ITEM METADATA RECORD
Title: Dynamic muscle fatigue detection using self-organizing maps
Authors: Moshou, Dimitrios ×
Hostens, I
Papaioannou, G
Ramon, Herman #
Issue Date: Jul-2005
Publisher: Elsevier science bv
Series Title: Applied soft computing vol:5 issue:4 pages:391-398
Abstract: Wavelets are used for the processing of signals that are non-stationary and time varying. The electromyogram (EMG) contains transient signals related to muscle activity. Wavelet coefficients are proposed as features for identifying muscle fatigue. By observing the approximation coefficients it is shown that their amplitude follows closely the muscle fatigue development. The proposed method for detecting fatigue is automated by using neural networks. The self-organizing map (SOM) has been used to visualize the variation of the approximation wavelet coefficients and aid the detection of muscle fatigue. The results show that a 2D SOM separates EMG signatures from fresh and fatigued muscles, thus providing a visualization of the onset of fatigue over time. The map is able to detect if muscles have recovered temporarily. The system is adaptable to different subjects and conditions since the techniques used are not subject or workload regime specific. (C) 2004 Published by Elsevier B.V.
URI: 
ISSN: 1568-4946
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Mechatronics, Biostatistics and Sensors (MeBioS)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science