Download PDF

PLoS One

Publication date: 2018-01-11
Volume: 13 22
Publisher: Public Library of Sciene

Author:

Goudriaan, Marije
Nieuwenhuys, Angela ; Schless, Simon Henri ; Goemans, Nathalie ; Molenaers, Guy ; Desloovere, Kaat

Keywords:

Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, HAND-HELD DYNAMOMETRY, LOWER-EXTREMITY, ACHILLES-TENDON, DEVIATION INDEX, YOUNG-ADULTS, RELIABILITY, SEMITENDINOSUS, GENERATION, PARAMETERS, SPASTICITY, Cerebral Palsy, Child, Female, Gait, Humans, Male, Muscle Weakness, Reproducibility of Results, General Science & Technology

Abstract:

AIM: The main goal of this validation study was to evaluate whether lower limb muscle weakness and plantar flexor rate of force development (RFD) related to altered gait parameters in children with cerebral palsy (CP), when weakness was assessed with maximal voluntary isometric contractions (MVICs) in a gait related test position. As a subgoal, we analyzed intra- and intertester reliability of this new strength measurement method. METHODS: Part 1 -Intra- and intertester reliability were determined with the intra-class correlation coefficient (ICC2,1) in 10 typical developing (TD) children (age: 5-15). We collected MVICs in four lower limb muscle groups to define maximum joint torques, as well as plantar flexor RFD. Part 2 -Validity of the strength assessment was explored by analyzing the relations of lower limb joint torques and RFD to a series of kinematic- and kinetic gait features, the GDI (gait deviation index), and the GDI-kinetic in 23 children with CP (GMFCS I-II; age: 5-15) and 23 TD children (age: 5-15) with Spearman's rank correlation coefficients. RESULTS: Part 1 -The best reliability was found for the torque data (Nm), with the highest ICC2,1 (0.951) for knee extension strength (inter) and the lowest (0.693) for dorsiflexion strength (intra). For plantar flexor RFD, the most reliable window size was 300 milliseconds (ICC2,1: 0.828 (inter) and 0.692 (intra)). Part 2 -The children with CP were significantly weaker than the TD children (p <0.001). Weakness of the dorsiflexors and plantar flexors associated with delayed and decreased knee flexion angle during swing, respectively. No other significant correlations were found. CONCLUSION: While our new strength assessment was reliable, intra-joint correlations between weakness, RFD, and gait deviations were low. However, we found inter-joint associations, reflected by a strong association between plantar- and dorsiflexor weakness, and decreased and delayed knee flexion angle during swing.