ×
Belaubre, N
Zuniga, R
Foster, A M
Havet, M
Geeraerd, Annemie
Swain, M J
Bernaerts, Kristel
Van Impe, Jan
Kondjoyan, A #
Issue Date: Apr-2005
Publisher: Elsevier Science Publishers
Series Title: International Journal of Food Microbiology vol:100 issue:1-3 pages:261-274
Abstract: This research deals with the development of predictive modelling approaches in the field of heat transfer and microbial inactivation. Upon making some backstage microbiological considerations, surface temperature predictions during hot dry air decontaminations are incorporated in a microbial inactivation model, in order to describe inactivation kinetics under realistic (time-varying) temperature conditions. In the present study, the following parts are presented. (i) First, a one-dimensional heat transfer model is developed taking into account exchanges by convection, radiation and evaporation. The model is subsequently validated on a laboratory setup and on a test rig, assuming no water activity changes. This test rig is developed for studying-at a later stage-surface pasteurisation treatment on food products with the use of hot dry air. (ii) Isothermal inactivation data of Escherichia coli K12 MG1655 have been collected and inactivation parameters are accurately estimated by using a primary and a secondary model in a global modelling approach. (iii) Microbiological considerations such as microbial growth effects during come-up times, initial temperature of inactivation, and heat resistance effects, based on experimental observations and on literature studies, are formulated in order to evaluate possible microbial effects arising under the dynamic temperature conditions modelled in step (i). (iv) Microbial inactivation simulations with the incorporation of surface temperature predictions are presented. (v) Finally, the level of the microbial decontamination in an example based on the design of an industrial installation is presented, outlining the importance of the combination of surface temperature and microbial inactivation modelling approaches.
ISSN: 0168-1605
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section
Division of Mechatronics, Biostatistics and Sensors (MeBioS)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2005_Valdramidis_International-Journal-of-Food-Microbiology_100_261_274.pdf Published 565KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science